Show simple item record

dc.contributor.authorEsina I., Anna
dc.contributor.authorShafarevich I., Andrei
dc.date.accessioned2017-02-09T09:23:21Z
dc.date.available2017-02-09T09:23:21Z
dc.date.issued2014
dc.identifier.citationActa Polytechnica. 2014, vol. 54, no. 2.
dc.identifier.issn1210-2709 (print)
dc.identifier.issn1805-2363 (online)
dc.identifier.urihttp://hdl.handle.net/10467/67120
dc.description.abstractThis paper reports a study of the semiclassical asymptotic behavior of the eigenvalues of some nonself-adjoint operators that are important for applications. These operators are the Schrödinger operator with complex periodic potential and the operator of induction. It turns out that the asymptotics of the spectrum can be calculated using the quantization conditions. These can be represented as the condition that the integrals of a holomorphic form over the cycles on the corresponding complex Lagrangian manifold, which is a Riemann surface of constant energy, are integers. In contrast to the real case (the Bohr–Sommerfeld–Maslov formulas), in order to calculate a chosen spectral series, it is sufficient to assume that the integral over only one of the cycles takes integer values, and different cycles determine different parts of the spectrum.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherČeské vysoké učení technické v Prazecs
dc.publisherCzech Technical University in Pragueen
dc.relation.ispartofseriesActa Polytechnica
dc.relation.urihttps://ojs.cvut.cz/ojs/index.php/ap/article/view/2077
dc.rightsCreative Commons Attribution 4.0 International Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleSEMICLASSICAL ASYMPTOTICS OF EIGENVALUES FOR NONSELFADJOINT OPERATORS AND QUANTIZATION CONDITIONS ON RIEMANN SURFACES
dc.typearticleen
dc.date.updated2017-02-09T09:23:21Z
dc.identifier.doihttps://doi.org/10.14311/AP.2014.54.0101
dc.rights.accessopenAccess
dc.type.statusPeer-reviewed
dc.type.versionpublishedVersion


Files in this item



This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International License