FRACTIONAL CALCULUS AND LAMBERT FUNCTION I. LIOUVILLE–WEYL FRACTIONAL INTEGRAL
dc.contributor.author | Vojta , Vladimír | |
dc.date.accessioned | 2017-02-09T09:31:00Z | |
dc.date.available | 2017-02-09T09:31:00Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | Acta Polytechnica. 2014, vol. 54, no. 4, p. 305-319. | |
dc.identifier.issn | 1210-2709 (print) | |
dc.identifier.issn | 1805-2363 (online) | |
dc.identifier.uri | http://hdl.handle.net/10467/67154 | |
dc.description.abstract | The interconnection between the Liouville–Weyl fractional integral and the Lambert function is studied. The class of modified Abel equations of the first kind is solved. A new integral formula for the Gamma function and possibly new transform pairs for the Laplace and Mellin transform have been found. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | České vysoké učení technické v Praze | cs |
dc.publisher | Czech Technical University in Prague | en |
dc.relation.ispartofseries | Acta Polytechnica | |
dc.relation.uri | https://ojs.cvut.cz/ojs/index.php/ap/article/view/2224 | |
dc.rights | Creative Commons Attribution 4.0 International License | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.title | FRACTIONAL CALCULUS AND LAMBERT FUNCTION I. LIOUVILLE–WEYL FRACTIONAL INTEGRAL | |
dc.type | article | en |
dc.date.updated | 2017-02-09T09:31:00Z | |
dc.identifier.doi | 10.14311/AP.2014.54.0305 | |
dc.rights.access | openAccess | |
dc.type.status | Peer-reviewed | |
dc.type.version | publishedVersion |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International License