Zobrazit minimální záznam



dc.contributor.authorBreitenbücher, Rolf
dc.contributor.authorPrzondziono, Robin
dc.date.accessioned2023-01-18T15:50:20Z
dc.date.available2023-01-18T15:50:20Z
dc.date.issued2022
dc.identifier.citationActa Polytechnica. 2022, vol. 33, no. , p. 45-51.
dc.identifier.issn1210-2709 (print)
dc.identifier.issn1805-2363 (online)
dc.identifier.urihttp://hdl.handle.net/10467/106351
dc.description.abstractIn concrete pavements, special conditions, that increase the likeliness of damaging reactions, as for example an alkali-silica reaction (ASR), prevail. Especially to the superposition of microstructural degradation caused by cyclic loading with an external alkali supply can influence the sustainability negatively. Concrete pavements are subjected to cyclic loadings by traffic and climate changes. These cause microcracks (about 5 μm) within the concrete matrix during service. Additionally, an ASR in pavements is promoted by externally supplied alkalis (de-icing agents). By superposition of both effects the alkali capacity close to the ASR-reactive aggregate aggregate is increased substantially as the externally supplied alkalis can easily penetrate through the microcracks. Thus, both effects intensify the ASR in concrete pavements. Within cooperative research projects the different interdependent influencing factors for a damaging ASR in concrete pavements are studied by experiments as well as by numeric modelling. On the micro-level the ASR-related processes within the aggregate, such as gel-formation or ion-transport, are investigated. On the meso-level, the project focuses on the characterization of degradation effects in the concrete microstructure due to cyclic loading. Further, special attention is paid to the transport behavior of fluids in such pre-damaged concrete structures. A significant increase of the penetration depth of alkaline solutions could not only be observed at different stages of progressing degradation. It becomes also obvious that the ingress of externally supplied alkalis is enhanced by the overrunning traffic. Finally, on the macro-level, the risk of an ASR-damage is assessed.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherČeské vysoké učení technické v Prazecs
dc.publisherCzech Technical University in Pragueen
dc.relation.ispartofseriesActa Polytechnica
dc.relation.urihttps://ojs.cvut.cz/ojs/index.php/APP/article/view/8071
dc.rightsCreative Commons Attribution 4.0 International Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleSustainability of concrete pavements considering traffic and de-icing agents
dc.typearticleen
dc.date.updated2023-01-18T15:50:20Z
dc.identifier.doi10.14311/APP.2022.33.0045
dc.rights.accessopenAccess
dc.type.statusPeer-reviewed
dc.type.versionpublishedVersion


Soubory tohoto záznamu



Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Creative Commons Attribution 4.0 International License
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Creative Commons Attribution 4.0 International License