ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • katedry
  • katedra aplikované matematiky
  • Diplomové práce - 18105
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • katedry
  • katedra aplikované matematiky
  • Diplomové práce - 18105
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Segmentace objemových radiologických snímků pomocí hlubokých neuronových sítí

Deep Neural Network-Based Segmentation of Volumetric Radiological Images

Typ dokumentu
diplomová práce
master thesis
Autor
Matyáš Turek
Vedoucí práce
Benešová Vanda
Oponent práce
Surynek Pavel
Studijní obor
Znalostní inženýrství
Studijní program
Informatika
Instituce přidělující hodnost
katedra aplikované matematiky



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznam
Abstrakt
Tato práce se zabývá segmentací lézí hypoxicko-ischemické encefalopatie u novorozenců v MRI snímcích s využitím hlubokých neurnonových sítí. Práce prozkoumává a implementuje různé přístupy, jako například super resolution a syntéza dat k dosažení přesnější segmentace na datasetu BONBID-HIE. V rámci práce jsme implementovali funkční pipeline pro vytvoření super resolution 3D MRI snímků, pipeline pro vytvoření syntetických lézí, které se dále vkládali do snímků z datasetu a také segmentační pipeline. Výsledky byly diskutovány a porovnány.
 
This thesis deals with lesion segmentation of hypoxic-ischemic encephalopathy in neonatal MRI images using deep neural networks. The work explores and implements various approaches such as super resolution and data synthesis to achieve more accurate segmentation on the BONBID-HIE dataset. As part of this work, we implemented a functional pipeline for creating super resolution 3D MRI images, a pipeline for creating synthetic lesions that were further inpainted into the dataset images, and a segmentation pipeline. The results were discussed and compared.
 
URI
http://hdl.handle.net/10467/122805
Zobrazit/otevřít
PLNY_TEXT (4.395Mb)
PRILOHA (17.85Mb)
POSUDEK (44.16Kb)
POSUDEK (354.4Kb)
Kolekce
  • Diplomové práce - 18105 [235]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV