Tribo-technological features of laser powder bed fusion process: scratch and wear resistance of AlSi10Mg aluminium alloy
Type of document
articlePeer-reviewed
publishedVersion
Author
Guarino, Danilo
Venettacci, Simone
Villani, Vittorio
Ponticelli, Gennaro Salvatore
Guarino, Stefano
Rights
Creative Commons Attribution 4.0 International Licensehttp://creativecommons.org/licenses/by/4.0/
openAccess
Metadata
Show full item recordAbstract
Mechanical systems, regardless of their complexity, very often require that different parts must move relative to each other by sliding their surfaces, therefore appropriate tribological properties are needed. This request appears particularly evident for components fabricated through Metal Additive Manufacturing processes, due to their typical high surface roughness. In the current study, the Laser Powder Bed Fusion technique with optimized parameters is used to produce samples made of AlSi10Mg alloy. Their tribo-technological properties are investigated through progressive load scratch and dry ball-on-plate wear tests. Along with a global characterization, a local analysis has been performed to identify any variations induced by the building direction. The friction coefficient and the wear rate are generally higher than as-cast specimens. Finally, local trends suggest that the central parts of the samples average offer higher resistance to wear and scratch than the outer areas.
Collections
The following license files are associated with this item:
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International License