ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • Disertační práce - 18000
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • Disertační práce - 18000
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatická detekce malwaru

Automatic Malware Detection

Typ dokumentu
disertační práce
doctoral thesis
Autor
Martin Jureček
Vedoucí práce
Lórencz Róbert
Oponent práce
García Sebastián
Studijní obor
Informatika
Studijní program
Informatika
Instituce přidělující hodnost
katedra informační bezpečnosti



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznam
Abstrakt
The problem of automatic malware detection presents challenges for antivirus vendors. Since the manual investigation is not possible due to the massive number of samples being submitted every day, automatic malware classication is necessary. Our work is focused on an automatic malware detection framework based on machine learning algorithms. We proposed several static malware detection systems for the Windows operating system to achieve the primary goal of distinguishing between malware and benign software. We also considered the more practical goal of detecting as much malware as possible while maintaining a suciently low false positive rate. We proposed several malware detection systems using various machine learning techniques, such as ensemble classier, recurrent neural network, and distance metric learning. We designed architectures of the proposed detection systems, which are automatic in the sense that extraction of features, preprocessing, training, and evaluating the detection model can be automated. However, antivirus program relies on more complex system that consists of many components where several of them depends on malware analysts and researchers. Malware authors adapt their malicious programs frequently in order to bypass antivirus programs that are regularly updated. Our proposed detection systems are not automatic in the sense that they are not able to automatically adapt to detect the newest malware. However, we can partly solve this problem by running our proposed systems again if the training set contains the newest malware. Our work relied on static analysis only. In this thesis, we discuss advantages and drawbacks in comparison to dynamic analysis. Static analysis still plays an important role, and it is used as one component of a complex detection system.
 
The problem of automatic malware detection presents challenges for antivirus vendors. Since the manual investigation is not possible due to the massive number of samples being submitted every day, automatic malware classication is necessary. Our work is focused on an automatic malware detection framework based on machine learning algorithms. We proposed several static malware detection systems for the Windows operating system to achieve the primary goal of distinguishing between malware and benign software. We also considered the more practical goal of detecting as much malware as possible while maintaining a suciently low false positive rate. We proposed several malware detection systems using various machine learning techniques, such as ensemble classier, recurrent neural network, and distance metric learning. We designed architectures of the proposed detection systems, which are automatic in the sense that extraction of features, preprocessing, training, and evaluating the detection model can be automated. However, antivirus program relies on more complex system that consists of many components where several of them depends on malware analysts and researchers. Malware authors adapt their malicious programs frequently in order to bypass antivirus programs that are regularly updated. Our proposed detection systems are not automatic in the sense that they are not able to automatically adapt to detect the newest malware. However, we can partly solve this problem by running our proposed systems again if the training set contains the newest malware. Our work relied on static analysis only. In this thesis, we discuss advantages and drawbacks in comparison to dynamic analysis. Static analysis still plays an important role, and it is used as one component of a complex detection system.
 
URI
http://hdl.handle.net/10467/97364
Zobrazit/otevřít
PLNY_TEXT (3.096Mb)
Kolekce
  • Disertační práce - 18000 [53]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV