Quasi-relativistic quantum particle on a circle with complex magnetic field
Kvazi-relativistická kvantová částice na kružnici s komplexním magnetickým polem
Date
Authors
Supervisors
Reviewers
Editors
Other contributors
Journal Title
Journal ISSN
Volume Title
Publisher
České vysoké učení technické v Praze
Czech Technical University in Prague
Czech Technical University in Prague
Abstract
Uvažujeme kvazi-relativistickou kvantovou částici na kružnici s komplexním magnetickým polem. Nejprve vyšetříme její hybnost s reálným a komplexním vektorovým potenciálem. Pomocí hybnosti získáme pro reálný potenciál magnetický kvazi-relativistický operátor a najdeme jeho spektrum. Dále pro komplexní potenciál, kdy operátory nejsou samosdružené, odvodíme za jaké podmínky lze získat magnetický kvazi-relativistický operátor jako odmocninu m-akretivního operátoru. Vyšetříme jeho vlastnosti a navrhneme jeho tvar. Nakonec ukážeme, za jaké podmínky je kvazi-hermitovský.
We consider a quasi-relativistic particle on a circle with complex magnetic field. First, the momentum of the particle with real and complex magnetic vector potential is investigated. Thence, we obtain the magnetic quasi-relativistic operator with real potential and find its spectrum. Since operators with complex potential are non-self-adjoint, we derive the condition under which the magnetic quasi-relativistic operator can be obtained as a square root of an m-accretive operator. Furthermore, its properties are investigated, and we attempt to construct such operator. Finally, we derive the condition under which the operator is quasi-Hermitian.
We consider a quasi-relativistic particle on a circle with complex magnetic field. First, the momentum of the particle with real and complex magnetic vector potential is investigated. Thence, we obtain the magnetic quasi-relativistic operator with real potential and find its spectrum. Since operators with complex potential are non-self-adjoint, we derive the condition under which the magnetic quasi-relativistic operator can be obtained as a square root of an m-accretive operator. Furthermore, its properties are investigated, and we attempt to construct such operator. Finally, we derive the condition under which the operator is quasi-Hermitian.