Generativní modely pro detekci L-H přechodu v plazmatu na tokamaku COMPASS
Generative models for L-H transition detection in COMPASS tokamak plasma
Type of document
diplomová prácemaster thesis
Author
Matěj Zorek
Supervisor
Škvára Vít
Opponent
Franc Jakub
Field of study
Aplikované matematicko-stochastické metodyStudy program
Aplikace přírodních vědInstitutions assigning rank
katedra matematikyRights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmlVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item recordAbstract
Tato práce se zabývá generativními modely vhodnými ke klasifikaci režimů udržitelnosti plazmatu v tokamaku COMPASS. Mezi použité klasifikační modely se řadí Support Vector Machine, Gradient Tree Boosting a neuronové sítě. Variační autoencodery zde slouží k extrakci nízkodimenzionálních příznaků přímo ze signálů z databáze tokamaku. Nejlepší extraktory a klasifikátory jsou později zkombinovány do semi-supervised variačního autoencoderu a natrénovány pomocí označených i neoznačených dat. Tento postup dosáhl nejlepších výsledků a překonal všechny předchozí modely. Na konci této práce je uvedeno shrnutí a srovnání všech modelů. Implementace probíhala v jazyce Python s využitím knihoven Pytorch a Pyro. This work deals with generative models suitable for classification of plasma sustainability regimes in the COMPASS tokamak. The classification models used include Support Vector Machine, Gradient Tree Boosting and neural networks. Variational autoencoders are used to extract low-dimensional features directly from signals from the tokamak database. The best extractors and classifiers are later combined into a semi-supervised variational autoencoder and trained using labeled and unlabeled data. This procedure achieved the best results and surpassed all previous models. At the end of this work the best models and their results are presented. The implementation is in Python using Pytorch and Pyro libraries.
Collections
- Diplomové práce - 14101 [160]