Show simple item record

dc.contributor.authorKošťáková , Petra
dc.contributor.authorStovicek , Pavel
dc.date.accessioned2017-02-09T11:33:17Z
dc.date.available2017-02-09T11:33:17Z
dc.date.issued2016
dc.identifier.citationActa Polytechnica. 2016, vol. 56, no. 3, p. 224-235.
dc.identifier.issn1210-2709 (print)
dc.identifier.issn1805-2363 (online)
dc.identifier.urihttp://hdl.handle.net/10467/67256
dc.description.abstractWe consider an invariant quantum Hamiltonian H = −ΔLB + V in the L2 space based on a Riemannian manifold ˜M with a discrete symmetry group Γ. To any unitary representation Λ of Γ one can relate another operator on M = ˜M /Γ, called HΛ, which formally corresponds to the same differential operator as H but which is determined by quasi-periodic boundary conditions. As originally observed by Schulman in theoretical physics and Sunada in mathematics, one can construct the propagator associated with HΛ provided one knows the propagator associated with H. This approach is reviewed and demonstrated on a quantum model describing a charged particle on the plane with two Aharonov-Bohm vortices. The construction of the propagator is explained in full detail including all substantial intermediate steps.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherČeské vysoké učení technické v Prazecs
dc.publisherCzech Technical University in Pragueen
dc.relation.ispartofseriesActa Polytechnica
dc.relation.urihttps://ojs.cvut.cz/ojs/index.php/ap/article/view/3105
dc.rightsCreative Commons Attribution 4.0 International Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectAharonov-Bohm effecten
dc.subjectpropagatoren
dc.subjectcovering spaceen
dc.subjectBloch decompositionen
dc.titleTHE AHARONOVBOHM HAMILTONIAN WITH TWO VORTICES REVISITED
dc.typearticleen
dc.date.updated2017-02-09T11:33:17Z
dc.identifier.doihttps://doi.org/10.14311/AP.2016.56.0224
dc.rights.accessopenAccess
dc.type.statusPeer-reviewed
dc.type.versionpublishedVersion


Files in this item



This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International License