Incremental Learning of Quantum Generative Adversarial Network
Inkrementální učení kvantové generativní adversariální sítě
Authors
Supervisors
Reviewers
Editors
Other contributors
Journal Title
Journal ISSN
Volume Title
Publisher
České vysoké učení technické v Praze
Czech Technical University in Prague
Czech Technical University in Prague
Date
Abstract
Obor strojového učení ukázal neuvěřitelný dopad na mnoho druhů optimalizačních problémů. Nedávno byla síla strojového učení použita k zrychlení přípravy kvantových stavů. Navzdory skutečnosti, že aproximace stavu pomocí kvantové generativní soupeřící sítě je jeden z nejrychlejších způsobů přípravy generického kvantového stavu, doba trénovaní pro takové modely je významná a může snadno eliminovat výhody plynoucí z použití kvantového algoritmu. Tato práce zkoumá využití inkrementalní učení kvantové generativní soupeřící sítě pro problém nahrání kvantových stavů a ukazuje nové případy použití v nichž se zkracuje trénovaní modelu.
Machine learning field has shown incredible impact on many kinds of optimization problems. Recently the power of machine learning was applied to speed up the quantum states preparation. Although approximation with quantum generative adversarial networks is one of the fastest ways to prepare a generic quantum state, training time for such models is still significant and can easily impair quantum advantage. This thesis explores incremental learning of quantum generative adversarial networks for the quantum states preparation problem and introduces learning use cases reducing the training time.
Machine learning field has shown incredible impact on many kinds of optimization problems. Recently the power of machine learning was applied to speed up the quantum states preparation. Although approximation with quantum generative adversarial networks is one of the fastest ways to prepare a generic quantum state, training time for such models is still significant and can easily impair quantum advantage. This thesis explores incremental learning of quantum generative adversarial networks for the quantum states preparation problem and introduces learning use cases reducing the training time.