Show simple item record



dc.contributor.authorŠperl, Ondřej
dc.contributor.authorSýkora, Jan
dc.date.accessioned2024-12-09T11:02:51Z
dc.date.available2024-12-09T11:02:51Z
dc.date.issued2024
dc.identifier.citationActa Polytechnica. 2024, vol. 49, no. , p. 85-91.
dc.identifier.issn1210-2709 (print)
dc.identifier.issn1805-2363 (online)
dc.identifier.urihttp://hdl.handle.net/10467/119727
dc.description.abstractIn this contribution, the concrete morphology is reconstructed with a simple algorithm selecting a pixel value based on the small set of surrounding pixels. A deep neural network (DNN) is used as a classifier, and the authors focus on studying different DNN architectures. The performance of the proposed algorithm is evaluated on several statistical descriptors and the grain size distribution curve.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherČeské vysoké učení technické v Prazecs
dc.publisherCzech Technical University in Pragueen
dc.relation.ispartofseriesActa Polytechnica
dc.relation.urihttps://ojs.cvut.cz/ojs/index.php/APP/article/view/10214
dc.rightsCreative Commons Attribution 4.0 International Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleReconstruction of concrete morphology using deep learning
dc.typearticleen
dc.date.updated2024-12-09T11:02:51Z
dc.identifier.doi10.14311/APP.2024.49.0085
dc.rights.accessopenAccess
dc.type.statusPeer-reviewed
dc.type.versionpublishedVersion


Files in this item



This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International License