Show simple item record



dc.contributor.authorSchulze-Halberg, Axel
dc.date.accessioned2023-09-19T11:18:13Z
dc.date.available2023-09-19T11:18:13Z
dc.date.issued2023
dc.identifier.citationActa Polytechnica. 2023, vol. 63, no. 4, p. 273–292.
dc.identifier.issn1210-2709 (print)
dc.identifier.issn1805-2363 (online)
dc.identifier.urihttp://hdl.handle.net/10467/111911
dc.description.abstractWe generate solvable cases of the two angular equations resulting from variable separation in the three-dimensional Dunkl-Schrödinger equation expressed in spherical coordinates. It is shown that the Dunkl formalism interrelates these angular equations with trigonometric Pöschl-Teller systems. Based on this interrelation, we use point transformations and Darboux-Crum transformations to construct new solvable cases of the angular equations. Instead of the stationary energy, we use the constants due to the separation of variables as transformation parameters for our Darboux-Crum transformations.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherČeské vysoké učení technické v Prazecs
dc.publisherCzech Technical University in Pragueen
dc.relation.ispartofseriesActa Polytechnica
dc.relation.urihttps://ojs.cvut.cz/ojs/index.php/ap/article/view/9037
dc.rightsCreative Commons Attribution 4.0 International Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleConstruction of angular-dependent potentials from trigonometric Pöschl-Teller systems within the Dunkl formalism
dc.typearticleen
dc.date.updated2023-09-19T11:18:13Z
dc.identifier.doi10.14311/AP.2023.63.0273
dc.rights.accessopenAccess
dc.type.statusPeer-reviewed
dc.type.versionpublishedVersion


Files in this item



This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International License