Anomaly detection on the CERN data centre monitoring data

Detekce anomálií v monitoringu datového centra CERN

Editors

Other contributors

Journal Title

Journal ISSN

Volume Title

Publisher

České vysoké učení technické v Praze
Czech Technical University in Prague

Date of defense

Research Projects

Organizational Units

Journal Issue

Abstract

Jednou z mnoha úloh CERN cloud manažerů je zajistit požadovaný výpočetní výkon všem uživatelům dané vědecké komunity. Toho je dosaženo pečlivě nastaveným statickým alarming systémem nad výkonostními metrikami infrastruktury. Pro dosažení maximální efektivity cloudové infrastruktury a ulehčení práce cloud operátorům jsme vytvořili plně automatizovaný systém pro detekci anomálií, který využívá metody nesupervizovaného učení nad časovými řadami. Konkrétně používá kombinaci tradičních metod strojového učení (Isolation forest) a metod hlubokého učení (Gated recurrent unit/Long short-term memory autoencodery). Tato práce zahrnuje popis monitorovací infrastruktury CERNU, formulaci problému, design systému pro detekci anomálií, použité modely, tvorbu datasetu a porovnání výsledků implementovaných modelů vůči aktuálnímu alarming systému.

One of the many tasks of CERN cloud service operators is to make sure that the desired computational power is delivered to all users of the scientific community. This task is accomplished by carefully setting threshold-based alarming on top of the infrastructure performance time series metrics. In order to maximize the efficiency of the cloud infrastructure and to reduce the monitoring effort for service operators, we have developed a fully automated Anomaly Detection System that leverages unsupervised machine learning methods for time series metrics. Moreover, adopting ensemble methods, we combine traditional (Isolation forest) and deep learning (Gated recurrent unit/Long short-term memory Autoencoders) approaches. This work presents a description of the CERN monitoring infrastructure, problem formulation, design of the Anomaly Detection Pipeline, description of used models, creation of the dataset and performance of the implemented models compared to the performance of the Current Alarming System.

Description

Citation

Rights/License

A university thesis is a work protected by the Copyright Act of the Czech Republic. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one`s own expense. The use of thesis should be in compliance with the Copyright Act.

Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem v platném znění.

Endorsement

Review

Supplemented By

Referenced By