ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • katedry
  • katedra aplikované matematiky
  • Bakalářské práce - 18105
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • katedry
  • katedra aplikované matematiky
  • Bakalářské práce - 18105
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Klasifikace časových řad v Julia

Time Series Classification in Julia

Typ dokumentu
bakalářská práce
bachelor thesis
Autor
Antonín Kříž
Vedoucí práce
Kalvoda Tomáš
Oponent práce
Novák Petr
Studijní obor
Znalostní inženýrství
Studijní program
Informatika 2009
Instituce přidělující hodnost
katedra aplikované matematiky



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznam
Abstrakt
Klasifikace časových řad je komplexní poblém v oboru strojového učení. Moderní metody řešící tento problém jsou náročné na výkon a jejich efektivní implementace je důležitější než kdy dřív. Tato práce se zabývá analýzou metod pro klasifikaci časových řad a i efektivně implementuje metody MINIROCKET a k-Nejbližších Sousedů s Dynamic Time Warping. V rámci této práce je navrženo a implementováno několik různých optimalizací těchto algoritmů v porovnání s jejich implementací v Python balíčku sktime. Mezi tyto optimalizace, které jsou podrobně popsány, patří redukce nutných alokací paměti, paralelizace a vektorizace výpočtů a redukce nutných kroků algoritmu pro dosažení výsledku. Výkonnost této implementace je experimentálně ověřena na 113 datasetech z archivu časových řad Kalifornské univerzity v Riverside, kdy dosahuje až 17krát vyššího výkonu než tytéž algoritmy v balíčku sktime.
 
Time series classification is a complex problem in the field of machine learning. Modern methods addressing this problem are demanding in performance and their efficient implementation is more important than ever. This paper analyzes methods for time series classification and also efficiently implements the MINIROCKET and k-Nearest Neighbors methods with Dynamic Time Warping}. In this work, several different optimizations of these algorithms are proposed and implemented against their implementation in the Python package sktime. These optimizations, which are described in detail, include reducing the necessary memory allocations, parallelization and vectorization of the computations, and reducing the necessary algorithm steps to achieve the result. The performance of this implementation is experimentally verified on 113 datasets from the University of California, Riverside time series archive, achieving up to 17 times better performance than the same algorithms in the sktime package.
 
URI
http://hdl.handle.net/10467/109353
Zobrazit/otevřít
PLNY_TEXT (782.2Kb)
POSUDEK (45.70Kb)
POSUDEK (49.45Kb)
Kolekce
  • Bakalářské práce - 18105 [370]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV