Algoritmické a výpočetní základy diferencovatelné detekce kolizí
Algorithmic and Computational Foundations of Differentiable Collision Detection
Type of document
disertační prácedoctoral thesis
Author
Louis Montaut
Supervisor
Šivic Josef
Opponent
Manocha Dinesh
Field of study
Informatics - Department of CyberneticsStudy program
Computer ScienceInstitutions assigning rank
oddělení vědy a výzkumuRights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmlVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item recordAbstract
Tato práce se zabývá pokrokem v detekci kolizí, což je jedním ze základních problémů v informatice, jehož cílem je určit, zda a kde se objekty ve virtuálním prostředí překrývají.Detekce kolizí je základem každého fyzikálního simulátoru, který se používá v celé řadětechnických oblastí, jako jsou videohry, počítačová animace, virtuální realita, počítačem metoda prvního řádu nabízí vysoce efektivní a přesné řešení. Tato metoda je dále vylepšena pomocí náhodného vyhlazování, které řeší problémy, jež představují nestriktně konvexní tvary, jako jsou 3D mřížky objektu, což často vede ke špatně definovaným nebo neinformativním gradientům. Nakonec integrujeme navržený diferencovatelný postup detekce kolizí do vlastního diferencovatelného fyzikálního simulátoru s názvem Simple. Simulátor dosahuje nejlepších výpočetních výkonů v dopředném i zpětném průchodu, čímž poskytuje výrazné zrychlení ve srovnání s alternativními metodami. Tato práce překlenuje propast mezi efektivní detekcí kolizí a diferencovatelnou simulací a pokládá základy pro robustnější aplikace v reálném čase v robotice a dalších technických oborech. This thesis explores advancements in collision detection, a fundamental problem in computer science that aims at determining whether and where objects in a virtual environment overlap.Collision detection lies at the heart of every physics simulators, which are used in a wide range of engineering domains, such as video games, computer animation, virtual reality, computer-assisted design, and robotics.Recent research has notably focused on developing differentiable physics simulators to allow gradient-based optimization methods to exploit and control the dynamics of simulated systems.The core objectives of this thesis are (i) to enhance the efficiency of state-of-the-art collision detection algorithms, (ii) to develop new techniques to compute the derivatives of collision features, and (iii) to integrate these advancements into differentiable physics simulators.This thesis begins by revisiting the widely used Gilbert-Johnson-Keerthi (GJK) collision detection algorithm under the prism of the Frank-Wolfe method, one of the oldest gradient-based optimization techniques.This new perspective allows for the introduction of accelerated variants of GJK, leveraging techniques like Polyak and Nesterov gradient methods.These accelerations significantly reduce the number of iterations needed for collision detection, especially in complex scenarios involving curved surfaces or highly detailed meshes, improving performance by up to two times in terms of computational speed compared to the vanilla GJK algorithm.Then, we develop efficient algorithms to compute the derivatives of collision features used in physics simulators, such as contact points and normals.This thesis presents both zero-order and first-order estimators for these derivatives, with the first-order method offering a highly efficient and accurate solution.This method is further enhanced by a randomized smoothing approach to address challenges posed by non-strictly convex shapes like meshes, often resulting in ill-defined or uninformative gradients.Finally, we integrate the proposed differentiable collision detection pipeline into a custom-built differentiable physics simulator named "Simple".The simulator achieves state-of-the-art computational performance in both forward and backward passes, providing a significant speed-up compared to alternative solutions.This thesis bridges the gap between efficient collision detection and differentiable simulation, laying the groundwork for more robust and real-time applications in robotics and other engineering fields.
View/ Open
Collections
- Disertační práce - 13000 [730]