Trajectory planning for a heterogeneous team in an automated warehouse
Plánování trajektorie pro heterogenní tým v automatizovaném skladu
Authors
Supervisors
Reviewers
Editors
Other contributors
Journal Title
Journal ISSN
Volume Title
Publisher
České vysoké učení technické v Praze
Czech Technical University in Prague
Czech Technical University in Prague
Date
Abstract
Tato diplomová práce rozvíjí téma plánování trajektorií pro skupinu kooperujících robotů, a to konkrétně v prostředí automatizovaného skladu, které má pro multiagentní plánování svá specifika. Práce se zabývá možnými modifikacemi plánovacích algoritmů na základě těchto specifik, jako například potřeby lokálních úprav již existujících plánů. Dále pak popisuje vývoj a fungování systému pro řízení flotily robotů v automatizovaném skladu, a to včetně zahrnutí lidského pracovníka bezpečně se pohybujícího mezi roboty. Plánovací algoritmy i kontrolní systém byly implementovány v jazyce C++. Jejich funkčnost je na závěr diskutována včetně srovnání s jinými metodami.
This thesis develops the topic of route planning for a group of cooperating robots, specifically in the automated warehouse environment, which has its specifics in the field of multi-agent path-finding. The thesis discusses possible modifications to existing planning algorithms based on these particularities, such as replanning based on the knowledge of existing plans. Furthermore, the thesis describes the development and operation of a management system for controlling a fleet of automated guided vehicles (AGVs) that operate an automated warehouse, which is also extended with the possibility of safely introducing a human worker. The planning algorithms and the management system were implemented in C++. Their functionality is then discussed, including the comparison with other methods.
This thesis develops the topic of route planning for a group of cooperating robots, specifically in the automated warehouse environment, which has its specifics in the field of multi-agent path-finding. The thesis discusses possible modifications to existing planning algorithms based on these particularities, such as replanning based on the knowledge of existing plans. Furthermore, the thesis describes the development and operation of a management system for controlling a fleet of automated guided vehicles (AGVs) that operate an automated warehouse, which is also extended with the possibility of safely introducing a human worker. The planning algorithms and the management system were implemented in C++. Their functionality is then discussed, including the comparison with other methods.