Zobrazit minimální záznam

dc.contributor.authorMostafazadeh , Ali
dc.date.accessioned2017-02-09T09:24:49Z
dc.date.available2017-02-09T09:24:49Z
dc.date.issued2014
dc.identifier.citationActa Polytechnica. 2014, vol. 54, no. 2.
dc.identifier.issn1210-2709 (print)
dc.identifier.issn1805-2363 (online)
dc.identifier.urihttp://hdl.handle.net/10467/67128
dc.description.abstractWe review, restate, and prove a result due to Kaushal and Korsch [Phys. Lett. A 276, 47 (2000)] on the complete integrability of two-dimensional Hamiltonian systems whose Hamiltonian satisfies a set of four linear second order partial differential equations. In particular, we show that a two-dimensional Hamiltonian system is completely integrable, if the Hamiltonian has the form H = T + V where V and T are respectively harmonic functions of the generalized coordinates and the associated momenta.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherČeské vysoké učení technické v Prazecs
dc.publisherCzech Technical University in Pragueen
dc.relation.ispartofseriesActa Polytechnica
dc.relation.urihttps://ojs.cvut.cz/ojs/index.php/ap/article/view/2095
dc.rightsCreative Commons Attribution 4.0 International Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleA DIFFERENTIAL INTEGRABILITY CONDITION FOR TWODIMENSIONAL HAMILTONIAN SYSTEMS
dc.typearticleen
dc.date.updated2017-02-09T09:24:49Z
dc.identifier.doihttps://doi.org/10.14311/AP.2014.54.0139
dc.rights.accessopenAccess
dc.type.statusPeer-reviewed
dc.type.versionpublishedVersion


Soubory tohoto záznamu



Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Creative Commons Attribution 4.0 International License
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Creative Commons Attribution 4.0 International License