Show simple item record

dc.contributor.authorRiečanová , Zdenka
dc.contributor.authorJanda , Jiří
dc.date.accessioned2017-02-09T08:22:08Z
dc.date.available2017-02-09T08:22:08Z
dc.date.issued2013
dc.identifier.citationActa Polytechnica. 2013, vol. 53, no. 5.
dc.identifier.issn1210-2709 (print)
dc.identifier.issn1805-2363 (online)
dc.identifier.urihttp://hdl.handle.net/10467/67086
dc.description.abstractWe show that in any generalized effect algebra (G;⊕, 0) a maximal pairwise summable subset is a sub-generalized effect algebra of (G;⊕, 0), called a summability block. If G is lattice ordered, then every summability block in G is a generalized MV-effect algebra. Moreover, if every element of G has an infinite isotropic index, then G is covered by its summability blocks, which are generalized MV-effect algebras in the case that G is lattice ordered. We also present the relations between summability blocks and compatibility blocks of G. Counterexamples, to obtain the required contradictions in some cases, are given.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherČeské vysoké učení technické v Prazecs
dc.publisherCzech Technical University in Pragueen
dc.relation.ispartofseriesActa Polytechnica
dc.relation.urihttps://ojs.cvut.cz/ojs/index.php/ap/article/view/1865
dc.rightsCreative Commons Attribution 4.0 International Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleMAXIMAL SUBSETS OF PAIRWISE SUMMABLE ELEMENTS IN GENERALIZED EFFECT ALGEBRAS
dc.typearticleen
dc.date.updated2017-02-09T08:22:08Z
dc.identifier.doihttps://doi.org/10.14311/AP.2013.53.0457
dc.rights.accessopenAccess
dc.type.statusPeer-reviewed
dc.type.versionpublishedVersion


Files in this item



This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International License