Show simple item record

dc.contributor.authorRiečanová , Zdenka
dc.contributor.authorZajac , Michal
dc.date.accessioned2017-02-09T08:16:31Z
dc.date.available2017-02-09T08:16:31Z
dc.date.issued2013
dc.identifier.citationActa Polytechnica. 2013, vol. 53, no. 3.
dc.identifier.issn1210-2709 (print)
dc.identifier.issn1805-2363 (online)
dc.identifier.urihttp://hdl.handle.net/10467/67065
dc.description.abstractWe consider subsets G of a generalized effect algebra E with 0∈G and such that every interval [0, q]G = [0, q]E ∩ G of G (q ∈ G , q ≠ 0) is a sub-effect algebra of the effect algebra [0, q]E. We give a condition on E and G under which every such G is a sub-generalized effect algebra of E.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherČeské vysoké učení technické v Prazecs
dc.publisherCzech Technical University in Pragueen
dc.relation.ispartofseriesActa Polytechnica
dc.relation.urihttps://ojs.cvut.cz/ojs/index.php/ap/article/view/1817
dc.rightsCreative Commons Attribution 4.0 International Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectgeneralized effect algebraen
dc.subjecteffect algebraen
dc.subjectHilbert spaceen
dc.subjectdensely defined linear operatorsen
dc.subjectembeddingen
dc.subjectpositive operators valued stateen
dc.titleIntervals in Generalized Effect Algebras and their Subgeneralized Effect Algebras
dc.typearticleen
dc.date.updated2017-02-09T08:16:31Z
dc.rights.accessopenAccess
dc.type.statusPeer-reviewed
dc.type.versionpublishedVersion


Files in this item



This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International License