Show simple item record



dc.contributor.authorBurdík, Čestmír
dc.contributor.authorPošta, Severin
dc.contributor.authorRapp, Erik
dc.date.accessioned2024-09-17T07:30:04Z
dc.date.available2024-09-17T07:30:04Z
dc.date.issued2024
dc.identifier.citationActa Polytechnica. 2024, vol. 64, no. 4, p. 336-340.
dc.identifier.issn1210-2709 (print)
dc.identifier.issn1805-2363 (online)
dc.identifier.urihttp://hdl.handle.net/10467/118163
dc.description.abstractThis paper reproduces the result of Elliot, namely that the irreducible finite dimensional representation of the Lie algebra su(3) of highest weight (m, n) is decomposed according to the embedding so(3) ⊂ su(3). First, a realisation (a representation in terms of vector fields) of the Lie algebra su(3) is constructed on a space of polynomials of three variables. The special polynomial basis of the representation space is given. In this basis, we find the highest weight vectors of the representation of the Lie subalgebra so(3) and in this way the representation space is decomposed to the direct sum of invariant subspaces. The process is illustrated by the example of the decomposition of the representation of highest weight (2, 2). As an additional result, the generating function of the decomposition is given.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherČeské vysoké učení technické v Prazecs
dc.publisherCzech Technical University in Pragueen
dc.relation.ispartofseriesActa Polytechnica
dc.relation.urihttps://ojs.cvut.cz/ojs/index.php/ap/article/view/9131
dc.rightsCreative Commons Attribution 4.0 International Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleso(3) ⊂ su(3) revisited
dc.typearticleen
dc.date.updated2024-09-17T07:30:04Z
dc.rights.accessopenAccess
dc.type.statusPeer-reviewed
dc.type.versionpublishedVersion


Files in this item



This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International License