Incremental Learning of Quantum Generative Adversarial Network

Inkrementální učení kvantové generativní adversariální sítě

Supervisors

Editors

Other contributors

Journal Title

Journal ISSN

Volume Title

Publisher

České vysoké učení technické v Praze
Czech Technical University in Prague

Research Projects

Organizational Units

Journal Issue

Abstract

Obor strojového učení ukázal neuvěřitelný dopad na mnoho druhů optimalizačních problémů. Nedávno byla síla strojového učení použita k zrychlení přípravy kvantových stavů. Navzdory skutečnosti, že aproximace stavu pomocí kvantové generativní soupeřící sítě je jeden z nejrychlejších způsobů přípravy generického kvantového stavu, doba trénovaní pro takové modely je významná a může snadno eliminovat výhody plynoucí z použití kvantového algoritmu. Tato práce zkoumá využití inkrementalní učení kvantové generativní soupeřící sítě pro problém nahrání kvantových stavů a ukazuje nové případy použití v nichž se zkracuje trénovaní modelu.

Machine learning field has shown incredible impact on many kinds of optimization problems. Recently the power of machine learning was applied to speed up the quantum states preparation. Although approximation with quantum generative adversarial networks is one of the fastest ways to prepare a generic quantum state, training time for such models is still significant and can easily impair quantum advantage. This thesis explores incremental learning of quantum generative adversarial networks for the quantum states preparation problem and introduces learning use cases reducing the training time.

Description

Citation

Endorsement

Review

Supplemented By

Referenced By