Zobrazit minimální záznam



dc.contributor.authorRychlík, Jan
dc.contributor.authorMouček, Roman
dc.date.accessioned2025-04-01T09:29:06Z
dc.date.available2025-04-01T09:29:06Z
dc.date.issued2024
dc.identifier.citationActa Polytechnica. 2024, vol. 51, no. , p. 75-80.
dc.identifier.issn1210-2709 (print)
dc.identifier.issn1805-2363 (online)
dc.identifier.urihttp://hdl.handle.net/10467/121936
dc.description.abstractSleep constitutes an essential aspect of human existence, with the average individual dedicating approximately one-third of their life to this physiological activity. Consequently, comprehending and accurately analyzing sleep patterns is of paramount importance. This research aims to introduce, formulate, execute, and assess diverse machine/deep learning methodologies tailored for the processing of EEG signals geared explicitly towards identifying sleep spindles. The learning algorithms underwent training using meticulously annotated data from the Montreal Archive of Sleep Studies (MASS) data center. The convolutional neural network emerged as the most effective classification model, achieving an accuracy surpassing 67 %.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherČeské vysoké učení technické v Prazecs
dc.publisherCzech Technical University in Pragueen
dc.relation.ispartofseriesActa Polytechnica
dc.relation.urihttps://ojs.cvut.cz/ojs/index.php/APP/article/view/10442
dc.rightsCreative Commons Attribution 4.0 International Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleAutomatic detection of sleep spindles by neural networks algorithms
dc.typearticleen
dc.date.updated2025-04-01T09:29:06Z
dc.identifier.doi10.14311/APP.2024.51.0075
dc.rights.accessopenAccess
dc.type.statusPeer-reviewed
dc.type.versionpublishedVersion


Soubory tohoto záznamu



Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Creative Commons Attribution 4.0 International License
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Creative Commons Attribution 4.0 International License