NAC-colorings search: complexity and algorithms
Hledání NAC-obarvení: složitost a algoritmy
Authors
Supervisors
Reviewers
Editors
Other contributors
Journal Title
Journal ISSN
Volume Title
Publisher
České vysoké učení technické v Praze
Czech Technical University in Prague
Czech Technical University in Prague
Date
Abstract
Jednou z otázek v strukturální teorii tuhosti (Rigidity Theory) je, zda realizace
vrcholů grafu do roviny je pohyblivá, tj. zda umožňuje spojitou deformaci
neměnící délku hran. Pohyblivá realizace souvislého grafu v rovině existuje
právě tehdy, když graf má NAC-obarvení, což je hranové obarvení dvěma
barvami takové, že pro každý cyklus jsou všechny hrany obarveny stejnou
barvou, nebo jsou každou barvou obarveny alespoň dvě hrany. Je NP-úplné
rozhodnout, zda graf má NAC-obarvení, v práci ukazujeme, že problém je
NP-úplný i pro grafy s maximálním stupněm pět. Představujeme značně
rychlejší algoritmus i s jeho implementací na hledání NAC-obarvení společně s
různými heuristikami. Srovnáváme ho s předchozími algoritmy a porovnáváme
i heuristiky mezi sebou. Následně představujeme FPT algoritmus na počítání
NAC-obarvení parametrizovaný stromovou šířkou. Navíc popisujeme vztahy se
stabilními řezy grafu a implementujeme algoritmus pro jejich hledání v flexible
grafech.
One of the questions in Rigidity Theory is whether a realization of the vertices of a graph in the plane is flexible, namely, if it allows a continuous deformation preserving the edge lengths. A flexible realization of a connected graph in the plane exists if and only if the graph has a NAC-coloring, which is surjective edge coloring by two colors such that for each cycle either all the edges have the same color or there are at least two edges of each color. While it is known that it is NP-complete to decide if a graph has a NAC-coloring, we show that the problem is also NP-complete for graphs with maximum degree five. We present a significantly faster algorithm with an implementation for NAC-coloring search, and we discuss related heuristics. The performance is compared with previous algorithms and among the heuristics. We also present fixed-parameter tractable (FPT) algorithm for NAC-coloring counting parametrized by treewidth. We discuss relation to stable cuts and an algorithm for finding a stable cut is implemented as part of the thesis.
One of the questions in Rigidity Theory is whether a realization of the vertices of a graph in the plane is flexible, namely, if it allows a continuous deformation preserving the edge lengths. A flexible realization of a connected graph in the plane exists if and only if the graph has a NAC-coloring, which is surjective edge coloring by two colors such that for each cycle either all the edges have the same color or there are at least two edges of each color. While it is known that it is NP-complete to decide if a graph has a NAC-coloring, we show that the problem is also NP-complete for graphs with maximum degree five. We present a significantly faster algorithm with an implementation for NAC-coloring search, and we discuss related heuristics. The performance is compared with previous algorithms and among the heuristics. We also present fixed-parameter tractable (FPT) algorithm for NAC-coloring counting parametrized by treewidth. We discuss relation to stable cuts and an algorithm for finding a stable cut is implemented as part of the thesis.