ČVUT DSpace
  • Search DSpace
  • Čeština
  • Login
  • Čeština
  • Čeština
View Item 
  •   ČVUT DSpace
  • Czech Technical University in Prague
  • Faculty of Civil Engineering
  • Department of Geomatics
  • Master Theses - 11155
  • View Item
  • Czech Technical University in Prague
  • Faculty of Civil Engineering
  • Department of Geomatics
  • Master Theses - 11155
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Klasifikace zeleně na území Prahy

Green Vegetation Classification in the Prague Region

Type of document
diplomová práce
master thesis
Author
Petr Poskočil
Supervisor
Halounová Lena
Opponent
Čtyroký Jiří
Field of study
Geomatika
Study program
Geodézie a kartografie
Institutions assigning rank
Katedra geomatiky



Rights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item record
Abstract
Městská zeleň je nesmírně důležitá pro zdravé městské prostředí, a proto je důležité ji monitorovat. Tato práce se snaží přispět ke zpřesnění geografických dat města Prahy návrhem metody detekce jednotlivých korun stromů. Takováto data by poskytla základ pro různé studie související s vegetací v měřítku jednoho stromu. Byly navrženy a implementovány dvě metody, aby byl poskytnut spolehlivější výsledek. První metoda je založena na tradičnějších technikách dálkového průzkumu Země využívajících geografický informační systém. Druhá využívá techniky hlubokého učení založené na neuronové síti Mask R-CNN. Oba modely jsou porovnány pomocí navrženého posouzení přesnosti. Metodou založenou na Mask R-CNN mohou být koruny stromů detekovány s celkovou přesností 81%. Ukázalo se také, že metoda Mask R-CNN je účinnější než tradičnější metoda založená na dálkovém průzkumu Země použitá v této studii.
 
Urban greenery is extremely important for healthy urban environment. For this reason, the greenery must be monitored. This thesis attempts to contribute to the geographic data of the Prague municipality by proposing a method for single-crown-detection and single-crown-delineation. Such data would provide a basis for vegetation-related studies on a single-tree-level. Two methods were designed and implemented to provide a more reliable result. The first method is based on rather traditional remote sensing techniques using Geographic Information System. The other one uses deep learning techniques based on Mask R-CNN neural network framework. Both models are compared using designed accuracy assessment. Using the proposed Mask R-CNN-based method, tree crowns can be delineated with an overall accuracy of 81%. It also proved to be more efficient than the other “traditional” remote sensing technique used in this study.
 
URI
http://hdl.handle.net/10467/88506
View/Open
PLNY_TEXT (46.73Mb)
POSUDEK (128.9Kb)
POSUDEK (504.7Kb)
Collections
  • Diplomové práce - 11155 [164]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Useful links

CTU in PragueCentral library of CTUAbout CTU Digital LibraryResourcesStudy and library skillsResearch support

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV