ČVUT DSpace
  • Search DSpace
  • Čeština
  • Login
  • Čeština
  • Čeština
View Item 
  •   ČVUT DSpace
  • Czech Technical University in Prague
  • Faculty of Information Technology
  • Department of Theoretical Computer Science
  • Bachelor Theses - 18101
  • View Item
  • Czech Technical University in Prague
  • Faculty of Information Technology
  • Department of Theoretical Computer Science
  • Bachelor Theses - 18101
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Statická detekce malware využívající rekurentní neuronové sítě

Static malware detection using recurrent neural networks

Type of document
bakalářská práce
bachelor thesis
Author
Matouš Kozák
Supervisor
Jureček Martin
Opponent
Lórencz Róbert
Field of study
Teoretická informatika
Study program
Informatika
Institutions assigning rank
katedra teoretické informatiky



Rights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item record
Abstract
Neustále rostoucí počty útoků škodlivých programů na naši IT infrastrukturu si žádají nové a lepší metody ochrany. V této bakalářské práci se věnujeme využití rekurentních neuronových sítí pro rychlou a přesnou detekci malwaru. Pro reprezentaci podezřelých programů jsme využili pouze data extrahovaná ze souborů v PE formátu. Tato data jsme dále použili pro trénink různých druhů rekurentních neuronových sítí. V práci představujeme speciální architekturu neuronové sítě, kombinující husté a LSTM vrstvy, ke klasifikaci PE souborů. Pracovali jsme s naším vlastním datasetem obsahující 30154 souborů stažených z dostupných zdrojů. S tímto datasetem, který je rovnoměrně rozdělen mezi čisté a škodlivé soubory, jsme dosáhli přesnosti 98,41 % s pouze 0,5 % legitimních programů mylně klasifikovaných jako malware. K těmto výsledkům nám stačilo pouhých 250 iterací přes treninkový soubor vzorků k naučení naší sítě. Výsledky dokazují, že algoritmy strojového učení, hlavně LSTM sítě, mohou být využity jako rychlý a spolehlivý nástroj pro detekci škodlivých souborů.
 
An ever-growing number of malicious attacks on our IT infrastructure calls for new and better methods of protection. In this thesis, we focus on the use of recurrent neural networks as an agile and accurate way of detecting malware. We only used features extracted from files in the PE file format to represent the suspicious programs which we used to train various types of recurrent neural networks. In this work, we present unique neural network architecture combining dense and stacked LSTM layers to classify PE files. We worked with our dataset of 30,154 files collected from available resources with which we achieved an accuracy of 98.41%, while only 0.5% of benign samples were misclassified as malware on our balanced dataset. All this was accomplished with only 250 epochs of training. These results prove that machine-learning algorithms, especially LSTM networks, can be used as a quick and reliable tool for malware detection.
 
URI
http://hdl.handle.net/10467/88342
View/Open
PLNY_TEXT (1.259Mb)
POSUDEK (135.7Kb)
POSUDEK (136.7Kb)
Collections
  • Bakalářské práce - 18101 [360]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Useful links

CTU in PragueCentral library of CTUAbout CTU Digital LibraryResourcesStudy and library skillsResearch support

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV