ČVUT DSpace
  • Search DSpace
  • Čeština
  • Login
  • Čeština
  • Čeština
View Item 
  •   ČVUT DSpace
  • Czech Technical University in Prague
  • Faculty of Biomedical Engineering
  • Doctoral Theses - 17000
  • View Item
  • Czech Technical University in Prague
  • Faculty of Biomedical Engineering
  • Doctoral Theses - 17000
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nitrogen soft X-ray source for imaging of biological objects

Nitrogen soft X-ray source for imaging of biological objects

Type of document
disertační práce
doctoral thesis
Author
Šárka Salačová
Supervisor
Vrbová Miroslava
Opponent
Pína Ladislav
Field of study
Biomedicínská a klinická technika
Study program
Biomedicínská a klinická technika (4)
Institutions assigning rank
katedra přírodovědných oborů



Rights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item record
Abstract
Soft X-ray radiation sources usable for microscopy have been studied in the laboratory XUV at CTU Faculty of Biomedical Engineering. This thesis is focused on the optimization of generation quasi-monochromatic radiation with a water window wavelength of 2.88 nm. The source of radiation is a laser plasma created in Nitrogen gas-pu target. The optimization function is delineated in chapter 1.5.1. Gradually, the eect of system parameters on the output energy is investigated. For the microscopic imaging, we need high energy in a single shot at the output of the SXR source. The biggest eect on the output of pulse energy has a mass density spatial distribution in the gas-pu target. We studied it via laboratory experiments and computer modelling. In chapter 4.1, we supply information about the eect of nozzle ageing and investigation of double stream nozzle. We used Z star code to construct a complete model of the gas-pu target. In chapter 4.2, the results of computer modelling are compared with experimental data. This comparison is very important as the Z star code (developed for plasma magnetohydrodynamics) has not yet been used for gas ow simulations. Plasma radiation, modelled by the Z-star code, is given in chapter 5. The computer model of the source may be further used for the design of improved SXR source. We paid attention also to biological samples and after a literature search, we present results of SXR microscopy image of CT 26 broblasts, derived from colon carcinoma Mus musculus (strain BALB/c) in chapter 6.
 
Soft X-ray radiation sources usable for microscopy have been studied in the laboratory XUV at CTU Faculty of Biomedical Engineering. This thesis is focused on the optimization of generation quasi-monochromatic radiation with a water window wavelength of 2.88 nm. The source of radiation is a laser plasma created in Nitrogen gas-pu target. The optimization function is delineated in chapter 1.5.1. Gradually, the eect of system parameters on the output energy is investigated. For the microscopic imaging, we need high energy in a single shot at the output of the SXR source. The biggest eect on the output of pulse energy has a mass density spatial distribution in the gas-pu target. We studied it via laboratory experiments and computer modelling. In chapter 4.1, we supply information about the eect of nozzle ageing and investigation of double stream nozzle. We used Z star code to construct a complete model of the gas-pu target. In chapter 4.2, the results of computer modelling are compared with experimental data. This comparison is very important as the Z star code (developed for plasma magnetohydrodynamics) has not yet been used for gas ow simulations. Plasma radiation, modelled by the Z-star code, is given in chapter 5. The computer model of the source may be further used for the design of improved SXR source. We paid attention also to biological samples and after a literature search, we present results of SXR microscopy image of CT 26 broblasts, derived from colon carcinoma Mus musculus (strain BALB/c) in chapter 6.
 
URI
http://hdl.handle.net/10467/90935
View/Open
POSUDEK (319.3Kb)
PLNY_TEXT (97.21Mb)
POSUDEK (2.078Mb)
POSUDEK (190.3Kb)
Collections
  • Disertační práce - 17000 [81]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Useful links

CTU in PragueCentral library of CTUAbout CTU Digital LibraryResourcesStudy and library skillsResearch support

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV