MODIFIED POSSIBILISTIC FUZZY C-MEANS ALGORITHM FOR CLUSTERING INCOMPLETE DATA SETS
dc.contributor.author | Rustam | |
dc.contributor.author | Usman, Koredianto | |
dc.contributor.author | Kamaruddin, Mudyawati | |
dc.contributor.author | Chamidah, Dina | |
dc.contributor.author | Nopendri | |
dc.contributor.author | Saleh, Khaerudin | |
dc.contributor.author | Eliskar, Yulinda | |
dc.contributor.author | Marzuki, Ismail | |
dc.date.accessioned | 2021-11-03T13:22:14Z | |
dc.date.available | 2021-11-03T13:22:14Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Acta Polytechnica. 2021, vol. 61, no. 2, p. 364-377. | |
dc.identifier.issn | 1210-2709 (print) | |
dc.identifier.issn | 1805-2363 (online) | |
dc.identifier.uri | http://hdl.handle.net/10467/98408 | |
dc.description.abstract | A possibilistic fuzzy c-means (PFCM) algorithm is a reliable algorithm proposed to deal with the weaknesses associated with handling noise sensitivity and coincidence clusters in fuzzy c-means (FCM) and possibilistic c-means (PCM). However, the PFCM algorithm is only applicable to complete data sets. Therefore, this research modified the PFCM for clustering incomplete data sets to OCSPFCM and NPSPFCM with the performance evaluated based on three aspects, 1) accuracy percentage, 2) the number of iterations, and 3) centroid errors. The results showed that the NPSPFCM outperforms the OCSPFCM with missing values ranging from 5% − 30% for all experimental data sets. Furthermore, both algorithms provide average accuracies between 97.75%−78.98% and 98.86%−92.49%, respectively. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | České vysoké učení technické v Praze | cs |
dc.publisher | Czech Technical University in Prague | en |
dc.relation.ispartofseries | Acta Polytechnica | |
dc.relation.uri | https://ojs.cvut.cz/ojs/index.php/ap/article/view/6763 | |
dc.rights | Creative Commons Attribution 4.0 International License | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.title | MODIFIED POSSIBILISTIC FUZZY C-MEANS ALGORITHM FOR CLUSTERING INCOMPLETE DATA SETS | |
dc.type | article | en |
dc.date.updated | 2021-11-03T13:22:14Z | |
dc.identifier.doi | 10.14311/AP.2021.61.0364 | |
dc.rights.access | openAccess | |
dc.type.status | Peer-reviewed | |
dc.type.version | publishedVersion |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International License