Show simple item record



dc.contributor.authorCampoamor-Stursberg, Rutwig
dc.date.accessioned2022-05-04T12:02:29Z
dc.date.available2022-05-04T12:02:29Z
dc.date.issued2022
dc.identifier.citationActa Polytechnica. 2022, vol. 62, no. 1, p. 16-22.
dc.identifier.issn1210-2709 (print)
dc.identifier.issn1805-2363 (online)
dc.identifier.urihttp://hdl.handle.net/10467/100618
dc.description.abstractWe report on some recent purely algebraic approaches to superintegrable systems from the perspective of subspaces of commuting polynomials in the enveloping algebras of Lie algebras that generate quadratic (and eventually higher-order) algebras. In this context, two algebraic formulations are possible; a first one strongly dependent on representation theory, as well as a second formal approach that focuses on the explicit construction within commutants of algebraic integrals for appropriate algebraic Hamiltonians defined in terms of suitable subalgebras. The potential use in this context of the notion of virtual copies of Lie algebras is briefly commented.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherČeské vysoké učení technické v Prazecs
dc.publisherCzech Technical University in Pragueen
dc.relation.ispartofseriesActa Polytechnica
dc.relation.urihttps://ojs.cvut.cz/ojs/index.php/ap/article/view/7596
dc.rightsCreative Commons Attribution 4.0 International Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleOn some algebraic formulations within universal enveloping algebras related to superintegrability
dc.typearticleen
dc.date.updated2022-05-04T12:02:29Z
dc.identifier.doi10.14311/AP.2022.62.0016
dc.rights.accessopenAccess
dc.type.statusPeer-reviewed
dc.type.versionpublishedVersion


Files in this item



This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International License