ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • katedry
  • katedra aplikované matematiky
  • Diplomové práce - 18105
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • katedry
  • katedra aplikované matematiky
  • Diplomové práce - 18105
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sémantické porozumění konverzaci

Semantic understanding of natural conversation

Typ dokumentu
diplomová práce
master thesis
Autor
Lorenc Petr
Vedoucí práce
Šedivý Jan
Oponent práce
Kuznetsov Stanislav
Studijní obor
Znalostní inženýrství
Studijní program
Informatika
Instituce přidělující hodnost
katedra aplikované matematiky
Obhájeno
2019-02-06



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznam
Abstrakt
Tato diplomová práce se zaměřuje na nalezení nejlepšího algoritmu pro sémantické porozumění přirozených konverzací. Výsledný algoritmus lze použít například u chatbotů. Součástí práce je dataset, který vznikl pro potřeby chatovací aplikace Alquist a který byl vytvořen na základě skutečných konverzací. Práce prozkoumává sekvenční algoritmy strojového učení pro rozpoznávání intentu a určování entit. Výsledkem práce je detailní porovnání přesnosti, požadavků na paměť a rychlosti konvergence vybraných algoritmů. Na základě porovnání algoritmů je v práci navrhnut nový model, který se zakládá na propojení rozpoznávání intentu a určování jmenných entit.
 
This master's thesis aims to find the best algorithm for semantic understanding of natural dialogs. The result can be used in a conversation AI. A part of the thesis is also a dataset, based on needs for a chatbot application Alquist and which was based on real conversations. The thesis also identifies and examines sequential machine learning algorithms for intent and entity recognition. The result of the thesis is a detailed comparison of the selected algorithms regarding accuracy, memory requirements and computational complexity. Based on the results, a new model which joins intent and entity recognition together is created.
 
URI
http://hdl.handle.net/10467/80243
Zobrazit/otevřít
PLNY_TEXT (2.870Mb)
POSUDEK (136.4Kb)
POSUDEK (134.0Kb)
Kolekce
  • Diplomové práce - 18105 [235]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV