Construction of angular-dependent potentials from trigonometric Pöschl-Teller systems within the Dunkl formalism
dc.contributor.author | Schulze-Halberg, Axel | |
dc.date.accessioned | 2023-09-19T11:18:13Z | |
dc.date.available | 2023-09-19T11:18:13Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Acta Polytechnica. 2023, vol. 63, no. 4, p. 273–292. | |
dc.identifier.issn | 1210-2709 (print) | |
dc.identifier.issn | 1805-2363 (online) | |
dc.identifier.uri | http://hdl.handle.net/10467/111911 | |
dc.description.abstract | We generate solvable cases of the two angular equations resulting from variable separation in the three-dimensional Dunkl-Schrödinger equation expressed in spherical coordinates. It is shown that the Dunkl formalism interrelates these angular equations with trigonometric Pöschl-Teller systems. Based on this interrelation, we use point transformations and Darboux-Crum transformations to construct new solvable cases of the angular equations. Instead of the stationary energy, we use the constants due to the separation of variables as transformation parameters for our Darboux-Crum transformations. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | České vysoké učení technické v Praze | cs |
dc.publisher | Czech Technical University in Prague | en |
dc.relation.ispartofseries | Acta Polytechnica | |
dc.relation.uri | https://ojs.cvut.cz/ojs/index.php/ap/article/view/9037 | |
dc.rights | Creative Commons Attribution 4.0 International License | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.title | Construction of angular-dependent potentials from trigonometric Pöschl-Teller systems within the Dunkl formalism | |
dc.type | article | en |
dc.date.updated | 2023-09-19T11:18:13Z | |
dc.identifier.doi | 10.14311/AP.2023.63.0273 | |
dc.rights.access | openAccess | |
dc.type.status | Peer-reviewed | |
dc.type.version | publishedVersion |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International License