ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta elektrotechnická
  • katedra kybernetiky
  • Diplomové práce - 13133
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta elektrotechnická
  • katedra kybernetiky
  • Diplomové práce - 13133
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Detekce stromů nakažených kůrovcem pomocí autonomního bezpilotního letounu

Detection of Bark-Beetle Infestation Using an Autonomous UAV

Typ dokumentu
diplomová práce
master thesis
Autor
Tereza Uhrová
Vedoucí práce
Vrba Matouš
Oponent práce
Blaha Jan
Studijní program
Kybernetika a robotika
Instituce přidělující hodnost
katedra kybernetiky



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznam
Abstrakt
Tato práce prezentuje UAV systém, který detekuje stromy nakažené lýkožroutem smrkovým. Tento systém je navržen, aby identifikoval malé dírky, které vytvořil lýkožrout, když se zavrtal do kůry. Díky tomu jsou nakažené stromy detekovány velmi brzo po nákaze. Úloha je rozdělena na tři části: segmentace kmene stromu, detekce děr a finální klasifikace. Použití RGB kamery s vysokým rozlišením a LiDAR senzoru umožňuje zachycení detailních obrázků a přesné měření vzdálenosti. Segmentace kmene stromu používá sítě natrénované ResNet50, aby segmentovala pixely odpovídající kmeni v RGB obrázcích. Co se týče detekce děr, je použit algoristmus MSER (Maximally Stable Extremal Regions), který detekuje podezřelé skvrny. Spolu s ekvalizací histogramu a filtrováním založeném na kulatosti a intenzitě jsme schopni detekovat dírky způsobené lýkožroutem. Dodatečně, je natrénována síť YOLOv7 a porovnána s navrženým detektorem. Finální klasifikace používá "díry na plochu" metriku, poměr počtu detekovaných děr k viditelné ploše kůry. Strom je klasifikován pomocí této metriky a histogramů nakažených a zdravých stromů z trénovacích dat. Vyvinutý systém demonstruje svou efektivitu v brzké detekci a kontrole lýkožrouta smrkového a poskytuje lesním hospodářům cenný nástroj v boji proti lýkožroutu.
 
This thesis presents a UAV-based system for the detection of European spruce bark beetle-infested trees. The system is designed to identify small holes made by the bark beetle as it drills into the tree's bark and phloem, allowing for early detection of infestations. The pipeline consists of three stages: tree trunk segmentation, hole detection, and final classification. Integration of a high-resolution RGB camera and a LiDAR sensor enables detailed image capture and accurate distance measurements. The tree trunk segmentation stage employs a ResNet50 network trained to segment pixels corresponding to tree trunks in RGB images. For the hole detection, a Maximally Stable Extremal Regions (MSER) blob detection algorithm is applied, enhanced by histogram equalization and filtering based on circularity and intensity properties of the detected blobs. Additionally, a YOLOv7 model is trained to compare it with the proposed detector. The final classification utilizes the "holes per area" metric, the ratio of the number of detected holes to the visible bark area. A tree is classified using this metric based on histograms of healthy and infected trees in the training dataset. The developed system demonstrates its effectiveness in early detection and monitoring of European spruce bark beetle infestations, providing forest managers with a valuable tool for proactive forest health management and minimizing economic losses associated with bark beetle outbreaks.
 
URI
http://hdl.handle.net/10467/108585
Zobrazit/otevřít
PRILOHA (9.218Kb)
POSUDEK (215.5Kb)
POSUDEK (119.5Kb)
PLNY_TEXT (43.97Mb)
Kolekce
  • Diplomové práce - 13133 [519]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV