Zobrazit minimální záznam

dc.contributor.authorTkadlec, Josef
dc.date.accessioned2015-10-09T08:08:04Z
dc.date.available2015-10-09T08:08:04Z
dc.date.issued1997
dc.identifier.citationTkadlec, J.: Conditions that Force an Orthomodular Poset to Be a Boolean Algebra. Tatra Mountains Mathematical Publications. 1997, no. 10, p. 55-62. ISSN 1210-3195.cze
dc.identifier.issn1210-3195
dc.identifier.urihttp://hdl.handle.net/10467/62425
dc.description.abstractWe introduce two new classes of orthomodular posets—the class of weakly Boolean orthomodular posets and the class of orthomodular posets with the property of maximality. The main result of this paper is that the intersection of these classes is the class of Boolean algebras. Since the first class introduced here contains various classes of orthomodular posets with a given property of its state space and the second class contains, e.g., lattice (orthocomplete, resp.) orthomodular posets, the main theorem can be viewed as a generalization of various results concerning the question when an orthomodular poset has to be a Boolean algebra. Moreover, it gives alternative proofs to previous results and new results of this type.cze
dc.language.isoencze
dc.titleConditions that Force an Orthomodular Poset to Be a Boolean Algebracze
dc.typeArticlecze


Soubory tohoto záznamu



Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam