Recommendation of new movies to obtain
Doporučování filmů k akvizici
Authors
Supervisors
Reviewers
Editors
Other contributors
Journal Title
Journal ISSN
Volume Title
Publisher
České vysoké učení technické v Praze
Czech Technical University in Prague
Czech Technical University in Prague
Date
Abstract
Táto bakalárska práca sa zaoberá problémom doporučovania filmov k akvizícii. Navrhuje dve riešenia problému cold-start, ktorý sa objavuje pri predikcii popularity nového obsahu. Prvou navrhovanom metódou je filtrovanie založené na obsahu a druhou metódou sú embeddingy s využitím neurónovej siete. Implementácia je podložená analýzou najmodernejších postupov. Evaluácia metód ukazuje, že filtrovanie založené na obsahu dosahuje lepšie výsledky oproti metóde embeddingov neurónovej siete.
This bachelor's thesis explores the problem of movie content acquisition in a recommendation domain. It proposes two solutions to tackle the cold-start setup of predicting popularity of newly obtained content. The first method it proposes is content-based filtering and the second is neural network embeddings. The implementation is supported by the state-of-the-art analysis. The evaluation of the methods shows that content-based filtering has better results in contrast to neural network embeddings.
This bachelor's thesis explores the problem of movie content acquisition in a recommendation domain. It proposes two solutions to tackle the cold-start setup of predicting popularity of newly obtained content. The first method it proposes is content-based filtering and the second is neural network embeddings. The implementation is supported by the state-of-the-art analysis. The evaluation of the methods shows that content-based filtering has better results in contrast to neural network embeddings.