ČVUT DSpace
  • Search DSpace
  • Čeština
  • Login
  • Čeština
  • Čeština
View Item 
  •   ČVUT DSpace
  • Czech Technical University in Prague
  • CTU Publishing Activity
  • View Item
  • Czech Technical University in Prague
  • CTU Publishing Activity
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece

Type of document
článek v časopise
journal article
Peer-reviewed
publishedVersion
Author
Mareš M.
Horejš O.
Havlík L.



Rights
openAccess
Metadata
Show full item record
Abstract
Achieving high workpiece accuracy is the long-term goal of machine tool designers. There are many causes for workpiece inaccuracy, with thermal errors being the most common. Indirect compensation (using prediction models for thermal errors) is a promising strategy to reduce thermal errors without increasing machine tool costs. The modelling approach uses transfer functions to deal with this issue; it is an established dynamic method with a physical basis, and its modelling and calculation speed are suitable for real-time applications. This research presents compensation for the main internal and external heat sources affecting the 5-axis machine tool structure including spindle rotation, three linear axes movements, rotary C axis and time-varying environmental temperature influence, save for the cutting process. A mathematical model using transfer functions is implemented directly into the control system of a milling centre to compensate for thermal errors in real time using Python programming language. The inputs of the compensation algorithm are indigenous temperature sensors used primarily for diagnostic purposes in the machine. Therefore, no additional temperature sensors are necessary. This achieved a significant reduction in thermal errors in three machine directions X, Y and Z during verification testing lasting over 60 hours. Moreover, a thermal test piece was machined to verify the industrial applicability of the introduced approach. The results of the transfer function model compared with the machine tool’s multiple linear regression compensation model are discussed.
URI
http://hdl.handle.net/10467/89305
View/Open
PUBLISHED ## OPEN (9.865Mb)
Collections
  • Publikační činnost ČVUT [1503]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Useful links

CTU in PragueCentral library of CTUAbout CTU Digital LibraryResourcesStudy and library skillsResearch support

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV