Show simple item record



dc.contributor.authorEscobar-Ruiz, Adrian M.
dc.contributor.authorMontoya, Fidel
dc.date.accessioned2022-05-04T12:03:05Z
dc.date.available2022-05-04T12:03:05Z
dc.date.issued2022
dc.identifier.citationActa Polytechnica. 2022, vol. 62, no. 1, p. 50-55.
dc.identifier.issn1210-2709 (print)
dc.identifier.issn1805-2363 (online)
dc.identifier.urihttp://hdl.handle.net/10467/100625
dc.description.abstractIn this work we report on a 3-body system in a d−dimensional space ℝd with a quadratic harmonic potential in the relative distances rij = |ri −rj| between particles. Our study considers unequal masses, different spring constants and it is defined in the three-dimensional (sub)space of solutions characterized (globally) by zero total angular momentum. This system is exactly-solvable with hidden algebra sℓ4(ℝ). It is shown that in some particular cases the system becomes maximally (minimally) superintegrable. We pay special attention to a physically relevant generalization of the model where eventually the integrability is lost. In particular, the ground state and the first excited state are determined within a perturbative framework.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherČeské vysoké učení technické v Prazecs
dc.publisherCzech Technical University in Pragueen
dc.relation.ispartofseriesActa Polytechnica
dc.relation.urihttps://ojs.cvut.cz/ojs/index.php/ap/article/view/7668
dc.rightsCreative Commons Attribution 4.0 International Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleGeneralized three-body harmonic oscillator system: ground state
dc.typearticleen
dc.date.updated2022-05-04T12:03:06Z
dc.identifier.doi10.14311/AP.2022.62.0050
dc.rights.accessopenAccess
dc.type.statusPeer-reviewed
dc.type.versionpublishedVersion


Files in this item



This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International License