Reconstruction of concrete morphology using deep learning
dc.contributor.author | Šperl, Ondřej | |
dc.contributor.author | Sýkora, Jan | |
dc.date.accessioned | 2024-12-09T11:02:51Z | |
dc.date.available | 2024-12-09T11:02:51Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Acta Polytechnica. 2024, vol. 49, no. , p. 85-91. | |
dc.identifier.issn | 1210-2709 (print) | |
dc.identifier.issn | 1805-2363 (online) | |
dc.identifier.uri | http://hdl.handle.net/10467/119727 | |
dc.description.abstract | In this contribution, the concrete morphology is reconstructed with a simple algorithm selecting a pixel value based on the small set of surrounding pixels. A deep neural network (DNN) is used as a classifier, and the authors focus on studying different DNN architectures. The performance of the proposed algorithm is evaluated on several statistical descriptors and the grain size distribution curve. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | České vysoké učení technické v Praze | cs |
dc.publisher | Czech Technical University in Prague | en |
dc.relation.ispartofseries | Acta Polytechnica | |
dc.relation.uri | https://ojs.cvut.cz/ojs/index.php/APP/article/view/10214 | |
dc.rights | Creative Commons Attribution 4.0 International License | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.title | Reconstruction of concrete morphology using deep learning | |
dc.type | article | en |
dc.date.updated | 2024-12-09T11:02:51Z | |
dc.identifier.doi | 10.14311/APP.2024.49.0085 | |
dc.rights.access | openAccess | |
dc.type.status | Peer-reviewed | |
dc.type.version | publishedVersion |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International License