Laserem řízené urychlování iontů: analýza a teoretická interpretace experimentálních dat
Laser-driven ion acceleration: analysis and theoretical interpretation of experimental data
Type of document
diplomová prácemaster thesis
Author
Arsenios Hadjikyriacou
Supervisor
Giuffrida Lorenzo
Opponent
Cikhardt Jakub
Field of study
Laserová fyzika a technikaStudy program
Fyzikální elektronikaInstitutions assigning rank
katedra fyzikální elektronikyDefended
2022-06-09Rights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmlVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item recordAbstract
Advances in high-power laser technology seen in recent years have fueled Advances in high-power laser technology seen in recent years have fueled research in the field of laser-driven ion acceleration. Laser-plasma interactions can produce short duration, high flux, high energy (tens of MeV) ion bunches with interesting properties for a range of applications. Leading the way in this rapidly growing field is the ELIMAIA group at ELI-Beamlines. The combination of ultra-high peak intensities (> 1021 W/cm2 ) and high repetition rates (up to 10 Hz) offered at the ELIMAIA beamline provides a unique tool for multidisciplinary applications of laser-accelerated ion beams. This master’s thesis deals with the analysis of experimental results from the ELIMAIA commissioning, using the HAPLS laser system to accelerate protons above 10 MeV from thin foil targets. Selected ion diagnostics (time-of-flight based detectors and Thomson parabola spectrometer) are chosen to perform this analysis. Particle-in-cell (PIC) simulations are performed, with the final goal to demonstrate the experimental data and validate the acceleration mechanism relevant for this experiment. Particular emphasis is given to the effect of prepulses and rear-side preplasma in the TNSA (Target Normal Sheath Acceleration) regime, with the aim of optimizing the ion accelerator performance.
Collections
- Diplomové práce - 14112 [149]