LOCALIZATION ANALYSIS OF DAMAGE FOR ONE-DIMENSIONAL PERIDYNAMIC MODEL
Typ dokumentu
articlePeer-reviewed
publishedVersion
Autor
Mikeš, Karel
Jirásek, Milan
Zeman, Jan
Rokoš, Ondřej
Peerlings, Ron H. J.
Práva
Creative Commons Attribution 4.0 International Licensehttp://creativecommons.org/licenses/by/4.0/
openAccess
Metadata
Zobrazit celý záznamAbstrakt
Peridynamics is a recently developed extension of continuum mechanics, which replaces the traditional concept of stress by force interactions between material points at a finite distance. The peridynamic continuum is thus intrinsically nonlocal. In this contribution, a bond-based peridynamic model with elastic-brittle interactions is considered and the critical strain is defined for each bond as a function of its length. Various forms of length functions are employed to achieve a variety of macroscopic responses. A detailed study of three different localization mechanisms is performed for a one-dimensional periodic unit cell. Furthermore, a convergence study of the adopted finite element discretization of the peridynamic model is provided and an effective event-driven numerical algorithm is described.
Kolekce
K tomuto záznamu jsou přiřazeny následující licenční soubory:
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Creative Commons Attribution 4.0 International License