ČVUT DSpace
  • Search DSpace
  • Čeština
  • Login
  • Čeština
  • Čeština
View Item 
  •   ČVUT DSpace
  • Czech Technical University in Prague
  • Faculty of Electrical Engineering
  • Department of Cybernetics
  • Master Theses - 13133
  • View Item
  • Czech Technical University in Prague
  • Faculty of Electrical Engineering
  • Department of Cybernetics
  • Master Theses - 13133
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rekonstrukce trojrozměrných mraků bodů v prostředí s tenkými objekty

3D Point Clouds Reconstruction of Environment Subject to Thin Structures

Type of document
diplomová práce
master thesis
Author
Matěj Boxan
Supervisor
Pomerleau François
Opponent
Petříček Tomáš
Field of study
Kybernetika a robotika
Study program
Kybernetika a robotika
Institutions assigning rank
katedra kybernetiky



Rights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item record
Abstract
Prostředí bez výrazných struktur představuje zásadní výzvu pro systémy Simultánní lokalizace a mapování (SLAM) využívající LiDARy. Tyto systémy, často spoléhající na Iterative closest point (ICP) algoritmus, jsou náchylné k selháním způsobeném nedostatečnou komplexitou prostředí. Neustále se zvyšující množství bodů generovaných současnými LiDARy také není vhodné pro nasazení v reálných aplikacích. Na mraky bodů proto musí být aplikovány filtry pro redukci počtu bodů. Aplikace těchto filtrů nicméně nevyhnutelně odstraňuje geometrické vztahy mezi body, které by jinak mohly mít kritický efekt pro správnou konvergenci lokalizačního algoritmu. Mnohá geometricky nepodmíněná prostředí nicméně nejsou prázdná, ale obsahují kabely, světla a další vybavení. Efekt těchto malých objektů na lokalizaci je ale limitovaný, jelikož se po filtraci mohou stát nerozlišitelnými. Tato diplomová práce vyhodnocuje filtry redukující počet bodů v kontextu SLAM s daty z LiDARu v nepodmíněném prostředí. V její první části nejprve analyzuji implementaci několika open-source filtrů a filtry následně roztřídím pomocí navržené taxonomie. Poté zkoumám reprezentaci tenkých objektů v mracích bodů, zaznamenaných čtyřmi LiDARy. Filtry jsou vyhodnoceny na třech datasetech s různou složitostí prostředí, od prázdného po kompletně podmíněný tunel. Metody jsou porovnány na rozličných poměrech komprese a za pomoci přesné referenční trajektorie, získané z totální stanice. Ačkoliv metody založené na rozdělení prostoru pomocí oktálového stromu dosahují lepších výsledků než ostatní metody, experimenty zároveň zvýraznily fakt, že žádná současná metoda nedosahuje spolehlivé lokalizace v prostředí podmíněném pouze tenkými objekty.
 
Featureless environments represent a major challenge for deploying LiDAR-based Simultaneous localisation and mapping (SLAM) systems. These systems, often relying on the Iterative closest point (ICP) algorithm, are vulnerable to failures caused by the lack of constraints in 3D point clouds. Furthermore, the increasing number of points produced by today’s LiDARs is no longer suitable for practical applications and must often be reduced. However, the point cloud sampling operation inevitably erases geometric relations that might otherwise be critical for a correct convergence of the ICP algorithm. We argue that many unconstrained environments are often not wholly featureless, containing cables, lights and other equipment. The effect of these small objects on localisation quality is reduced since, after sampling, they become unrecognisable. In this work, we evaluate sampling methods in the context of LiDAR-based SLAM in an underconstrained environment. Several open-source sampling filters are first analysed and the filters are classified with a proposed taxonomy. Then, we investigate the representation of thin structures in point clouds recorded with four LiDAR sensors. We evaluate the sampling methods employing three datasets with varying feature complexity, ranging from an empty to a fully constrained tunnel. The methods are evaluated on diverse point cloud compression rates and with a precise total station ground truth trajectory. We show that octree-based space subdivision methods are superior to other sampling strategies, but the experiments highlight that no state-of-the-art filter achieves a reliable localisation in an environment constrained only by thin structures.
 
URI
http://hdl.handle.net/10467/103406
View/Open
PLNY_TEXT (19.93Mb)
POSUDEK (127.3Kb)
POSUDEK (149.6Kb)
Collections
  • Diplomové práce - 13133 [519]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Useful links

CTU in PragueCentral library of CTUAbout CTU Digital LibraryResourcesStudy and library skillsResearch support

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV