ČVUT DSpace
  • Search DSpace
  • Čeština
  • Login
  • Čeština
  • Čeština
View Item 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta elektrotechnická
  • katedra kybernetiky
  • Bakalářské práce - 13133
  • View Item
  • České vysoké učení technické v Praze
  • Fakulta elektrotechnická
  • katedra kybernetiky
  • Bakalářské práce - 13133
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predikce rychlostí úseků cyklistických tras pomocí strojového učení

Prediction of Bicycle Trip Segment Velocities by Machine Learning

Type of document
bakalářská práce
bachelor thesis
Author
Alexandr Zemek
Supervisor
Drchal Jan
Opponent
Jakob Michal
Field of study
Informatika a počítačové vědy
Study program
Otevřená informatika
Institutions assigning rank
katedra kybernetiky
Rights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item record
Abstract
Cílem této práce je vytvořit model strojového učení, který bude schopen predikovat rychlosti segmentů cyklistických tras v Praze a okolí. Model je trénován na datovém souboru složeném z GPS záznamů cyklistických tras a jejich odpovídajících reprezentací v dopravní síti vytvořené z dat Open Street Map. Trasy jsou rozděleny na segmenty, které obsahují různé prvky, jež budou využity pro učení konkrétního modelu. Cyklistické trasy jsou zaznamenány jednotlivými cyklisty a výsledná rychlost vykonaná jednotlivcem je predikována zvlášť pro každý segment dané trasy. Prvky dopravních segmentů jsou extrahovány z dopravní sítě a ty mohou být dále rozšířeny i o další informace z OSM. Po náležité datové analýze se práce věnuje průzkumu různých metod strojového učení, jako jsou například rekurentní neuronové sítě, časově konvoluční sítě nebo regrese náhodných lesů, stejně jako jejich porovnání a vyhodnocení důležitosti dodatečných OSM prvků.
 
The goal of this thesis is to build a machine learning model which will be able to predict velocities of bicycle trip segments in the city of Prague and its surroundings. The model is trained on a dataset composed of GPS track recordings and their corresponding representation in a traffic network created from Open Street Map data. The tracks are divided into segments which contain various features which will be used for learning a particular model. The bicycle tracks are recorded by individual cyclists and the generalized velocity performed by an individual is predicted for each segment of the track. The features are extracted from the traffic network and can be extended by even more OSM information. After the proper analysis of the dataset, the work focuses on developing different machine learning methods such as recurrent neural networks, temporal convolutional networks or random forest regression as well as comparing them and evaluating the additional OSM feature importance.
 
URI
http://hdl.handle.net/10467/87694
View/Open
PLNY_TEXT (2.647Mb)
PRILOHA (87.67Kb)
POSUDEK (200.7Kb)
POSUDEK (244.6Kb)
Collections
  • Bakalářské práce - 13133 [467]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Useful links

CTU in PragueCentral library of CTUAbout CTU Digital LibraryResourcesStudy and library skillsResearch support

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV