
ADAPTING ENTERPRISE ENGINEERING AND NORMALISED
SYSTEMS THEORIES TO DEVELOP A METHODICAL
FRAMEWORK SUPPORTING TECHNOLOGY TRANSITIONS

by

Mgr. ONDŘEJ DVOŘÁK

A dissertation thesis submitted to
the Faculty of Information Technology, Czech Technical University in Prague,
in partial fulfilment of the requirements for the degree of Doctor.

Dissertation degree study programme: Informatics

Department of Software Engineering

Prague, August 2021

Supervisor:
doc. Ing. ROBERT PERGL, Ph.D.
Department of Software Engineering
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9
160 00 Prague 6
Czech Republic

Copyright c© 2021 Mgr. ONDŘEJ DVOŘÁK

ii

Abstract and contributions

Moore’s law states that the number of transistors on a chip will double every two years.
A similar force appears to drive the progress of information technology. Companies tend
to struggle to keep up with the latest technological developments, and software solutions
are becoming increasingly outdated. The ability for software to change easily is defined
as evolvability. Consequently, software evolvability influences the ability of organisations
to compete and thrive in the digital age by quickly responding to market changes and
emerging opportunities. This capability is known as business agility.

One of the major fields researching evolvability is Enterprise Engineering (EE). The EE
research paradigm applies theories from other fields to the evolvability of organisations.
We argue that such theories can be applied to Software Engineering (SE) as well, which can
contribute to the construction of software with a clear separation of dynamically changing
technologies based on a relatively stable description of functions required for a specific
user.

In this dissertation thesis, we present our research journey towards designing a meth-
odical framework aiming at better technology transitions. This methodical framework is
based on EE notions such as function, construction, and affordance. We reify them in
terms of SE. Based on this reification, we propose affordance-driven assembling (ADA) as
a software design approach that can aid in the construction of more evolvable software
solutions. We exemplify the implementation of ADA in a case study of a commercial sys-
tem and measure its effectiveness in terms of the impact of changes, as defined by the
normalised systems theory.

We employed a design science research methodology. Therefore, we continuously de-
veloped, evaluated, and published design artefacts along the way. Although ADA is the
result of our journey, it is not the only contribution of this dissertation thesis. The partic-
ular design artefact also contribute to an understanding of:

1. How EE theories may influence interactions between people and technology.

2. A phenomenon of flexibility-usability trade-off.

iii

3. Bridging technology gap using robotic process automation.

4. Evolvability of financial models.

5. Architectural concepts limiting transitions between frameworks for graphical user
interfaces.

Keywords:
evolvability, agility, technology, affordances.

iv

Acknowledgements

This thesis is about transforming systems to cope with rapid technology changes. However,
I strongly believe that doing a Ph.D. is also a transformation journey. Although I started
this journey by focusing on technology, I realised its value in the context of something
bigger – business agility – the ability of organisations to thrive with uncertainty of today’s
unprecedented market. This opinion was supported by observing how organisations fought
for their existence during COVID crisis. I realized that the ability to adapt to new things
(including technology) is much more crucial than being able to build things from scratch.
Therefore, regardless how tough it was to finish the thesis during this COVID outbreak, I
felt committed to completing my contribution to this problematics.

First of all, I would like to express my gratitude to my supervisor, doc. Ing. Robert
Pergl, Ph.D. I would also like to thank to prof. Dr. Ing. Petr Kroha, CSc. for giving me
valuable advises throughout my research, and co-authoring many of my articles.

Special thanks go to the staff of the Department of Software Engineering, who main-
tained a pleasant and flexible environment for my research. I would like to express special
thanks to the department management for providing most of the funding for my research.
My research has also been partially supported by the Ministry of Education, Youth, and
Sport of the Czech Republic, by the Grant Agency of the Czech Technical University in
Prague, SGS15 grant no. 118/OHK3/1T/18, SGS16 grant no. 120/OHK3/1T/18, and
SGS17 grant no. 11/OHK3/3T/18.

I would like to express thanks to my colleagues from CCMi group, namely Ing. Marek
Skotnica, Ing. David Šenkýř, and others, for their valuable comments and proofreading
throughout my research. Also, I do really appreciate the outcomes of my students who
significantly contributed to this dissertation thesis with their master and bachelor theses.

Next big thanks go to all my colleagues from company COPS who gave me a confidence
and support while working on this dissertation thesis. Finally, there are no words I could
possibly write to articulate my gratitude to my parents, Táňa and Přemek, and to my
beloved wife Klára, and sons Kryštof and Marek. This thesis is dedicated to them, for
everything they taught me.

v

Dedication

To my patient family.

vi

Contents

I Introduction 1

1 Research Overview 3
1.1 Loosing Pace with Modern Technology . 4
1.2 Loosing Pace with Modern Management 5
1.3 Motivation . 6
1.4 Problem Statement . 6
1.5 Goals of the Dissertation Thesis . 7

1.5.1 Research Scope . 7
1.5.2 Research Questions and Objectives 8
1.5.3 Research Approach . 9

1.6 Thesis Roadmap . 10
1.7 Chapter Summary . 12

II Background and State-of-the-Art 13

2 Evolvability 17
2.1 The Linkage between Agility and Evolvability 17
2.2 Normalised Systems Theory . 19

2.2.1 Combinatorial Effects . 19
2.2.2 Theorems of Normalised Systems Theory 20

2.3 Evolutionary Architectures . 21
2.3.1 Concepts of Evolutionary Architectures 22
2.3.2 Principles of Evolutionary Architectures 24
2.3.3 Architectural Styles . 25

2.4 Chapter Summary . 28

3 Enterprise Engineering Theories 29
3.1 FI theory . 31

vii

Contents

3.2 TAO Theory and Affordances . 32
3.3 Affordances . 33
3.4 Function . 34
3.5 Construction . 35
3.6 BETA Theory and F/C Relationship . 36
3.7 PSI Theory and Interactions . 37
3.8 DEMO Methodology . 39
3.9 Chapter Summary . 41

4 Technological Developments 43
4.1 Evolution of Component-based systems . 43

4.1.1 McIlroy’s Dream of Component Library 45
4.1.2 Bemer’s Call for Software Factory 45
4.1.3 Reusability . 46

4.2 GUI Architectural and Design Patterns . 48
4.2.1 Architectural Versus Design Patterns 48
4.2.2 Design Patterns . 49
4.2.3 Architectural Patterns . 51

4.3 GUI Frameworks . 58
4.3.1 ASP.NET MVC . 58
4.3.2 Windows Forms (WinForms) . 59
4.3.3 Windows Presentation Foundation (WPF) 61

4.4 GUI Component Libraries . 62
4.4.1 NPM – NodeJS . 62
4.4.2 Syncfusion . 63

4.5 Robotic/Business Process Automation . 64
4.5.1 RPA and Technology Innovation . 65
4.5.2 Challenges of RPA in Finance . 65
4.5.3 Robots in RPA . 68
4.5.4 RPA Vendors . 70
4.5.5 Business Process Management . 72
4.5.6 BPMS Vendors . 73

4.6 Chapter Summary . 74

5 Previous Results and Related Work 75
5.1 Normalised Systems (NSX) . 75
5.2 Low-code Platforms . 76
5.3 Feature-Rich Descriptions based on Event Calculus 76

III Our Approach 77

6 Research Methodology 79

viii

Contents

6.1 Research Design . 79
6.2 Conjunction with COPS on the Research 80

6.2.1 Treasury Management System – Corima 80
6.3 Design Science Research . 81
6.4 Employing Design Science Research Methodology 81

6.4.1 Environment and Relevance Cycle 83
6.4.2 Knowledge Base and Rigour Cycle 84
6.4.3 Design Science Research and Design Cycle 85

6.5 Applying Design Science Research Process 85
6.5.1 Conceptualisation Phase . 87
6.5.2 Design & Development Phase . 87
6.5.3 Demonstration & Evaluation Phase 87
6.5.4 Communication Phase. 89

6.6 Chapter Summary . 90

IV Main Results 91

7 Interactions Between People and Technology 93
7.1 Corima and the Confirmation Principle . 94
7.2 DEMO and the Confirmation Principle . 95

7.2.1 Requester, Confirmator, Confirmation Pattern, Confirmation, and
Affirmation . 95

7.2.2 Confirmation Kind and Affirmation Kind 96
7.2.3 Revocations . 97
7.2.4 The Confirmation Principle Summary 97

7.3 The Confirmation Engine . 98
7.3.1 The Overall Architecture (The Confirmation Clients and the Con-

firmation Service . 98
7.3.2 The Confirmation Pattern in the Confirmation Service 101
7.3.3 The Role of a Confirmation Kind and an Affirmation Kind 102
7.3.4 Revocations in the Confirmation Service 103
7.3.5 Confirmation Engine Summary . 104

7.4 An Illustrative Example . 105
7.4.1 Rules of the Deal Confirmation Case Study 105
7.4.2 Deal Confirmation Process . 106

7.5 Related Work . 107
7.6 Chapter Summary . 108

8 Flexibility-Usability Trade-off 109
8.1 Introduction . 109
8.2 Overview of Flexibility and Usability . 110

8.2.1 Flexibility-Usability Trade-off . 111

ix

Contents

8.3 The Core of the Problem . 111
8.3.1 Two Architectures . 113

8.4 Proposed Measures . 114
8.5 Assessing Effectiveness and Efficiency in Usability 115

8.5.1 Discussion . 117
8.6 Revisiting the Flexibility-Usability Trade-off 117
8.7 Related Work . 118
8.8 Chapter Summary . 118

9 RPA Bridge to New Technologies 119
9.1 Combining RPA with BPM . 120
9.2 The Case Study . 122

9.2.1 Automating the Invoice Processing with UiPath 123
9.2.2 Automating the Invoice Processing with UiPath and Corima BPM . 125

9.3 Chapter Summary . 127

10 Evolvability of Financial Models 129
10.1 Introduction . 129
10.2 Evolvability . 130
10.3 Finance Domain Model . 131

10.3.1 Establishment of the Domain Model 131
10.3.2 Overview of the Domain Model . 132
10.3.3 Business Process Introduction . 132

10.4 Revisiting Evolvability of Domain Models 133
10.4.1 Revealing Combinatorial Effects . 134
10.4.2 Insights in Exploring the Domain Model 138

10.5 Related Work . 138
10.6 Chapter Summary . 139

11 Architectural Concepts Limiting GUI Transitions 141
11.1 Analysing GUI Frameworks . 141
11.2 Modifying WinForms GUI . 142

11.2.1 WinForms in NST and EA Lens . 143
11.2.2 WinForms Resume . 145

11.3 Modifying WPF . 145
11.3.1 WPF in NST and EA Lens . 147
11.3.2 WPF Resume . 149

11.4 Transition Approaches . 149
11.4.1 Rewrite from Scratch . 149
11.4.2 Change Incrementally . 150

11.5 Transition in Practice . 152
11.5.1 The Case Study . 153

11.6 Conclusion . 153

x

Contents

12 Building methodical framework: ADA 155

12.1 Running Example (part 1) . 156

12.2 SW Based on the TAO Theory and BETA Theory 157

12.3 ADA: The Way of Thinking . 158

12.3.1 Realising ADA-relation . 160

12.3.2 Objectified ADA (O-ADA) . 161

12.4 ADA: The Way of Working . 162

12.4.1 Designing a Software Architecture 162

12.5 Chapter Summary . 165

13 Demonstrating ADA in Corima 167

13.1 Running Example (part 2) . 167

13.2 Mapping User Requirements to O-ADA-Functions 168

13.3 Semantic Descriptions . 170

13.4 ADA Architecture . 171

13.5 Chapter Summary . 176

14 Evaluating ADA 177

14.1 Embedding in Practice . 177

14.2 Evaluating ADA in Terms of NST . 178

14.3 Evaluating ADA in Terms of Impact measurements 179

14.4 Limitations of ADA . 181

14.5 Chapter Summary . 182

V Conclusion 183

15 Discussion 185

15.1 Addressing the Research Goal and Objectives 185

15.1.1 Research Objective RO 1 . 186

15.1.2 Research Objective RO 2 . 187

15.1.3 Research Objective RO 3 . 188

15.1.4 Research Objective RO 4 . 189

15.2 Responding to Research Problem . 189

15.3 Main Outcomes and Contributions to Knowledge 190

15.3.1 Supporting an Agile Way of Working 191

15.3.2 Supporting Technological Transitions 191

15.3.3 Enhancing Model-Driven Engineering 191

15.4 Future Work . 192

16 Thesis Summary 193

xi

Contents

VI Publications 195

Bibliography 197

Reviewed Publications of the Author Relevant to the Thesis 215

Remaining Publications of the Author Relevant to the Thesis 217

Selected Relevant Supervised Theses 219

Selected Relevant Reviewed Theses 221

xii

List of Figures

1.1 Research approach and its link to research objectives 9
1.2 Roadmap and a its linkage to our research approach and text of this thesis . . 11

2.1 Example of EA fitness function fit . 24
2.2 Afferent and efferent coupling for a dysfunctional architecture [83] 26
2.3 Layered monolithic architecture and the domain dimension embedded in it [83] 26
2.4 Microservices architectures partion across domain lines, embedding the tech-

nical architecture [83] . 28

3.1 The EE theories [65] . 30
3.2 Adapted semiotic triangle (left) and semiotic ladder (right) [60] 31
3.3 Mapping of a semiotic triangle [60] . 32
3.4 Core objects of study in TAO theory presented by Dietz [63] 34
3.5 Black-box model for the function decomposition of a car [65] 34
3.6 White-box model of the construction decomposition of a car [65] 35
3.7 Generic system development process [62] . 37
3.8 The basic transaction pattern [67] . 38
3.9 Happy flow of basic transaction pattern [58] 38
3.10 The standard transaction pattern [67] . 39
3.11 The complete transaction pattern [65] . 40
3.12 Typical constructs of a DEMO construction model [163] 41

4.1 Observer pattern [89, p. 293] . 49
4.2 Composite pattern [89, p. 163] . 50
4.3 Chain of Responsibility pattern [89, p. 223] . 50
4.4 Presentation patterns . 51
4.5 MVC pattern . 53
4.6 Presentation Model . 55
4.7 MVVM Pattern . 56
4.8 MVI Pattern . 57

xiii

List of Figures

4.9 Example of Add/Remove User Control in WinForms 60
4.10 Control panel of Syncfusion catalogue . 64
4.11 McKinsey Global Institute Analysis: Potential for automation in Finance . . . 66

6.1 Conceptual design framework of our research 80
6.2 Selected Design Science model (adapted from Hevner [103]) 82
6.3 DSR cycles, environment, and the final knowledge base for our research 83
6.4 DSRP model [170] and the entry point for our research. 86
6.5 DSRP model of our research . 88

7.1 Corima architecture . 94
7.2 General Confirmation Process . 99
7.3 Confirmation engine in the Corima infrastructure 104
7.4 Deal Confirmation Process . 107

8.1 Flexibility of components . 112
8.2 Carpenter/Mosaic model of building a component system 113
8.3 Use-case diagram of a tabular data viewer . 116
8.4 UML component diagram . 116

9.1 RPA as a part of a BPM process [230] . 120
9.2 Combining RPA and BPM process . 121
9.3 Flowchart diagram representation of the case study 123
9.4 The case study implementation in UiPath studio 124
9.5 Uploading invoices to Rossum . 126
9.6 BPM process in Corima . 126

10.1 Abstraction of a finance domain model . 132
10.2 High-level overview of the HVaR-proces . 133
10.3 Abstraction of a market data sub-model . 135
10.4 Abstraction of return shift calculation sub-model 136
10.5 Abstraction of model with new product type and changed alpha. 137

11.1 Search trend of WPF and WinForms captured by Google Trends [96] 142
11.2 Abstraction layer placement . 151
11.3 Abstraction layer usage . 152

12.1 Wireframe of an application for cryptocurrency trading 157
12.2 Affordances in CBSs [A.6] . 158
12.3 CBS affordances in a three-dimensional space 159
12.4 A possible high-level architecture for a system applying ADA 163
12.5 ADA process . 165

13.1 Use-case diagram of a tabular data viewer . 168
13.2 Wireframe of a tabular data viewer . 169

xiv

List of Figures

13.3 O-ADA-Functions decomposition of the tabular data viewer used in the crypto-
currency trading application . 169

13.4 UML Component diagram representing a constructional decomposition 170
13.5 ADA process in Corima . 172

14.1 Corima transitions . 180

xv

Glossary

BETA theory Binding Essence, Technology and Architecture, EE theory. 30, 36, 65,
119, 156–158, 162

Camunda A vendor of BPM solutions. 73, 120

COPS A software development company specialised in financial management. 80, 84, 89,
129, 156, 167, 173, 177, 179, 182

Corima Treasury management system developed by company COPS GmbH. xiv, 79, 80,
85, 89, 93–99, 101–106, 108, 116, 122, 125, 127, 142, 156, 165, 167, 170, 171, 173,
175–177, 179–182, 185, 187–189

DevOps A set of practices combining software development and IT operations. 17, 22,
28, 186

FI theory Fact and Information, EE theory. 30–32

NSX A spin-off of the University of Antwerp developing NS. 75, 76, 158, 192

PSI theory Performance in Social Interaction, EE theory. 30, 31, 37, 39, 93, 96, 97, 108,
119, 155, 187

Rossum Artificial intelligence extracting data from invoices. xiv, 123–127

TAO theory Teleology Across Ontology, EE theory. xiii, 30, 33–36, 58, 62, 119, 156–158,
160–162

UiPath Market leader in RPA technology. 70–72, 120, 122–125, 127

xvii

Acronyms

ADA Affordance Driven Assembling. 83, 85, 87, 89, 90, 155, 156, 158, 159, 161, 162, 164,
165, 167, 170, 171, 173, 176–178, 180–182, 185, 187–193

AI Artificial Intelligence. 72, 123

AM Action Model. 40, 41, 96

API Application Programming Interface. 62, 120, 121, 123, 125, 127

BA Business Agility. 3–7, 81, 83, 87

BoM Bill of Materials. 36

BPM Business Process Management. 5–7, 43, 64, 65, 72–74, 80, 119–123, 125, 127, 186–
188, 190

BPMN Business Process Model and Notation. 29, 73, 74, 120, 121, 127

BPMS Business Process Management System. 5, 6, 73, 74, 120–122, 125, 127

CBS Component-Based System. 10, 43–47, 74, 79, 84, 109, 110, 112–114, 118, 157–159,
162, 173, 186

CE Combinatorial Effect. 18–21, 44, 75, 129–131, 134–141, 144, 145, 148, 149, 152, 177,
178, 182, 186, 188, 189, 191

CEO Chief Executive Officer. 71, 150

CFO Chief Financial Officer. 66

CI/CD Continuous Integration and Delivery. 17, 22–24, 28, 186

CIRS Currency Interest Rate Swap. 137, 138, 140

xix

Acronyms

CM Construction Model. 40

CMMI Capability Maturity Model Integration. 65

CoCoMo Constructive Cost Model. 114

CoR Chain of Responsibility. 50, 147

CRM Customer Relationship Management. 120

CRUD Create, Read, Update, and Delete. 182

DDD Domain-Driven Design. 27

DEMO Design Engineering Methodology for Organisations. 29, 39–41, 93–99, 101–103,
107, 108, 119

DMN Decision Model and Notation. 73, 74

DSL Domain-Specific Language. 162–164, 167, 170, 171, 173

DSR Design Science Research. 81, 82, 86, 89

DSRM Design Science Research Methodology. 9, 58, 79, 81–83, 85–87, 90, 162, 185

DSRP Design Science Research Process. 81, 86, 87, 90, 185

EA Evolutionary Architecture. 17, 21–23, 25, 28, 143, 147, 186, 188

EE Enterprise Engineering. 6–8, 15, 29–31, 39, 41, 75, 79, 83, 84, 87, 89, 93, 129, 155,
157, 162, 177, 185–187, 191

EQ EQuity. 135, 136

ERP Enterprise Resource Planning. 120, 139

F/C Function/Construction. 8, 36, 65, 117–119, 157, 159, 162

FaC Forms and Controls. 51–54, 59, 142, 143, 145

FCA Financial Conduct Authority. 4

FPA Function Points Analysis. 114

FX Foreign eXchange. 93, 94, 131, 134, 135, 137, 138, 167, 177, 178

GAO Government Accountability Office. 4

GDPR General Data Protection Regulation. 24

xx

Acronyms

GoF Gang of Four. 48

GPL General-Purpose Language. 171

GUI Graphical User Interface. 7, 8, 10, 25, 27, 43, 44, 48–61, 63, 65, 74, 76, 84, 85, 87,
89, 98, 108, 109, 114, 116, 119, 124, 125, 127, 141–143, 145, 147–153, 155, 156, 158,
161–165, 173, 175, 179–182, 185–192

HR Human Resources. 5, 69

HTML HyperText Markup Language. 62, 161, 168

HTTP Hypertext Transfer Protocol. 125

IDE Integrated Development Environment. 143

IR Interest Rate. 135, 138, 178

IRRBB Interest Rate Risk in the Banking Book. 178

IS Information System. 3, 17, 18, 29, 81, 82, 86, 129, 130, 132, 134, 138, 139

IT Information Technology. 3–5, 7, 18, 36, 64, 66, 69, 70, 86, 110, 150, 191

LeSS Large Scale Scrum. 6

LINQ Language INtegrated Query. 182

LoC Lines of Code. 114, 180

MD Man-Day. 116, 117

MDA Model-Driven Architecture. 191

MDD Model-Driven Development. 191, 192

MVC Model View Controller. 48, 51, 53–55, 58, 59, 63, 191

MVI Model View Intent. 51, 56, 57

MVP Model View Presenter. 54, 55

MVVM Model View ViewModel. 56, 57, 61, 147–149, 191

NDA Non-Disclosure Agreement. 156

NPM Node Package Manager. 62, 63, 192

NS Normalised Systems. 75, 76, 182

xxi

Acronyms

NST Normalised Systems Theory. 10, 18–21, 28, 44, 60, 61, 75, 84, 89, 95, 129, 130, 133,
138, 139, 143, 144, 147, 156, 177–180, 182, 186, 188, 193

O-ADA Objectified Affordance Driven Assembling. 161, 167–171, 176

OCR Optical Character Recognition. 65, 67, 68

OOP Object-Oriented Programming. 46, 130, 143, 163

OP Observer Pattern. 49, 54–56, 58

PM Process Model. 40, 41

PRM PResentation Model. 55–57

REST REpresentational State Transfer. 74, 118, 120, 125

RFD Risk Factor Data. 134, 135

RPA Robotic Process Automation. 7, 8, 43, 64–74, 119–122, 125, 127, 155, 186–188, 190

SAFe Scaled Agile Framework. 6

SBVR Semantics of Business Vocabulary and Business Rules. 85

SD Semantic Description. 170, 171, 176

SDF Semantic DiFference. 112

SE Software Engineering. 6, 8, 10, 15, 30–32, 34–36, 41, 44, 46, 79, 109, 114, 155, 158,
167, 185, 186, 189, 190, 193

SM State Model. 40, 41

SoS Scrum of Scrums. 6

SP Structured Programming. 46, 130

TMS Treasury Management System. 80, 84, 156

UI/UX User Interface/User Experience. 48

UML Unified Modeling Language. 34, 35, 85, 114–116, 161, 162, 167, 169, 171

URL Uniform Resource Locator. 125

UWP Universal Windows Platform. 56

xxii

Acronyms

VaR Value-at-Risk. 131–137, 140, 178

WinForms Windows Forms. 59–61, 63, 142–145, 149, 153

WPF Windows Presentation Foundation. 56, 61, 63, 142, 145, 147–149, 153, 163, 167,
175, 179, 181

XAML eXtensible Application Markup Language. 56, 61, 145, 147, 148

XML eXtensible Markup Language. 56, 61, 74, 163, 164, 170, 171, 173

YAGNI You Ain’t Gonna Need It. 25

xxiii

Part I

Introduction

1

Chapter 1

Research Overview

The start of the 21st century is characterised by a digitalisation of every aspect of soci-
ety. The number of computers, internet access, applications, and information increases
exponentially and societal structures adapt to it [104, 139, 87]. At the same time, enabled
by this digitalisation, the expectations of customers and regulators compel enterprises to
become more agile. Therefore, many individuals, small businesses, big enterprises, or-
ganisations, states, and international institutions have shifted their attention to so-called
Business Agility (BA) [10, 11] – ‘a set of organisational capabilities, behaviors, and ways
of working that affords their business freedom, flexibility, and resilience to achieve its pur-
pose’ [10]. However, often they are unable to gain these capabilities – ‘to swiftly and easily
change businesses and business processes beyond the normal level of flexibility to effect-
ively manage unpredictable external and internal changes’ [215]. Their current software
and enterprise architecture may hold them back. Even though there are sophisticated
modern technologies, they cannot use them since they are obliged to their current ageing
technology. Even though there are modern approaches to manage people, e.g., with the
help of agile methodologies, they cannot use them since they may again depend on the
current ageing technology blocking an implementation of new ways of management.

For instance, as observed by Oosternout et al. [215], the existence of inflexible legacy
systems is perceived to be a major disabler in achieving BA. They remind that the existence
of inflexible Information Technology (IT) may increase the maintenance and support cost
(e.g., in Finance, Logistics, and Utilities). On the other hand, according to Oosternout et
al. [215], IT is also an enabler for BA. The right architecture of Information System (IS)
may prevent agility gaps arising when the firm has difficulty in meeting the required level
of BA. Therefore, IT can both inhibit agility, as well as be a means to achieve it [215].
Oosternout et al. [215] add that this stresses the need for organisations to implement
an agile IT and process architecture in areas where BA is required. Such an agile IT
architecture can be analysed on four different levels of the business network – from lower to
top level: hardware and systems software infrastructure, application software, management
of an individual business, and governance of the business network [217]. All of these levels
must support integration and quick-connect and quick disconnect capabilities to external

3

1. Research Overview

partners [173].
In our research, we will solely focus on the level of application software. We will

inspect how the application software may be designed to support the adaption of modern
technologies as well as to support modern ways of agile management.

1.1 Loosing Pace with Modern Technology

It is obvious that in business networks, the application software can be an important enabler
in achieving BA. Yet, many organisations are still dependant on ageing technologies. For
instance, according to a report by the UK’s Financial Conduct Authority (FCA), ‘Nearly
50% of banks do not upgrade old IT systems as soon as they should, and 43% of US banks
still use COBOL’ [113], an antiquated programming language dating from 1959. House
of Common Treasury committee adds in their report from 2019 that ‘ageing architecture
is often referred to as a cause of IT incidents’ [106]. Another example comes from US
Government Accountability Office (GAO). In their report from 2019 [211], they identified
the ten most critical federal systems in need of modernisation. Some of which date back
to the 1970s. Many of them also depend on COBOL.

This problem is even worsened by an accelerating pace in which new information tech-
nology is coming. The gap between new and obsolete technologies is widening. Moore’s law
focuses on the phenomenon of accelerated development in computing. This widely known
exponential doubling of transistors on a chip has led to significant advances over the past
five decades. A similar force appears to be driving the development of IT. Ray Kurzweil
introduced the so-called Law of Accelerating Returns [128, 129], where he argued for ex-
tending Moore’s law to describe the exponential growth of diverse forms of technological
progress. He demonstrated that the rate of technological change is also exponential, with
the overall rate of progress doubling every decade [128]. He made the following statement:

‘We won’t experience 100 years of progress in the 21st century – it will be more
like 20,000 years of progress (at today’s rate).’

– Ray Kurzweil, 2004

If Kurwzeil is right, we can expect that new technological innovations will be introduced at
an increasingly rapid pace. This can lead to serious problems in terms of handling legacy
systems, which are business-critical software systems that strongly resist modification. The
failure of such systems can have a significant impact on business evolution [22, 23]. In this
context, it is irrelevant whether the system was installed a few days ago or a decade ago.
Based on the rapid pace of technological development, software systems can become legacy
systems before reaching a production. As the pace of technological development increases,
so does the pace of technology obsolescence [187]. Therefore, the software industry should
address the problem of adapting to new technologies quickly. Otherwise, it may soon face
challenges in terms of maintaining legacy systems, including a lack of IT resources, lack of

4

1.2. Loosing Pace with Modern Management

skilled human resources, lack of up-to-date documentation, and large costs associated with
support and maintenance [199]. This problem is becoming increasingly crucial as evidence
suggests that companies already spend most of their available budget on maintenance [3].
It has been stated that ‘by some estimates, seventy-five percent of the IT budgets of banks
and insurance companies are consumed maintaining existing systems’ [44]. This practically
means that the maintenance budgets increasing at the expanse of the budget for technology
innovation to which the enterprises are obliged.

1.2 Loosing Pace with Modern Management

Many organisations follow a traditional structuring of departments – sales, marketing, IT,
Human Resources (HR), etc. These organisations may be considered as siloed organisations
structured into so-called functional silos. This term was coined in 1988 by a consultant
on organisational development, Phil S. Ensor [73]. He described so-called Functional Silo
Syndrome as an ‘overall organisational mentality [that] is one of imposing control on people
rather than eliciting commitment from them’ [73]. In other words, in such an organisation,
teams of employees are grouped by function that all operate separately from each other,
without cross-collaboration. Ensor [73] adds that ‘their goals are primarily functional.
Communication is heavily top-down – on the vertical axis. Little is shared on the horizontal
axis partly because each function develops its own special language and a set of buzzwords’.

However, siloed organisations face many challenges – coordination between people is
hindered [19], a transparent strategic direction of the company is missing [8], the ability
to learn is damaged [73], and many more. Because of that, in siloed organisations, the
decision-making and prioritisation of work may be ad hoc without a broader context.
The management may lack an overview of who does what and why, the communication
within departments and in between multiple departments may be spread across different
communication channels, etc.

Fisher [81] clarified that many organisations are therefore moving from inefficient func-
tional silos. They are ‘discovering the possibilities for enhanced performance based on
a movement toward a process-driven approach to business’. Curtice et al. [45] add that
when functional silos or roadblocks disappear, the company is better positioned to sat-
isfy all stakeholders – customers, owners, and employees. Bruin and Gaby [50] describe
that in practice this move towards process-driven organisation can be tackled by Business
Process Management (BPM). They claim that BPM may be an important enabler for
a company to successfully align business practices with strategic objectives and increase
business performance. Therefore, many organisations are revealing their end-to-end busi-
ness processes. Along this initiative, they implement information systems dealing with
the definition, administration, customisation, and evaluation of tasks evolving from these
processes. These information systems are called Business Process Management Systems
(BPMSs) [121]. They are able to delegate business tasks to the right people at the right
time using the right information resources [121].

Such an environment is a great basis to improve the aforementioned BA. Depending on

5

1. Research Overview

the size of an organisation, frameworks like Scrum, Scrum of Scrums (SoS), Scaled Agile
Framework (SAFe), Large Scale Scrum (LeSS), etc, are implemented. This enables the
organisation to better align its business strategy with the actual tasks to be done by each
department, team, or individual. However, BPMSs typically come with an application
software. Therefore, they become obsolete similarly to another application software. It
is obvious that they must be designed with respect to their move to modern technology
regardless the changes of business processes.

1.3 Motivation

As we described above, it is visible that companies must thrive with uncertainty of today’s
unforeseeable market. A capability to thrive is referred to as BA. Unfortunately, the
ageing application software disables organisations to improve this capability. Even though
they may use agile frameworks, they are unable to keep up with the latest technology
developments, not with their application software, nor with BPMS.

We believe that this challenge of ageing technology may be tackled by an approach that
can aid in software better suited for technology transition. In other words, software that
can evolve better with respect to modern technologies. One of the major fields researching
evolvability is Enterprise Engineering (EE). The EE research paradigm applies theories
from other fields to the evolvability of organisations. We argue that such theories can be
applied to Software Engineering (SE) as well. It can contribute to the construction of the
aforementioned software that clearly separates dynamically changing technologies from a
relatively stable description of functions required for a specific user.

With our long-lasting industrial experience with SE, we believe that we can reify the
concepts of EE in terms of SE. Therefore, with this reification, we can contribute to
an industry producing more evolvable software. This may inherently help to keep the
application software up with the modern technology. Since BPMS include an application
software, our contribution should help with its further adaption to modern technology
as well. Thus, it should support organisations to improve their BA using technologically
matured BPM solutions.

1.4 Problem Statement

With respect to the provided research background, it is obvious that the latest technological
development supports companies to innovate in different fields on different levels. However,
organisations of different sizes are often lacking the capacity to adapt to, create, and
leverage changes to use these latest technologies for their customer’s benefit. Their software
solutions are becoming increasingly outdated. Accordingly, the problem in this research
can be formally formulated as follows:

‘Despite the potential in modern technologies, SE do not offer guidance and
architectural pattern on adapting software artefacts into the latest technologies

6

1.5. Goals of the Dissertation Thesis

in a more efficient and manageable manner.’

The problem above can be an impediment for IT firms lacking an architectural pattern
that might help them to respond quicker to their customer’s requirements, and to adapt
their products into modern technologies. In the same time, the above problem is an obstacle
for any company that wants to improve its BA with the help of modern digitalisation
solutions and trending agile management techniques.

A variety of technological developments following a range of design or architecture pat-
terns have been observed in the literature. Their thorough review and evaluation is in
Chapter 4. It reveals the findings of component-based systems, the strengths and weak-
nesses of design patterns and the corresponding Graphical User Interface (GUI) technolo-
gies implementing them, and it inspects BPM and Robotic Process Automation (RPA) to
bridge the gap between the modern and obsoleting solutions. However, in Chapter 2, we
also reviewed formal roots of EE and the theories on how systems can evolve. We argue
that the corresponding concepts of EE and evolvability can be reified to a software design
approach that aids in the construction of more evolvable software solutions.

1.5 Goals of the Dissertation Thesis

According to the defined problem, the goal of this research is to:

‘Design and develop a new methodical framework that aids in the construction
of software solutions enabling controlled technology transition.’

1.5.1 Research Scope

While our research goal is aiming at technology transitions in general, our scope is narrowed
down to GUIs where the problem of technological transitions is generally perceived as being
cumbersome in terms of the proliferation and dynamics of GUI frameworks. Furthermore,
this research focuses on conceptual rather than detailed solutions. By so doing, attention
is drawn to the conceptual aspects of enterprise engineering and evolvability rather than to
the particular implementation in a specific technology. Therefore, the activities like user or
technical testing are out of the scope of this work. This research scope is visually outlined
later in Fig. 6.1.

Additionally, in this study, many examples are exemplified in a treasury management
system. Therefore, even though the proposed methodical framework is generally applicable,
we solely focus on evaluating it in the context of financial applications rather than in other
contexts. Finally, since we work primarily in a research environment where .NET and
JavaScript dominate, we will mostly exemplify our ideas on that technology stack.

7

1. Research Overview

1.5.2 Research Questions and Objectives

To address the research problem and to achieve the goal of this research, we have to answer
two research questions:

Research Question 1. What is the current practice and research status of approaches
to build evolvable SW? What are their limitations?

Research Question 2. Can a methodical framework for building software better suited for
technology transition be grounded in enterprise engineering research? How this framework
can be designed?

A number of objectives must be defined to achieve the research goal and answer the
research questions in our research scope. Each of the objectives may help answering one
or the other.

Research Objective 1. To investigate and understand the state-of-the-art of the

RO 1.1 research on SW evolvability;

RO 1.2 EE theories from which SE may potentially benefit;

RO 1.3 technological practices aiming at better technology transition;

RO 1.4 related research aiming at better technology transition.

Research Objective 2. To design a methodical framework aiming at controlled techno-
logy transition.

RO 2.1 To investigate how user-interactions can be captured in SW development.

RO 2.2 To describe trade-off between flexibility and usability of SW components
when having their Function/Construction (F/C) devised.

RO 2.3 To show how RPA technologies can bridge the gap between legacy SW and
SW built with technology transition.

RO 2.4 To demonstrate how to measure the evolvability of systems.

RO 2.5 To describe architecture concepts that limit GUI transitions.

Research Objective 3. To design & develop a prototype of the designed framework in
an industrial-scale system.

Research Objective 4. To demonstrate the framework and evaluate its effectiveness for
constructing SW that aid controlled technology transition

RO 4.1 in the industrial-scale environment;

RO 4.2 from a theoretical point of view.

Next, we present our research approach to achieve the objectives and reach the research
goal.

8

1.5. Goals of the Dissertation Thesis

Figure 1.1: Research approach and its link to research objectives

1.5.3 Research Approach

The methodological tool used to examine the research objective of this thesis is Design
Science Research Methodology (DSRM) (Hevner [102]). It addresses the research problem
put forward earlier in Section 1.4. According to the selected methodology, the adopted
research approach here consists of four main phases namely conceptualisation of the re-
search, design & development, demonstration & evaluation, and communication. They are
presented schematically in Fig. 1.1.

Conceptualisation Phase. The theoretical background for this research is grounded
in the first phase. It aims to acquire a knowledge necessary to build an awareness of the
problem. A wide range of journal articles, conference papers, books, and other relevant
resources were reviewed in the ‘problem domain’ – construction of software solutions en-
abling controlled technology transition. This thorough literature review is undertaken to
address RO 1.1 and RO 1.2 in Chapter 2 and Chapter 3 respectively.

To understand the problem and reveal the gap in the technology stack, we inspect
practices to build software suited for technology transition. Technical reports, technical
literature as well as the Internet were utilised to address RO 1.3 in Chapter 4.

DSRM encourages researches to also review other perspectives and insights to the
problem. Therefore, in Chapter 5, we address a last RO 1.4 by reviewing similar research
aiming at technology transition.

Design & Development Phase. After the conceptualisation, we design a methodical
framework aiming at controlled technology transition. First, we address a range of ob-
jectives behind RO 2. This helps us to understand the perspectives we need to keep in
mind when designing the methodical framework. Next, by addressing RO 3, we reveal
the constituents of the framework itself. This helps us to understand the components of a
possible software architecture following the framework.

9

1. Research Overview

Demonstration & Evalutation Phase. To showcase the framework in practice, we
employ a range of convenient technologies to implement the designed framework in a pro-
totype system. This development results in a subsystem of an industrial application in the
area of finance. This helps us to tackle RO 4.

Communication Phase. In the final phase, we retrace the problem of the research, its
solution, and novelty together with all the findings we learned along the way. Here, we
reveal a number of academic publications as well as posters that we presented to other
researchers and relevant audiences.

1.6 Thesis Roadmap

The thesis is structured into seven parts namely Introduction, Background & State-of-the-
art, Our approach, Main results, Conclusion, Publications, and References each of which
may contain one or more chapters as illustrated in Fig. 1.2. Below, we briefly explain
the order and content of each chapter. For a convenience of the reader, we also show the
mapping of our research approach into the corresponding chapters. We distinguish the
corresponding phases by colour.

The thesis starts with Part I. Its only chapter – Chapter 1 provides a motivation to our
research with respect to software industry loosing a track with modern technology as well
as with modern management techniques. The chapter formulates a research problem, its
goal and corresponding objectives. Finally, it gives an overview of our research approach
and the selected methodology. Finally, the roadmap of our thesis is presented together with
the mapping of our research approach and objectives into the corresponding chapters.

Part II starts with the breakdown of the background and state-of-the-art. In Chapter 2,
the research on evolvability is critically reviewed. Chapter 3 introduces enterprise engin-
eering theories that are relevant to our research. In Chapter 4, numerous technological
developments in the area of SE are inspected. The historical development of Component-
Based Systems (CBSs) is presented at first. Next, it reviews typical GUI patterns and
corresponding GUI technology. Finally, in Chapter 5, we investigate related work to our
research.

Part III contains one an only chapter – Chapter 6. It grounds the research methodology
used in our research. It explains the phases of the selected research process and employs
it to our research.

Part IV intends to design the methodical framework what is a goal of our thesis. In this
part, we integrate an output from our long-lasting research initiatives. These initiatives
were triggered with respect to address various research objectives emerging over time.
Chapter 7 presents a confirmation engine improving interactions between people. Chapter 8
investigates a trade-off between flexibility and usability of a design. Chapter 9 shows how
robotic process automation may support technology transitions. Chapter 10 describes how
Normalised Systems Theory (NST) may be used to evaluate financial models. Chapter 11
inspects current GUI technology in lens of design patterns. Finally Chapter 12 describes

10

1.6. Thesis Roadmap

Figure 1.2: Roadmap and a its linkage to our research approach and text of this thesis

11

1. Research Overview

the design of our methodical framework, and it explains its different components. The
framework is demonstrated in Chapter 13. Its evaluation is further provided in Chapter 14.

The part Part V concludes the whole dissertation thesis. In Chapter 15, it discusses
how specific objectives where achieved. Finally, in Chapter 16, we summarise the whole
dissertation thesis.

The last part – Part VI shows the achievements in the presented research. Each pub-
lication comes with quotations of our work and the information where it was published.

1.7 Chapter Summary

In this chapter, we laid down foundations of the research presented in this thesis. We for-
mulated the research problem and goal, and we formalised the essential research questions
that must be answered. The research objectives and its scope were also put forward in this
chapter.

We provided a brief overview of the adopted research approach and its phases. We
delineated the roadmap of this thesis, and we structured it into parts. To guide the reader
throughout the whole document, we provided a linkage between each chapter and the
corresponding research phase.

12

Part II

Background and State-of-the-Art

13

Part II – Breakdown

In the following chapters, we provide a state-of-the-art literature review to create an un-
derstanding of the existing knowledge on evolvability and rapid technology change. This
background is necessary to set a body of knowledge (knowledge base) and environment, fur-
ther described in Section 6.4, with which we are working in the latter stages of this research.
We use this background as an input for designing the artefacts produced throughout this
research.

First, in Chapter 2, we address the objective RO 1.1. We inspect different perspectives
on evolvability, its connection to business agility, and we review its academic as well as
industrial state-of-the-art. Second, in Chapter 3, we address the objective RO 1.2 to
understand the formal grounds in EE. The paradigms, trends, and SE practices tackling
challenges of rapid technology change are discussed in Chapter 4 to address RO 1.3. Last
but not least, to address RO 1.4, Chapter 5 includes a knowledge of neighbouring research
fields and research fields which are comparable – residing in the same problem space.

15

Chapter 2

Evolvability

To tackle the objective RO 1.1, we need to get an understanding of the research on evolvab-
ility and practices focused on building evolvable SW. To understand evolvability, we need
to start with agility. Therefore, in Section 2.1, we will explain the linkage between them.
Next, in Section 2.2, we will present a theory researching evolvability. Finally, in Sec-
tion 2.3, we will connect it to evolutionary architectures dealing with evolvability with the
help of DevOps and Continuous Integration and Delivery (CI/CD) practices.

2.1 The Linkage between Agility and Evolvability

As explained by Oorts et al. [161], under the current volatile and competitive economic
conditions, organisations attempt to be agile at all levels. Las Mathiassen and Jan Pries-
Heje [140] narrowed this topic to the aforementioned property called business agility. They
explain it as a novel paradigm presented as a solution for maintaining competitive ad-
vantage during times of uncertainty and turbulence in the business environment. They
clarified that ‘the agile mind is defined as having a quick, resourceful, and adaptable char-
acter. Therefore, agile organisations respond quickly, they are resourceful, and they are
able to adapt to their environment’ [140].

A similar trend is also recognised in the Evolutionary Architecture (EA) coined by Ford
et al. [83]. They explained that a shift to a large and complicated software system can
be facilitated by standalone business-oriented teams using technological advances such as
DevOps, CI/CD, and containers such as Docker. However, Oorts et al. [161] added that
simply having an agile organisation is not sufficient. It is also necessary to develop SW
that is capable of changes. They said that ‘this can be considered as an important step or
precondition for establishing an agile organisation’ [161].

For ISs, this can be interpreted as the capability to adapt to new functional require-
ments. These new functional requirements arise from changes in the environment and
processes that surround the system as well as the user’s experience [32]. This phenomenon
is captured by Lehman’s law of continuing change. At the same time, Lehman posits the
law of increasing complexity. It states that unless something is done to prevent it, the

17

2. Evolvability

structure of an IS deteriorates over time [131]. The challenges linked to that are often
explained as technical debt [20]. At the end, this results in the compulsory replacement of
the existing system. Op’t Land [164] adds that a consequence of the deteriorating struc-
ture is an annual growth in budgets for development and maintenance. He clarifies that
‘Enterprises that decrease – or (even) keep constant – the IT budget will be faced with less
satisfactory IT, decreased support of organisational changes, decreased business IT align-
ment and decreased situational awareness’ [164]. Based on this statement, he identifies
a challenge in a software development area – an approach that could help IT companies
to develop software that exhibits high quality and is quickly continuously changeable over
time. This challenge is captured in a term evolvability.

There are many definitions of evolvability. For example, Cook et al. [39] defined it as
‘the capability of a software product to be evolved to continue to serve its customer in
a cost-effective way’. Liguo Yu and Ramaswamy [233] elaborated on evolvability in the
context of biological systems and refined Cook’s definition to ‘the ability of a system to
support self-organisation such that it can effectively evolve to serve a new requirement
without appreciable degradation of, and perhaps much better suited to support its current
capabilities’ [233]. Another definition comes from NST [137] what is one of the leading
theories for handling software evolvability. NST focuses on how modular structures of a
system influence its evolvability. This theory explains software evolvability as ‘the ability
of software to be changed easily’ [161]. In other words, it defines an evolvable system as an
information system to which a set of anticipated changes can be applied easily [134, 136].
As clarified by Vanhoof [216], NST specifies the meaning of ‘easy’ by using the notion of
Combinatorial Effect (CE) discussed in Section 2.2.

Finally, a modular decomposition of a large system into smaller subsystems has long
been identified as a way to improve evolvability and facilitate changes (e.g., [192], [184],
[12]). To obtain its benefits, the subsystems should be partitioned in a precise, unam-
biguous, and complete way, and they should interact through standardised interfaces [12].
However, it is recognised that no universal measure or composition of a product’s modu-
larity exists ([94, 183, 27]). Different decompositions are possible and a firm should choose
a decomposition that aligns with its objectives [27]. In their highly referenced review
paper [27], Campagnolo and Camuffo emphasise a lack of research on product design mod-
ularity that addresses market or industry-specific factors possibly affecting product design
modularity itself [27].

S
ec

ti
on

T
ak

ea
w

ay

We share the opinion of Oorts et al. [161], and we agree that SW evolvability is a pre-
condition for an organisation to achieve business agility. Therefore, regardless the need
for agility at different levels, we solely focus on the SW evolvability that contributes to
achieve it. We understand evolvability in terms of NST and its perspective on modularity.

18

2.2. Normalised Systems Theory

2.2 Normalised Systems Theory

The sections above describe the difficulty linked to the demand for evolvable systems. NST
offers an answer to this challenge. It offers a systematic methodology for modular design
with the goal of creating evolvable systems [137]. It uses the formal foundations of system
theoretic stability to study the transformation of (basic) functional requirements to the
software primitives of a stable system [137]. This stable system is defined as ‘bounded
input/bounded output’ – if the system receives bounded input, it should create a bounded
output. It means that for a set of anticipated changes (i.e., changes in basic functional
requirements), the impact on the system should only depend on the change itself and not
on the size of the system [135].

2.2.1 Combinatorial Effects

As mentioned earlier, NST works with so-called CEs. CEs are defined by Mannaert et
al. [137] as follows:

Definition 1. . . . Functional changes causing impacts that are dependent on the size of a
system and the nature of the changes. . . [are called] CEs. [135, p.5].

The fewer the CEs that are caused by a change, the easier a system is to change and
the more evolvable the company is [134, 136]. Vanhoof [216] added that ‘the definition
of changing easily then becomes that it is easy to impose changes on the organisational
design of a company when a change does not induce CEs’.

Additionaly, CEs stem from improper division in modules or an incorrect encapsulation
of modules [137]. They may lead to large costs as changes will need to be implemented
in multiple modules. This is what Mannaert et al. [137] call the law of exponential ripple
costs. However, modularity combinatorics might as well induce flexibility following the
law of exponential variation gains [137]. It states that if an overall system consists of
independent modules, the development and maintenance cost of those modules is the sum of
all modules, whereas the number of variations is the product of all modules. In systems with
multiple variants of the same unit of work, this leads to an exponential increase of possible
combinations [137]. Modules following the NST theorems both leverage the opportunity
described by the law of exponential variation gains while avoiding the unwanted CEs.

To summarise, in our research, technological change is considered as the NST change
driver. We measure the CEs that are defined in Definition 1. Therefore, the main criterion
used for evaluating the quality of a specific software architecture is the bounded impact
of technological transition. As Mannaert et al. [135] clarified, ‘bounded is a term from
system stability defined in system theory, which states that a bounded input (i.e., changing
requirements) should result in a bounded output (i.e., changes in the software)’. More
specifically, NST uses the formal foundations of system theoretical stability to study the
transformation of (basic) functional requirements into the software primitives of a stable
system [137]. A stable system is defined as a system that creates bounded outputs when
receiving bounded inputs. In other words, for a set of anticipated changes, the impact on

19

2. Evolvability

the system should depend only on the changes, and not on the size of the system [135].
When this is not true and the impact of a change depends on the size of the system, a CE
occurs.

2.2.2 Theorems of Normalised Systems Theory

NST formulates four software (formally proven) design theorems. It argues that following
these principles is a necessary condition in order to avoid CEs in a software system [53,
135, 137]. However, the violation of any of these design theorems incurs in the occurrence
of undesirable CEs.

The following postulate is defined as the ultimate goal [137]: The separation of concerns
principle states that in order to isolate change drivers, an entity may only execute one task.
Those tasks should furthermore exhibit action version transparency, meaning that a change
in the task may not impact other tasks that call on the first task. Data used in tasks need
to exhibit data version transparency. If data is modified, this may not have an impact
on the tasks that use the data. The final requirement is the call for separation of states,
meaning that the status of every task should be kept.

NST argues that a software system following these principles is guaranteed to be CE-
free. However, the violation of any of these design theorems results in the occurrence of
undesirable CEs. The following postulate is defined as the ultimate goal [137]:

‘An evolving information system should not have instabilities (CEs). A bounded
amount of additional functional requirements cannot lead to an unbounded
amount of additional (versions of) software primitives.’

– Herwig Mannaert, Jan Verelst, Peter De Bruyn, 2016

The aforementioned theorems were defined by Mannaert et al. [137] as follows:

Theorem 2.2.1. Separation of Concerns : A processing function can only contain a single
task in order to achieve stability.

The separation of concerns is broadly recognised best practice in software architecture
design. It demands that each function should implement a single task and be impacted by a
single change driver. In reality, this theorem requires the implementation of single-purpose
functions and the avoidance of code duplication to prevent CEs [137]. It also requires the
strict separation of technologies because every technology is defined in NST as a change
driver or concern.

Theorem 2.2.2. Data Version Transparency : A structure that is passed through the
interface of a processing function needs to exhibit version transparency in order to achieve
stability.

20

2.3. Evolutionary Architectures

Data version transparency is a principle used to handle additions or removals of data
fields in entities. This implies the encapsulation of data fields to facilitate the coexistence
of various versions of an entity. This theorem highlights the need for encapsulation to
prevent CEs [137].

Theorem 2.2.3. Action Version Transparency : A processing function that is called by
another processing function, needs to exhibit version transparency in order to achieve
stability.

This theorem focuses on the ability to upgrade the implementation of processing func-
tions and tasks. The new version of a task implementation must not break the existing
system. Calling the new version of a function should be seamless and should not require
additional changes, facilitating the avoidance of CEs [137].

Theorem 2.2.4. Separation of States : Calling a processing function within another pro-
cessing function, needs to exhibit state keeping in order to achieve stability.

This is a formalisation of avoiding the transition to an undefined state. When a state is
maintained for every call of a processing function, the whole system behaves as a determ-
inistic state machine, eliminating the need for complicated recovery from undefined error
states. This combats the problem of CEs emerging from synchronous calling pipelines that
are natural in object-oriented systems [137].

S
ec

ti
on

T
ak

ea
w

ay Let us summarise, NST grounds the evolvability in formally proven theorems. It builds on
a concept of CE that should be avoided in an evolving information system. The violation
of any of the design theorems incurs in the occurrence of undesirable CEs.

2.3 Evolutionary Architectures

In this section, we will continue addressing the research objective RO 1.1. Together with
Mareš, we inspected state-of-the-art of EA. In this section, we provide its excerpt.

EA is a term coined in the book Building Evolutionary Architectures, support constant
change by Neal Ford et al. [83]. Their motivation comes from the observation that:

‘Despite our best efforts, software becomes harder to change over time. For
a variety of reasons, the parts that comprise software systems defy easy modi-
fication, becoming more brittle and intractable over time. Changes in soft-
ware projects are usually driven by a reevaluation of functionality and/or scope
. . . though architects like to be able to strategically plan for the future, the con-
stantly changing software development ecosystem makes that difficult. Since we
can’t avoid change, we need to exploit it.’

– Neal Ford, Rebecca Parsona, Patrick Kua, 2017

21

2. Evolvability

The idea was first sparked at O’Reilly conference. Many speakers talked about mi-
croservices and the disruption it caused. Ford et al. [83] add that in many companies
building architectures such as microservices, their teams are structured around service
boundaries rather than technical positions in siloed organisations discussed in Section 1.2.
People work in teams that impact myriad dimensions of software development and reflect
the problem size and scope. Ford et al. [83] conclude that ‘companies typically structure
teams that resemble the architecture by cutting across functional silos and including team
members who cover every angle of the business and technical aspects of the architecture’.
They clarify that this shift in big complicated software systems is only possible due to
advances like DevOps, CI/CD, and containers like Docker. Deployments could be made
small and rapid. This also changed the notion of ‘Architectural change is hard’. It enabled
an architecture designed to accommodate the change where replacing one microservice for
another should be as easy as switching LEGO bricks. Ford et al. [83] define it as follows:

Definition 2. An evolutionary architecture supports guided, incremental change across
multiple dimensions.

◦ Incremental change describes the level to which teams may build and deploy SW in-
crementally. For development, incremental change refers to granularity of a change,
because incremental changes are easier if the scope of change is small. For deploy-
ment, incremental change refers to the level of modularity and decoupling for business
features and their mapping to architecture.

◦ Guided change helps to protect characteristics the architect chooses to be important,
e.g., with the help of a fitness function that encompasses a variety of mechanisms to
ensure architecture doesn’t change in undesirable ways.

◦ Multiple architectural dimensions refers to the parts of architecture that fit together in
often orthogonal ways. For example, technical, data security, and operational/system
dimension.

To be in practice in line with this definition, Ford et al. [83] propose several useful
characteristics. They describe principles directing us in a way towards those characteristics.
All of that is based on heuristics distilled from successful industrial projects and assurance
by experts. Now, we broadly introduce these characteristics and guiding principles.

2.3.1 Concepts of Evolutionary Architectures

Let us talk about the guiding principles that voice throughout EA [83] research.

Conway’s Law. The first guiding principle was introduced by Melvin Conway [38] in
1968. He codified what has become known as Conway’s Law:

‘Organisations which design systems are constrained to produce designs which
are copies of the communication structures of these organisations.’

22

2.3. Evolutionary Architectures

—Melvin E. Conway, 1967

Ford et al. [83] explains that Conway describes that in the very early stages of a design,
one must come up with a high-level understanding of the system. It is made to realise
how to break down areas of responsibility into different patterns. The way the problem is
broken down affects the choices that can be made later. To bring EA into the real world,
we need to keep Conway’s Law in mind. As Conway notes, we introduce coordination
problems when technologists break down the problems into smaller chunks.

This problem is mostly visible in siloed organisations having teams separated by tech-
nical functions, e.g., front-end, back-end, business logic, database, and so on. Typical
problems that cut vertically across these layers may increase the coordination overhead.
Later, we will show that microservice architecture is one of the types of EA. As Ford et
al. [83] exemplify, in such an architecture, one of the good examples of Conway’s Law in
action might be trying to change the contract between two services. This might be difficult
if the change of a service owned by one team requires a coordinated and agreed-upon effort
of another.

Therefore, in the context of EA, Conway’s Law is a warning to software architects.
To make EA happen, we cannot have a company divided along the knowledge expertise.
Therefore, not just the architecture and design of the SW, SW architects should also pay
attention to the delegation, assignment, and coordination of the work between teams.

The lesson learned here is to inverse this law. If we want to build standalone inde-
pendent services, we need to disperse the experience and build teams around projects
and business functionality. This aligns with an agile approach to build teams of diverse
members and makes a lot of sense given the context of CI/CD, etc. mentioned above.

Fitness Function. Another guiding principle of EA is so-called fitness function. In order
to achieve EA defined in Definition 2, the changes must be guided – they must protect
the various architectural characteristics required for the system. Fitness function is the
means embodying this protection mechanism. EA borrowed that term from evolutionary
computation techniques like genetic algorithms where it is commonly used to define success.

The concept comes from the character of evolutionary computing where changes emerge
gradually via small changes in each generation. At each generation, we want to assess the
current state and evaluate whether it is closer or further from the desired goal. Ford et
al. [83] define the architectural fitness function as follows:

Definition 3. An architectural fitness function provides an objective integrity assessment
of some architectural characteristic(s). [83]

The idea is that each system has a list of essential ‘-ilities’ like usability, security,
accessibility, traceability, fault tolerance, low latency, testability and many many more.
The authors of EA separate these into different categories. However, the key message is
that architects and developers should pay attention to them. They should be identified as
soon as possible. Each should be provided with a rating based on how important it is for
a given project.

23

2. Evolvability

Figure 2.1: Example of EA fitness function fit

An example of such a fitness function is depicted in Section 2.3.1. It exemplifies gate-
keepers implemented into a production pipeline. It extends the CI/CD principles with
additional checks that are placed on systems and modules. These checks may refer to,
e.g., code coverage over 90% resulting from static code analysis, load testing demanding
to serve all web request within 10 seconds regardless the network latency, General Data
Protection Regulation (GDPR)1 compliance showing logs of how personal data are handled
and stored, and so on. These observations make it possible to keep an eye on the state of
the architecture and make informed decisions for future changes.

2.3.2 Principles of Evolutionary Architectures

Bring the pain forward. This principle promotes the idea that things having a potential
to cause pain must be done often and earlier. It observes that technical debt does not
behave linearly. Instead, as projects grow, it increases exponentially. CI/CD offers a
solution. It is a ‘SW development practice that enables organisations to frequently and
reliably release new features and products’ [189]. It encourages us to automate development
steps that are complicated, time consuming, and thus barely executed. Things requiring
close attention, database migration, or code refactoring should be prioritised. The authors
advise to identify these issues and remove the pain early before interest accumulates.

1The GDPR is a regulation in EU law on data protection and privacy for all individuals within EU.

24

2.3. Evolutionary Architectures

Last Responsible Moment. This principle is used to counter the project’s hazard of
buying complexity too early [83]. It may be considered as an extension to the well-know You
Ain’t Gonna Need It (YAGNI) heuristic. In traditional architectures, many subsystems,
technology stacks, and tools are chosen very early or even before coding entirely.

EA weights the cost of incorrect early decisions against delayed decisions. It emphasises
that delayed decisions might benefit from additional information gained during the time
difference, and it may argue for the later. Arguably, this decision to delay has its own
price – a potential re-work that can be soften by some abstraction. However, YAGNI
strikes again. The benefit is that this cost ought to be significantly smaller than, e.g., an
inappropriate messaging system, which could slow down the development in many other
areas and eventually be marked as tech debt replaced much later in the life of the project.

The essential question is when is the last responsible moment for a certain decision.
The fitness function may provide help. Decisions that have a bigger impact on the whole
system or are of significant importance should be made earlier. The core of the idea is to
wait as much as possible, but do not stall.

2.3.3 Architectural Styles

Big Ball of Mud. In SW architecture, ‘Big Ball of Mud’ [82] is colloquially known as an
antipattern when frameworks and libraries are typically in place, yet not built on purpose.
As Ford et al. [83] clarified, these systems suffer from the following:

◦ They are highly coupled and they lead to rippling side effects when changes occur.

◦ They contain highly coupled classes with poor modularity.

◦ Database schemes snaked into the GUI and other parts of the system what effectively
insults them against change.

This type of architecture can be seen as the least evolvable architecture. Ford et al. [83]
exemplifies it in Fig. 2.2. It depicts a class coupling diagram where each node represents a
class and the line represents inward or outward coupling. The boldness of the line indicates
the number of connections. As the authors clarify, changing any part of the application
shown in Fig. 2.2 presents intense challenges. Due to the exuberant coupling, the impact
of a change in one part is unforeseeable.

Layered Monoliths. To score better from the standpoint of evolvability, let us review
layered monolithic architectures. These may be illustrated in Fig. 2.3. As Ford et al. [83]
explain, each layer represents a technical capability to allow developers swapping out func-
tionality easily. The main advantage of this architecture are isolation and separation of
concern discussed in Theorem 2.2.1. The layers are isolated. They can only be accessed
via well-defined interfaces. Therefore, implementation changes in one layer can be made
without impacting the other layer. To judge the monolithic architecture, it is worth un-
derstanding so-called quantum. In physics, the quantum is the minimum amount of any

25

2. Evolvability

Figure 2.2: Afferent and efferent coupling for a dysfunctional architecture [83]

Figure 2.3: Layered monolithic architecture and the domain dimension embedded in it [83]

physical entity involved in an interactions. Ford et al. [83] similarly defines architectural
quantum as:

Definition 4. Architectural quantum is an independently deployable component with
high functional cohesion, which includes all structural elements required for the system to
function properly [83, p.4].

As Ford et al. [83] clarify, in a monolithic architecture, the quantum is indeed the entire
system. Everything is highly coupled, thus it must be deployed in a mass. For example,
a persistence layer typically encapsulates all implementation details of how data is saved.
In layered monolithic architecture, the other layers can ignore those details. Still, evolving
systems with large quantum size is difficult since cross-layer changes can cause coordination
challenges between teams, Ford et al. [83] conclude.

Nevertheless, Ford et al. [83] explain that layered monolithic architectures are a common
choice when starting a project. Developers understand the structure easily. However,

26

2.3. Evolutionary Architectures

because of decreasing performance, size of the code base, and other factors, many monoliths
reach the end of life and must be replaced. Architects often start this innovation by using
other architectures, yet with improved modularity – microkernel architecture [179], event-
driven architectures [143], or service-oriented architectures [74].

Ford et al. clarify that in a layered architecture, there is no clear concept of the domain
dimension. Although in most projects, the common unit of change revolves around the
domain concepts, they are not accommodated in the layered architecture. The focus is on
a technical dimension, or how the mechanics of the application work: persistence, GUI,
business rules, etc. Therefore, as visible in Fig. 2.3, domain concepts are segregated via
many technical layers. Some portion is in GUI, some lives in the business rules, and
another is handled in the persistence layer. Therefore, in highly coupled architectures, the
change is difficult because of the high coupling between the corresponding parts. In the
aforementioned siloed organisation, development teams are resembled around each layer,
therefore a change requires coordination across many teams.

Modular Monoliths – Microservices. Microservices-style architectures are usually
the common final target of migration from layered monolithic architectures. These archi-
tectures are defined as follows:

Definition 5. A microservice is an independently deployable component of bounded scope
that supports interoperability through message-based communication. Microservice archi-
tecture is a style of engineering highly automated, evolvable software systems made up of
capability-aligned microservices. [153]

They are more complex than monolithic architectures in many areas – service, data
granularity, operationalisation, coordination, transaction, and so on. However, according
to the authors, regardless the complexity of microservice architectures, from the perspective
of evolvability, things can be finally truly exploited. A migration of layered architecture to
such a microservice architecture may be an expensive architecture restructuring exercise,
Ford et al. [83] admit.

In contrast to the monolithic architecture, the microservice architecture partion across
domain lines. Ford et al. illustrate it in Fig. 2.4. Each service is defined around domain con-
cepts that come from so-called Domain-Driven Design (DDD) coined in Eric Evan’s book
of the same title [75]. These concepts include so-called bounded context, where everything
related to the domain is visible internally but opaque to other bounded context. With
that in mind, each service encapsulates the technical architecture and all other dependent
components into a bounded context. It communicates with other bounded contexts via
messages as defined in Definition 5.

Ford et al. [83] concludes that the operational goal of this architecture is to replace one
service with another without disrupting the other service. Microservice architecture is an
exemplar of an evolutionary architecture, thus it is not a surprise that it scores well from
the evolutionary standpoint.

27

2. Evolvability

Figure 2.4: Microservices architectures partion across domain lines, embedding the tech-
nical architecture [83]

2.4 Chapter Summary

In this chapter, we addressed the objective RO 1.1. We presented two views on evolvability
– NST and EA. Each of them sees the topic from a slightly different angle.

NST draws on parallels from different engineering areas. It grounds a solid theoretical
foundation and then presents proven theorems that must be followed to achieve evolvable
software product. It build from the bottom up talking about small structures, classes and
single functions in its examples.

EAs build on advances of DevOps and CI/CD. They advise architects not to dwell
on static diagrams of the current architecture. They encourage them to build software
products with evolution and openness to change in mind. The authors also remind that the
architecture is abstract until operationalised. It means that we cannot judge architecture
as a diagram, not even after its first implementation. To consider the architecture success,
the corresponding system must go through several upgrades and breakthroughs in some
premises that were used to build it in the first place. The EAs come from top-down
perspective. They are based on knowledge gained through experience and time-proven
heuristics. They also draw on the largest concepts of microservices. They introduce the
characteristics that should be present in an evolvable system and provide principles on how
to achieve them.

Even though both NST and EA come from completely different directions, they reach
a similar conclusion. As to our understanding, they are applicable simultaneously.

28

Chapter 3

Enterprise Engineering Theories

When migrating IS from one technology to another, we must handle the incompatibilities
between them. In practice, we typically handle the problem of moving to another frame-
work or library by using the same technology stack (e.g., .NET, Java, C++, JavaScript).
Therefore, we typically identify components that can be left untouched while other com-
ponents are adapted to the new technology. This problem raises the question of which
concepts can easily be reused and which cannot.

According to Giachetti’s [95] research, software ISs are just one group of systems. Next
to them, there is an interesting group of systems – enterprises. They can be seen as big
systems comprising interdependent resources of people, information, and technology. Let us
take the role of a human in such a system into account, and let us consider their uniqueness
from the communication point of view. Under these circumstances, each enterprise must
be unique and substantially complex, too. Because of our limited cognitive faculties, the
complexity of an enterprise usually exceeds our ability to deal with that directly. Instead,
we need to handle the complexity by abstracting and modelling. A range of methods
and notations like Business Process Model and Notation (BPMN) [191], FlowChart [178],
or Archimate [118] were developed for that purpose. Unfortunately, not all of them do
really abstract from the complexity of an enterprise effectively. On the other hand, Design
Engineering Methodology for Organisations (DEMO) [65] was invented to put emphasis
on an intellectual manageability of enterprises while concentrating on their essence – the
social interactions. It has a strong theoretical background represented by EE theories.

Our hypothesis is that big software information systems can be seen as enterprises.
Thereby, the aforementioned EE theories and methodologies can contribute to their un-
derstanding and might be applicable to their engineering. Beside others, the complexity
of an enterprise is given by the diversity of options people can use to interact and by the
expressive abilities of a language with which they communicate. Analogically, the com-
plexity of a software system is influenced by the offer of various languages, libraries, and
frameworks. This gives a considerable architectural freedom to all developers. They can
use their skills and express thoughts in a form of a source code. As a business process
architect can reduce the complexity of an enterprise by introducing guidelines for a human

29

3. Enterprise Engineering Theories

Figure 3.1: The EE theories [65]

interactions, a software architect can set up guidelines for a software implementation to
reduce inconsistencies in a source code. A common mission of an enterprise is to success-
fully deliver and maintain its products while reducing costs on the resources with which it
operates. Equally, a common mission of a software system is to provide features expected
by their users while reducing costs on the code typing and on its maintenance.

Our experience regarding the connection between SE and EE supports the hypothesis
that some EE theories can aid in the construction of software aimed at technology trans-
itions. This hypothesis is supported by Huysmans et al. [108], who discussed an EE research
paradigm in the context of applying relevant theories from other fields to the evolvability
of organisations. Therefore, we argue that the theories can be used to underpin our efforts
theoretically, thereby satisfying our research objective RO 1.2.

By 2020, the EE theories are organised into ideological, technological, ontological, and
philosophical. We depict them in Fig. 3.1 as they were presented by Dietz and Mulder [65].
The theories at the bottom influence the theories on the top. For example, the philosophical
theories represent the foundation of all the others. In our work, we do not concentrate on an
influence of ideological theories to SE. Indeed, e.g., political philosophy of J. Habermas laid
down the origins of EE. However, we do not dare to elaborate it in our research. Moreover,
we only focus on the theories that, after our initial research, might be applicable to SE
practices.

We start with philosophical EE theories [65] – FI theory and TAO theory. These
theories address the broad understanding of the core notions of organisations [64]. They
introduce the concepts of function and construction. We continue with technological BETA
theory [62] that discuss the relationships between function and construction thoroughly.
Finally, we discuss PSI theory [67]. It is a theory about the operation of organisations. The
theory declares that the commitments of subjects (human beings) are raised in patterns,
so-called transactions.

30

3.1. FI theory

Figure 3.2: Adapted semiotic triangle (left) and semiotic ladder (right) [60]

3.1 FI theory

The FI theory (φ-theory) (Fact and Information) is a theory about knowledge in general. It
sees the fact as a part of an elementary thought, which in addition consists of an intention.
As Dietz clarifies, ‘every concrete system (e.g., organisation) has an associated world... A
world consists of things and someone’s knowledge about these things consists of facts’ [60].
Information is an intermediary for exchanging thoughts between humans.

The FI theory is rooted in a semiotic triangle presented in Figure 3.2 (left). It was
introduced by Ogden and Richards. Dietz presents its slightly adapted version [60]. In our
minds, there are thoughts. Thoughts refer to concrete things called referents, and they are
expressed in signs.

Nevertheless, the semiotic triangle is a simplified representation of the three core con-
cepts in FI theory: thought, sign, and referent. A more sophisticated framework for
studying thought (information) was proposed by Ronald Stamper. It is called semiotic
ladder, and it is shown in Figure 3.2 (right). Its main focus is on the thought and the sign.
On the top of that ladder, there is a social world which is dealt in a PSI theory discussed
in the next section. It investigates how intentions are related to the commitments of so-
cial individuals. The semiotic triangle studies the content of thoughts and is divided into
semantics and pragmatics. Semantics inspects a meaning of a sign (or a sentence) in some
language. Pragmatics is about an intention of sharing the thought among subjects. A
form of a thought is also divided into two parts: syntactics and empirics. Syntactics deals
with a form of a sentence that must respect formalisms and rules given by a grammar.
Empirics studies how to express parts of sentences (e.g., words can be written in Roman
letters or in Morse code) in a form of codes and patterns. Finally, a physical world does
not belong to the field of semiotics. It contains traces and substances inscribing patterns,
and the codes above.

Although FI theory belongs to EE theories, we believe it can be easily seen as SE theory.

31

3. Enterprise Engineering Theories

The SE is about transforming objects (concrete objects) from a concrete world to conceptual
objects. These are represented by symbols understandable for software. Software operates
in a world of symbols and semantics. For example, a given programming language has its
world of language elements (variables, expressions, exceptions, flow constructs, etc.). Their
composition into grammatically correct sentences has a specific meaning for a computer.

The challenge of SE is to map the concepts introduced by FI theory into symbols and
concepts of a computer. The final behaviour should match. In Figure 3.3 (left), a semiotic
triangle is shown from an ontological point of view. The referents are considered as concrete
objects. They are represented in our minds as conceptual objects. Names are signs by
which humans signify the conceptual objects. Conceptual objects in a human world are
mapped into conceptual objects in a context of a computer. Names in a human world are
mapped into symbols of a computer. It is built using a range of paradigms, programming
languages, libraries and various technologies supporting software development. Needless
to clarify that the mapping is not all the time one-to-one relationship.

Figure 3.3: Mapping of a semiotic triangle [60]

3.2 TAO Theory and Affordances

In 1728, philosopher Christian Wolff brought a term teleology. Wolf [221] defined it as
a natural philosophical branch that explains the ends and purposes of things. In other
words, teleology studies objects as purposive, or goal-directed, entities. It inspects them
with regard to which purpose the subjects can use them. The objects are viewed as complex
machines in which each part is minutely adopted to others, and each contributes to the
purpose of a whole by performing a specific function. As Ayala [9] explains, the objects
made by people are teleological: chair is made for sitting, a hammer is made for hitting, a
knife is made for cutting, a thermometer is made for telling a temperature, etc. Similarly,
features of organisms are teleological, too: eyes are for seeing, a heart is for providing
organs with an oxygen, lungs are for breathing, etc. On a top of teleology principles,

32

3.3. Affordances

Dietz created TAO theory. He categorised it as an ontological theory, as its concern is an
understanding the nature of things and the way we use them.

3.3 Affordances

The TAO theory (τ -theory) is a theory about a relation between subjects with purposes,
and objects with properties. The theory addresses this relationship as an affordance.
Merriam-Webster defines affordances as ‘the qualities or properties of an object that define
its possible uses or make clear how it can or should be used’ [141]. However, a more formal
definition is offered by the TAO theory. Among other topics, this theory elucidates the
relationships between subjects with purposes and objects with properties. An affordance is
a term bridging teleological and ontological perspectives [65]. Although a teleology studies
objects as purposive entities, ontology concentrates on objects as they are, regardless of
the purpose for which the subjects (human beings) can use them. From the theory of
affordances presented by Gibson [115], subjects observe and manipulate objects to satisfy
their needs and desires. However, objects with properties cannot satisfy their needs and
desires alone. Instead, they are satisfied through affordance relationships. We illustrate
the core concept behind affordances in TAO theory in Fig. 3.4, and we attach Dietz’s [63]
quote explaining the notion of affordances below.

‘If you (subject) want to sit (purpose), you may perceive that you can sit
(affordance) on a tree-stump (object), because the height of its surface (property)
fits your purpose. So, whereas the purposes of subjects are purely subjective, and
the properties of objects are purely objective, an affordance is a subject-object
relationship. Because of the unlimited imagination of the human mind, the
number of affordances of an object is basically unlimited. Note that the being
subjective of an affordance implies the abilities of the subject: for a 2-year old
child, the above mentioned tree-stump is not sit-on-able, and for a physically
disabled person, a ladder is not climb-able.’

– Jan L.G. Dietz, Jan Hoogervorst

Let us review the idea behind the affordance. We take the definition directly from
Dietz [63] and we put it in a more mathematical manner:

Definition 6. Affordance is a subject-object relationship that can be represented by the
formula below. The symbol ‘∗’ denotes the concept ‘is in relation’.

affordance: (subject * purpose) * (object * properties)

An example following Dietz’s quote could be:

sitting: (José * want to sit) * (this tree stump * 50 cm)

33

3. Enterprise Engineering Theories

Figure 3.4: Core objects of study in TAO theory presented by Dietz [63]

Figure 3.5: Black-box model for the function decomposition of a car [65]

As Dietz and Hoogervorst [63] conclude, ‘the basic idea in the theory of affordances is
that subjects, in their pursuit of satisfying needs, do not primarily perceive objects and
their properties but the affordances that the objects offer them’.

3.4 Function

In TAO theory [65], subjects also create objects. These newly created objects are called
artefacts. They are typically designed and created with some affordances in mind to
provide corresponding functions. Dietz and Hoogervorst [65] explained that ‘a chair may
offer an affordance sit-on-able while providing a function sit-on to a subject’. According
to this reasoning, a hammer is hit-able (function hit), a knife is cut-able (function cut), a
thermometer is measure-temperature-able (function measure temperature), etc.

It is clear that a number of affordances (and functions) can be assigned to a single
artefact. This assignment depends on the purposes for which subjects wish to use objects.
Formally, all functions of a given artefact can be decomposed into a hierarchically organised
structure called a functional decomposition, which is a black-box model that captures how
a system can be used.

In SE, there are several well-established methods for performing functional analysis
to construct a black-box model, including Unified Modeling Language (UML), use-case
model [93], extreme-programming user stories [18], or COCOMO II Object Points [24].
An example of such a black-box model can be found in Fig. 3.5, which illustrates the
functional decomposition of a car. By using this example, Dietz and Hoogervorst illustrated
functional decomposition in the TAO theory [65].

34

3.5. Construction

Figure 3.6: White-box model of the construction decomposition of a car [65]

In summary, they stated that [65] ‘artefacts are created with an affordance in mind,
which is commonly called a function of the artefact’. Functions can be organised into a
structure called a functional decomposition. Dietz and Hoogervorst [65] also remarked that
‘because of the unlimited imagination of the human mind, the number of affordances for
an object is unlimited’.

3.5 Construction

There is a notion of construction discussed in the TAO theory. Dietz and Hoogervorst [65]
clarified that ‘the function of an artefact is made possible by its construction’. They
described the construction as ‘the parts an artefact is composed of, their interconnections,
and the substances the parts are made of’. Next, the notion of a system was defined in [65]
as follows.

Definition 7. Something is a system if and only if it has the following properties:

◦ Composition: A set of elements that are atomic in some category (physical, social,
etc.).

◦ Environment : A set of elements of the same category; the composition and the
environment are disjoint.

◦ Structure: A set of interaction bonds among the elements in the composition, and
between them and the elements in the environment.

The construction of an artefact can be decomposed into a hierarchically organised
structure called a constructional decomposition, which is a white-box model. Dietz [58]
clarified this concept in terms of Definition 7 as follows: ‘it is, in fact, a technique to
compose a system as a construction of parts (elements or subsystems)’. Typically, a white-
box view of a system is captured in SE using a UML component/package diagram [177].

35

3. Enterprise Engineering Theories

Dietz and Mulder [65] add that a well-known example of a construction decomposition is
the Bill of Materials (BoM) in manufacturing. They demonstrate it in Fig. 3.6 that exhibits
a part of the BoM of a car. They explain that ‘going up the tree is called composition
and going down the tree is called decomposition’ [65]. However, importantly, one needs
to recognise that a composite thing has its own identity, independent of the identities of
its components. Moreover, such a decomposition may hold only for some cars, thus not
necessarily for all cars.

3.6 BETA Theory and F/C Relationship

To conceive the relationship between a function and its construction, we follow the TAO
theory put forward in Section 3.2, and BETA theory. The TAO theory perceives rela-
tionships between subjects with purposes and objects with properties, as described above.
BETA theory focuses on the design of systems as defined by TAO theory.

The BETA theory (β-theory) stands for Binding Essence, Technology and Architec-
ture [62]. Dietz [62] explains BETA theory as follows. By Essence, it is meant a functional
and constructional essence. The constructional essence is addressing technical systems.
By Technology, it is meant all applicable means (e.g., IT or humans) that can be used to
implement a system. Finally, Architecture is seen as a collective name for functional and
constructional principles. However, the notion of Architecture is not as straightforward
as it may look like. In TAO theory [63], Dietz points out that a range of engineering
disciplines uses the term widely, while defining it just in a vague and ambiguous way. Soft-
ware engineers and scientists employed the term in a context of (re)engineering business
processes and IT systems. For building architects, the term ‘architecture’ hides a design
freedom as a creative flexibility when drawing an artefact.

Here, the notion of architecture is grounded in the context of so-called generic system
development process illustrated in Fig. 3.7. According to this process, ‘architecture is a
collective name for functional and constructional principles’ [62].

The BETA theory covers the important notions of distinguishing F/C design. A given
set of functional requirements typically has multiple constructions to satisfy the require-
ments. For example, there can be several houses with different appearances that satisfy the
same set of functional requirements. These differences can be explained by the substantial
amount of design freedom that architects can exercise. When designing a house, an archi-
tect can choose from various technologies and materials. The same principle is valid for
SE. A software architect can generally choose from a substantial number of technologies
and components (as outlined in Fig. 3.7).

All-in-all, BETA theory strongly separates the function and the construction. Moreover,
it counts on the design freedom which explains that one function can have multiple con-
structions. However, based on the subjectivity of functional decomposition and the poten-
tial for multiple different constructions for each function, Dietz [58] warned that ‘it is a
misunderstanding that one can choose the components in a functional decomposition such
that they coincide with constructional components, because this is impossible. Black-box

36

3.7. PSI Theory and Interactions

Figure 3.7: Generic system development process [62]

models and white-box models are fundamentally different types of models. There is no way
of simply mapping one to the other’. He concluded that ‘constructional designers must
bridge the mental gap between function and construction’ [58].

3.7 PSI Theory and Interactions

PSI theory (ψ-theory) deals with a communication and an interaction between subjects
(human beings). It serves to investigate the operational essence of organisations. Diets
and Mulder [65] clarify that the word ‘organisation’ indicates the construction perspective
on enterprises. They categorise organisations as social systems, meaning that its system
elements are social individuals, called actors. They add that ‘the operating principle is
that actors enter into and comply with commitments towards each other’ [65]. The actor
is defined as a subject (human being) in an actor role. The actor role, on the other hand,
determines the authority that the actor may take and the responsibility for doing so.

The generalised version of PSI theory, so-called General PSI theory, coins a term trans-
action, and it defines a transaction axiom. Therefore, the aforementioned actors interact
by performing coordination acts which are raised within patterns called (business) trans-
actions. As Dietz [61] says: ‘carrying through a transaction is a ‘game’ of entering into and
complying with commitments’. A result of these commitments are the products/services

37

3. Enterprise Engineering Theories

Figure 3.8: The basic transaction pattern [67]

Figure 3.9: Happy flow of basic transaction pattern [58]

the subjects bring about in a coordination. This is again the operating principle mentioned
above. Diets and Mulder [65] specify that these coordination acts are communicative acts
coming from the category of regulativa in Habermas’s theory of communication action [99].
They clarify that the result of performing a coordination act is so-called coordination fact.

Both coordination acts/facts are the atomic building blocks of organisations. As men-
tioned, they occur in patterns called (business) transactions. In industry, they are typically
called (business) processes. In these transactions, the interactions happen between sub-
jects who are either in an initiator role or in an executor role. In every transaction, this
interaction typically starts by a request from the initiator, follows by the promise and
declare by the executor, and it finishes by the accept of the initiator. This is known as a
basic transaction pattern in Fig. 3.8. Its happy flow is depicted in Fig. 3.9.

However, in practice, we do not say yes to all acts of the counterpart. Therefore, so-
called standard transaction pattern in Fig. 3.10 was invented. Apart from the happy flow,
decline may happen instead of promise, and reject may happen instead of accept. Then,

38

3.8. DEMO Methodology

Figure 3.10: The standard transaction pattern [67]

a new attempt may be made, or quit, resp. stop may end the transaction unsuccessfully.
This logic is automatically included in all transactions. It is one of the reasons why
the models are so compact – it would need a lot more diagram elements to express the
transaction pattern of every transaction kind using a flowchart-like notation.

Nevertheless, real situations may become even more complicated. Thus, such a happy
flow in Fig. 3.9 may be rare. Often, the actor may want to revoke (‘take back’) the act
done before. It is addressed by the complete transaction pattern, which is considered to
be the universal patter in all organisations. It extends the standard transaction pattern of
four revocations patterns. In Fig. 3.11, we show the standard pattern (middle part) and
the four revocation patterns. As we may see, in such a transaction, the actors my decline
their promise, or they may reject their acceptance. Them. a new attempt may be made,
or quit, resp. stop may end the transaction unsuccessfully.

To conclude, PSI theory is the basis to construct a methodology providing an ontological
model of an organisation. This methodology is called DEMO and we introduce it in the
next section.

3.8 DEMO Methodology

DEMO is one of the leading methodologies of EE discipline. It has been introduced by
Dietz [58] in 1980s. Its main motivation is to provide a comprehensive, consistent, concise,
and coherent conceptual model of an enterprise, so that it may cope with current and
future challenges [66].

It is a methodology for (re)designing and (re)engineering of organisations [66]. The
methodology facilitates an understanding of the communication and interaction principles
of subjects (human beings) across the processes of an enterprise. The methodology is
grounded in well-founded theories about the construction and operation of enterprises,
mainly in the system ontology of Bunge [26], teleology, and the theory of communicative
act of Habermas [99]. At the same time, its benefits for practical use have been proven, as

39

3. Enterprise Engineering Theories

Figure 3.11: The complete transaction pattern [65]

documented, e.g., by Op’t Land et al. [163] or by Décosse et al. [54].

DEMO sees an enterprise as a system of actors in a social interaction. All commitments
of actors are raised in patterns, so-called transactions described in Section 3.7. This concept
helps to build a conceptual level of an organisation. DEMO is a methodology that performs
a well-defined conceptualisation of a given domain. By identifying all operations of an
enterprise, and by describing them in transactions, we can create a proper conceptual
model. The model is completely independent to the implementation.

Let us take Op’t Land and Dietz [163] to help describing the essential concepts of
DEMO.

‘...A complete, so-called essential model of an organisation consists of four as-
pect models: Construction Model (CM), Process Model (PM), Action Model
(AM), and State Model (SM). The CM specifies the composition, the environ-
ment and the structure of the organisation. It contains the identified transac-
tion kinds, the associated actor roles as well as the information links between
actor roles and transaction banks (the conceptual containers of the process his-

40

3.9. Chapter Summary

Figure 3.12: Typical constructs of a DEMO construction model [163]

tory). The PM details each transaction kind according to the complete trans-
action pattern. In addition, it shows the structure of the identified business
processes that are trees of transactions. The AM specifies the imperatively for-
mulated business rules that serve as guidelines for the actors in dealing with
their agenda. The SM specifies the object classes, the fact types and the de-
clarative formulations of the business rules...’

– Martin Op’t Land and Jan Dietz, 2012

Construction Model shows a network of identified transaction kinds and the correspond-
ing actor roles. For example, transaction kind T01 (Fig. 3.12) delivers a business service
to actor role A00. A00 is called the initiator (consumer) and A01 the executor (producer).
The executor of a transaction is marked by a small black diamond on the actor’s role box.
The solid line between A00 and T01 is the initiator link; the solid line between A01 and
T01 is the executor link. Fig. 3.12 also shows that another actor role (A07) needs to have
access to the history of transactions T01 (production facts as well as coordination facts
(e.g., status ‘requested’, ‘promised’, ‘declared’, ‘accepted’)). This is represented by the
dashed line between A07 and T01. However, the diagram notation is not important for our
purpose, we will just utilise the underlying concepts.

While PM, AM, and SM are also crucial for DEMO, we do not consider them needed
in the scope of our review.

3.9 Chapter Summary

In this chapter, we addressed RO 1.2. We introduced EE theories and outlined their
mapping into SE practices. We analysed each theory separately and elaborated on the
key concepts of function, construction, and their relationship. Additionally, we introduced
philosophical theories that concerns the operation of an enterprise and by some research
might be applicable to SE as well.

41

Chapter 4

Technological Developments

To tackle the research objective RO 1.3, we should broadly understand the origins and
latest trends aiming at adapting software to new technology. In Section 2.3, we discussed
evolutionary architectures. We took the microservice architecture as one of its good ex-
amples. We discovered the importance of being able to replace one microservice for another
as easy as switching LEGO bricks.

In Section 1.5.1, we grounded our research scope. We decided to focus to GUI and its
technological transitions. Already decades ago, GUI development envisioned a future of
LEGO-like design. It typically builds on notions like reusability, modularity, and compon-
ents, and it often follows certain design patterns. Therefore, we dedicate this chapter to
the historical evolution, research, and industrial practices targeting GUI development.

In Section 4.1, we start with an overview of how the vision of CBS evolved. Next, in
Section 4.2, we will distinguish design and architecture patterns commonly used in GUI
development. These patterns are used by few GUI frameworks that we refer to in this
dissertation thesis. Therefore, in the Section 4.3, we introduce these frameworks briefly.
In Section 4.4, we will complete the overview of GUI development by providing a rough
intro into component libraries, and their strengths and weaknesses in terms of the vision
of CBS. Finally, we will close this chapter in Section 4.5. We will provide an introduction
to RPA and BPM as they also play a role in a topic of technology transitions.

4.1 Evolution of Component-based systems

As the roof tiles, crossbeams, or door frames are building blocks for setting up a house,
components are building blocks for assembling software. Kaisler [119] reminds that one of
the best analogies can be found in a famous Danish building kit LEGO. This legendary
LEGO kit saw the light of the day back in 1949. It consists of a set of bricks. Each
plastic brick has a standardised interface with sockets on one side and plugs on the other.
The interface allows the brick to be connected to another one. From such a set of bricks
of whatever shape, we can build rather large systems like castles, crafts, or even entire
cities. However, although these LEGO constructions look complex, they are actually quite

43

4. Technological Developments

simple since we can change them rather easily. For instance, we can unplug an entire
tower and plug it somewhere else. Unfortunately, the software components in CBSs can
have more functions than the LEGO brick. It influences their standard interface which
can vary depending on their functions. Moreover, if we replace a single LEGO brick with
another one differing only in colour, it is highly unlikely that the overall system (e.g.,
castle, aircraft) behaviour will change. In software, such a replacement might influence the
overall system due to the coupling with other components. It means that in software, we
have to identify all possibly affected parts of the system. NST discusses this in a context
of CEs. We have to pay special attention to verify whether the whole system behaviour
has not been affected by that change.

With respect to that, software solutions can exhibit certain qualities and characteristics.
They concern the design of a given application. Many of them are worth to be mentioned
because we refer to them throughout the dissertation thesis. To be complete, we list them
together with their brief description.

1. Reusability is the extent to which certain building-blocks can be shared across a
software product.

2. Flexibility concerns ‘the ability of a resource to be used for more than one end
product [69].

3. Usability specifies how easy it is to use a given piece of software or component.

4. Composability concerns the ability to meet user requirements by assembling a system
out of pre-tested components.

5. Comprehensibility is defined as a capability of being comprehend or understand. In
SE, we usually speak about a comprehensibility of a source code. We see compre-
hensibility as a measure on how easy the developer can understand a given piece of
code.

6. Interoperability is an ability of a system to work with other systems regardless their
architecture, operating system, or other specifics. In terms of CBSs, we see the
interoperability as a characteristic that enables a composition of the system out of
heterogeneous, reusable components. These components might have been developed
by different teams or they might have been intended to other platforms. However,
we expect that the components were created with a similar usage in mind.

7. DRYness is a principle in software development that stands for ‘Don’t Repeat Your-
self’. Its overall goal is to reduce a repetition of information of any kind.

Regardless the importance of all those characteristics, we primarily focus on the reusab-
ility that is most relevant for our research. Therefore, in Section 4.1.3, we footprint the
concepts of reusability, as it has turned out to be an important pattern in software devel-
opment. Additionally, in Chapter 8, we specifically inspect the trade-off between usability
and flexibility that plays a key role when designing technology agnostic GUI.

44

4.1. Evolution of Component-based systems

4.1.1 McIlroy’s Dream of Component Library

The tipping point for CBS was NATO Symposium in 1968 where McIlroy [68] presented
his dream about a component library:

‘...I would like to see components become a dignified branch of software engineer-
ing. I would like to see standard catalogues of routines, classified by precision,
robustness, time-space performance, size limits, and binding time of paramet-
ers. I would like to apply routines in the catalogue to any one of a large class
of often quite different machines, without too much pain...’

– Doughlas McIlroy, 1968

He dreamed about components organised in standard libraries. One could have pur-
chased the component tailored to his exact needs and reused it in a system without inspect-
ing its internal details. For example, McIlroy [68] anticipated a lowly sine routine to exist.
The catalogue would offer this routine in a range of modifications varying in precision
(e.g., different approximating functions), floating vs fixed computation, argument range
(e.g., 0-pi, 0-2pi, ...), robustness (ranging from no argument validation through signalling
of complete loss of significance). These combinations would lead to an inventory of, e.g.,
300 sine routines. This is actually what McIlroy called ’mass production’ in the title of his
paper. He didn’t address a multiplicity of replications of each routine, rather he meant a
multiplicity in something that the manufacturing industry commonly refers to as ‘models’
or ‘sizes’ [68].

McIlroy’s vision grounded a principle of a black box reuse of ‘routines’, respectively,
building blocks. It is a concept where the interface becomes a first-class citizen. Im-
plementation details are never revealed. The functionality can only be derived from the
exposed interface.

4.1.2 Bemer’s Call for Software Factory

In the same year, when McIlroy foresaw his dream about a component library, reusability
has been discussed in the context of ‘software factories’. Cusumano [142] mentioned that
this trademark referred to an approach highlighting the importance of a standardisation of
development methods and tools, disciplined project management, quality control, design,
and finally a structured collection of related software assets. Although McIlroy focused
on the reusability aspect of factory-like approaches and introduced a ‘component factory’,
Bemer [180] reinforced the need for standardised tools and controls. He argued that a
software factory should be a programming environment residing upon a computer. The
program construction, checkout, and usage should be done entirely within this environment
with the help of build-in compilers for machine-independent languages, various simulators,
support for test cases, documentation tools, and many more. As Bemer later mentioned
on his blog, there seems to be no component more important to the software factory than
interchangeable and reusable piece parts [21].

45

4. Technological Developments

Toshiba embedded that in practice in 1977 [142]. Its R&D group established a highly
disciplined factory grounded in four policies. One of the policies regarded ‘reuse of exist-
ing designs and code when building new systems’. As nailed by Cusumano [142], rather
than writing all software from scratch, Toshiba delivered ‘semi-customised’ programs that
combined reusable designs with newly written modules. To gain the reuse objectives,
Toshiba’s methodology required programmers to deposit a certain number of modules in a
library each month. Managers asked the developers to register their reusable modules in
a database and awarded those who registered frequently reused modules. Nevertheless, by
these investments in applying reusability in practice (e.g., bigger budgets for documenting
reusable parts, awarding personnel, etc.), Toshiba gained better productivity and quality
improvements.

4.1.3 Reusability

As mentioned earlier, the important property of CBS is reusability. This notion is known
since humans have been around. We face the problems and learn their solutions. Once we
encounter a new problem, we try to adopt the same or similar solution of already existing
and solved problems. As put by Prieto-Dı́az [182]:

‘Proven solutions, used over and over to solve the same type of problem, become
accepted, generalised and standardised.’

– Rubén Prieto-Diaz, 1993

To manifest his thoughts, he developed a faceted taxonomy of eleven types of reuse.
Keisler [119] captured it similarly to Table 4.1

The process of reuse seems to originate already in 1950 with macro-processors replace-
ment systems [206]. Back than, a first subroutine library was created on Electronic Delay
Storage Automatic Calculator (EDSAC) [227]. By 1951, the library contained a number
of subroutines organised in categories like floating point arithmetic, arithmetic operations
on complex numbers, printing, division, quadrature, double-length numbers, etc. [228].
The reuse was just about a replacement of macro definitions that were contained in the
text. The text was then ‘compiled’ to produce a final program to execute [228].

Hooper [114] explained that software reuse is a goal. The reusability is necessary to
achieve the goal. He defines reusability as ‘the extent to which a software component can
be used (with or without adaptation) in multiple problem solutions’.

The best examples of a successful reuse can be found in mathematical models. In
our research, we are mostly concerned about a reuse of artefacts. In SE, we can identify
several levels of such reuse. Historically, the first attempt at reuse was achieved on a level
of functions in Structured Programming (SP). The second attempt was introduced with
Object-Oriented Programming (OOP) where classes became reusable artefacts. Naturally,
libraries and packages emerged to collect classes as reusable code constructs. Finally, CBS

46

4.1. Evolution of Component-based systems

Type of Reuse Description
Ideas The reuse of formal concepts such as general solutions to a class of problems
Artefacts The reuse of software components (such as the Booch Ada components)
Procedures The reuse of software processes and procedures
Vertical The reuse of software within the same domain and even within the same ap-

plication suite
Horizontal The reuse of generic parts across multiple applications
Planned The reuse of guidelines, development and testing processes, and metrics across

multiple projects
Ad hoc An informal practice in which components are selected from general libraries

in an opportunistic fashion
Compositional The reuse of existing components as the building blocks of new applications
Generative The reuse of specifications and requirements to develop application or code

generators
Black-box The reuse of software components without any modification; usually linked

together with glue code
White-box The reuse of components by modification and adaptation

Table 4.1: Prieto-Diaz’s taxonomy of reuse. Described by Keisler [119]

development was proposed. It perceived a component as a modular layer on top of objects
in object-oriented languages [69]. Szyperski [34] defined a component as follows:

Definition 8. A component is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component can be deployed independ-
ently and is subject to composition by third parties’.

However, after decades of various approaches to reuse artefacts in software, we still
seem to be far from the original McIlroy’s dream. The modular architecture must bear
other challenges, e.g., high coupling and low cohesion. As again Prieto-Dı́az [182] explains
in his status report: ‘the problem is not a lack of reuse, but a lack of widespread, systematic
reuse . . . the programmers are used to reuse, but they do all this informally’.

S
ec

ti
on

T
ak

ea
w

ay

The notion of CBS dates back to the 70’s when McIlroy [68] envisioned that com-
ponents should become a dignified branch of software engineering. Shortly after that,
Cusumano [142] triggered discussions about reusability as an important approach to stand-
ardise software development methods and tools. The types of reuse were further organised
by Keisler [119] into a taxonomy. Nowadays, reusability is considered one of the character-
istics of software solutions next to flexibility, usability, etc. When referring to a reusable
component, we stick on its definition by Szyperski [34].

47

4. Technological Developments

4.2 GUI Architectural and Design Patterns

GUIs became an indispensable part of many software applications. Nowadays, they fill
the screens of our mobile phones, tablets, desktops, smart watches, e-book readers, and
other devices. Lately, they even replaced areas that were traditionally managed manually.
For example, Tesla’s cars do not have any physical dials behind the steering wheel (or
anywhere else), thereby the LCD dashboard is largely used to drive the car.

As such, the requirements on User Interface/User Experience (UI/UX) have changed
over the years. Multiple different approaches and architectures were introduced to tackle
problems encountered on this journey. With respect to the RO 1.3, in this section we will
expand our knowledge base with widely known architectures and design patterns that were
used for GUI development throughout the history. We will compare them and summarise
their pros and cons. This may help us to classify GUI frameworks – the set of classes and
interfaces defining the elements and behaviour of a window-based GUI subsystem.

4.2.1 Architectural Versus Design Patterns

GUI frameworks typically use certain design or architectural patterns. There is a wide-
spread confusion between these patterns. To avoid it, let us describe their difference. The
design patterns are known from the book Design Patterns, elements of reusable Object-
Oriented software by the Gang of Four (GoF) [89]. The authors defined them as:

‘Design patterns are descriptions of communicating objects and classes that
are customised to solve a general design problem in a particular context.’

– Erich Gamma, Richard Help, Ralph Johnson, and John Vlissides, 1995

In other words, the design pattern is an abstract way of solving recurring problems.
They can be used on different levels of abstraction in source code classes as well as in big
SW solutions.

On the other hand, the architectural patterns have a broader scope. They focus on
describing an organisation at its highest abstraction level. Although they also serve solving
problems, these problems typically reside in keeping a mental picture of a big system or
its subsystem. Architectural patterns often, if not always, use many instances of design
patterns. This is visible from the GoF book [89]. Here, for instance, Model View Controller
(MVC) architectural pattern is used as an example of many different design patterns that
collaborate [89, p. 4]. The opposite is not true, design patterns do not use architectural
patterns in their description.

The literature recognises many design patterns. The patterns relevant to our research
were deeply inspected together with Mareš [A.13]. Next, we provide its brief excerpt.

48

4.2. GUI Architectural and Design Patterns

Figure 4.1: Observer pattern [89, p. 293]

4.2.2 Design Patterns

Observer Pattern. The Observer Pattern (OP) [89, p. 293], also known as Publish-
Subscribe Pattern, comes from the need of establishing a relationship between a subject
and its observers.

GUI frameworks often separate the presentations aspects of the GUI from the under-
lying application data [226, 127, 133]. Data structures defining these application data and
presentations can work together, or they may be reused independently. For instance, an
application depicting information in the same application data object may present them
in the form of a spreadsheet or a pie chart. The spreadsheet is not aware of the pie chart
and vice versa. Therefore, each can be replaced without letting the other know. How-
ever, when the user updates the information in a chart, the spreadsheet reflects the change
immediately.

The observer pattern describes these types of relationships. It is illustrated in Fig. 4.1.
Observers are notified whenever the subject undergoes a change in a state. The observers
then retrieve the subject’s state and carry on their business. The subject does not need
to know who the observers are nor how many there are. Therefore, it can be useful to
announce changes in a loosely coupled way without assumptions about the observers.

Composite Pattern. The Composite pattern [89, p. 163] is a partitioning design pat-
tern. It comes from the need of representing part-whole hierarchies of objects. Such a
representation is typical for graphical applications, e.g., drawing editors, that let us or-
chestrate complex diagrams from simple components. These components can be composed
to a bigger component, which in turn can be composed to an even bigger component. The
implementation of this kind of application typically includes graphical primitives such as
curves, lines, labels, and similar. Therefore, it is an abstraction to treat individual objects
and compositions of objects uniformly. We depict it in Fig. 4.2.

The key to this pattern is the abstraction class that represents both primitives and
their containers allowed to use their common functionality. This helps us to manipulate
the hierarchies of objects without special treatment to view them all as Components.

49

4. Technological Developments

Figure 4.2: Composite pattern [89, p. 163]

Figure 4.3: Chain of Responsibility pattern [89, p. 223]

Chain of Responsibility Pattern. The Chain of Responsibility (CoR) pattern [89,
p. 223] describes a way to avoid coupling between sender of a request and its receiver.
According to Gamma et al. [90], the pattern can be illustrated in a problem of context-
sensitive help facility for GUI. The users can obtain help on any part of the GUI by
clicking on it. The provided help depends on the context and on the part of the GUI that
is selected. Gamma et al. [90] add that ‘for example, a button widget in a dialog box might
have different help information than a similar button in the main window. If no specific
help information exists for that part of the interface, then the help system should display
a more general help message about the immediate context–the dialog box as a whole, for
example’.

According to Vinoski [219], ‘in object-oriented terms, the CoR pattern aims to decouple
a caller from its target object, and it accomplishes this by interposing a chain of objects
between them. This arrangement lets each object in the chain act on a request as it flows
from the caller to the target’.

The idea builds on handlers privileged to react to a request. These handlers also have
a reference to its successor. Thus, if they see the fit, they can forward the request. The

50

4.2. GUI Architectural and Design Patterns

Figure 4.4: Presentation patterns

specific handlers are derived from a common class, see Fig. 4.3. This pattern might be
useful in similar GUI situations as described by Gamma et al. [90]. Thus, when we register
a user’s click action while we let different entities react to this input sequentially. This is
also known as event routing.

4.2.3 Architectural Patterns

As explained in Section 4.2.1, architectural patterns are often based on the aforementioned
design patterns. With Mareš [A.13], we concluded that some of the architectural patterns
are enormously difficult to get the grasp of what they are supposed to present in their pure
form. There are dozens of sources describing MVC pattern, yet they often do not present
the same principles and ideas. Some of them are even hard to be considered an adaptation
of MVC at all. Martin Fowler [84] is often used as a reference.

Before diving into individual patterns, with Mareš [A.13], we present a higher-level
overview in Fig. 4.4. The approaches are organised loosely by chronological order MVC
being the oldest and Model View Intent (MVI) the latest enhancement. Their linkage is
a take on showing their line of evolution as it is not exactly easy to always pinpoint the
origins.

Forms and Controls. In 90s, the development of server-client application in Visual
Basic and Delphi was trending. This encouraged an architecture pattern called Forms and

51

4. Technological Developments

Controls (FaC). Although by that time, it was not labelled with this term, we stick on
what Fowler [84] came up with as FaC later.

This pattern builds on basic building blocks – custom-made forms out of generic re-
usable controls. These controls represent the elements of the GUI – text-box, button,
label, etc. In practice, a wast majority of GUI frameworks offer corresponding ready-made
controls that could populate a specific form. Custom controls may be implemented when
necessary, yet they remain generic and reusable for different forms and applications.

The form fulfills two main roles:

◦ Screen layout – the arrangement of the controls and the hierarchical structuring
between them;

◦ Form logic – behaviour that is difficult to get out of control alone, usually some form
of state or shared metadata.

Practically, the corresponding GUI frameworks often come with a graphical editor.
This allows developers to drag & drop controls to a convenient place in a form. Such an
approach delivers a well-known WYSIWYG1 experience. However, it also has drawbacks,
e.g., when dealing with increasing demand on responsive design.

This pattern typically manipulates with different types of data:

◦ Record state data – the data residing directly in the SQL database that is possibly
shared with multiple users and applications simultaneously;

◦ Session state data – a copy of the record state inside in-memory record set. It is
exclusively used by the running application and must be published by ‘save and
commit’ to get the corresponding record state updated;

◦ Screen state data – the copy of the data in GUI elements, this data is displayed on
the screen.

Synchronisation of the session state and screen state data is a crucial behaviour of
every GUI. The Data Binding is the easiest way to do that. The idea is that any change
to the screen data is propagated to the underlying record set and vice versa. Thus, a user
modifying the text in a text-box updates the corresponding cell in the Record Set. We face
two issues with data binding – cyclic updates, and record set-specific logic. Cyclic updates
happen when a change to the control changes the record set, which updates the control,
which updates the record set... The other issue relates to the parametrisation. Data
binding typically requires a type of parametrisation that often will not fit the required
logic. The variance must be calculated by the GUI itself, e.g., in so-called event handler.
In such cases, the logic is placed directly in the form which is application specific, thus it
may bring further issues, e.g., with maintenance, or with migrating the logic to a new form
or application.

1What you see is what you get. Approach used not only for designing user interfaces. The author can
see the result of his work directly. For example MS Office Word uses this approach with documents.

52

4.2. GUI Architectural and Design Patterns

Figure 4.5: MVC pattern

FaC pattern is the simplest to grasp and is very straightforward. The developer orches-
trates application-specific forms from generic controls. The forms define the layout and
structure of the GUI, and they respond to specific events triggered by the user. Simple
data edits are usually handled by data binding. Complex logic, on the other hand, is
implemented using form or application-specific event handlers.

Model View Controller. One of the very first attempts to invent any sort of GUI ar-
chitecture was made in Smalltalk-80 [201]. Here lies the origins of MVC pattern. Although
it dates to the era of monochromatic graphical systems built in the 70s, its concepts are
still well used today.

It is grounded in the idea of Separated Presentation. In SW development, we may recog-
nise two types of objects – domain objects and presentation objects. Domain objects model
our real world, these are also recognised as business logic objects. Presentation objects are
solely used as GUI elements on the screen, e.g., text-boxes, drop-down menus, charts, etc.
The notion of separated presentation isolates these domain objects from the presentation
objects. This already came in handy in Unix culture allowing for one underlying program
to have GUI and command-line interface.

In MVC, the domain objects are referred to as Model. Model is completely independent
from GUI. The MVC is also assuming actual domain model objects not a record set. This
simply reflects the fact that unlike Forms and Controls, that were intended to manipulate
records in a database, MVC was initially intended for Samlltalk purely object oriented
environment.

The presentation part of MVC constitutes of two elements – View and Controller.
The Controller responds to the user’s input and figures out what to do. The View’s job
is to present the Model to the user. View and Controller have a direct reference to the
Model. They also have references to each other, but on purpose, this connection is used
occasionally. Typically, there are many Controller-View pairs. Each control on the screen
has its pair, and the screen itself has a pair too. Therefore, the very first step in responding
to the user’s input is to decide what controller to execute.

Controller-View pairs may also be reused. They are plugged into an application specific
behaviour. There would also be a higher level View representing the whole screen and
describing the layout of the lower level controls, similarly to form in Forms and Controls

53

4. Technological Developments

pattern. Unlike the form, however, there are no events raised by controls and no event
handlers in the higher level View. All information is conveyed through the Model.

MVC works slightly else comparing to FaC. There is no interaction between View or
Controller and another View or Controller. There are no events and no handling of the
visual logic. When the Controller changes the value in the Model, it does not update
its View directly. These are what M. Fowler calls Flow Synchronisation and Observer
Synchronisation.

◦ Flow Synchronisation – the element that is changing directly updates all those that
need to be updated. This is a heavy handed approach for a rich GUIs. For in-
stance, when omitting data binding, all interactions of Session state and Screen state
data (described in FaC) must be done manually by the developer. Typically, this
means opening a screen, hitting the save button and other interesting points in the
application flow.

◦ Observer Synchronisation – the essence of this synchronisation is that each screen,
with its associated screen state, acts as an Observer on a common area of session
data. The Controllers are completely oblivious to any other widget needs. This
is very useful especially in GUIs with multiple screens showing the same data, like
graphs and tables. Imagine dealing with forms synchronisation that would need to
check what other forms are open to propagate changes. So in this case the OP is like
a blessing, when it is not a blessing at all is when you want to read the code and find
out what is going on. The inherent obfuscation of the OP functionality means that
what is really going on can be only seen during a debugging time.

MVC can be credited for the idea of Separated Presentation. This means that we have
isolated presentation layer, Controller-View pair, and the domain Model. Each Control has
its own pair – the Controller handles the user’s input, the View presents information. The
communication is mainly done through the Model. Finally, we have the great contribution
of OP to the observer synchronisation that indirectly updates controls.

Model View Presenter. The term Model View Presenter (MVP) was coined by Po-
tel [148] when it appeared in his paper dated back to 90s. It is a pattern lifting the best of
what we already know from FaC and MVC. Reusable widgets are directly taken from FaC.
These are combined with the Separated Presentation and isolated domain model presented
in MVC. Additionally, it adds a requirement on GUI testing.

Potel [148] describes View as a structure of widgets similar to controls on a form.
However, he removes the pairing. We do not use Controllers in the sense we had in
MVC. The user’s input is handled by a Presenter that decides what to do. Although
the View has an initial entry point for actions of users, it just delegates the control to
Presenter. Potel [148] outlines the scenario when Presenter interacts with Model using
commands and selections. This idea is useful as it enhances testability and enables undo
& redo functionality. Although the Model is updated by the Presenter, the View is ideally

54

4.2. GUI Architectural and Design Patterns

Figure 4.6: Presentation Model

updated using the OP that we know from MVC. In complex actions, the Presenter gets
involved and sets the View directly. This is what become known as Supervising Controller.

Potel kept the term Presenter clean in his paper. Unfortunately, the later adaptations
did not. Some MVP literature confuses the meaning of Controller with the meaning of
Presenter. There is a solid case for calling it Controller as it handles user input. Unfor-
tunately, some terms like Supervising Controller or even some frameworks like ASP.NET
MVC do not strictly follow the original terminology.

Presentation Model. As we have seen with MVC and MVP, rich GUIs brings challenges
with presentation layer. The first issue is the placement of the View logic. The second one
concerns the placement of the View’s state caused by the user interaction.

Unfortunately, most MVC or MVP frameworks encourage developers to put the present-
ation logic directly into the View. The PResentation Model (PRM), presented by M.
Fowler [85], strives to remedy this. The PRM is essentially a self-contained class represent-
ing all what any GUI framework needs to know or use in order to render controls. Multiple
views can utilise a single PRM, but each View should refer to a single one. Composition
is possible and a PRM may contain several child PRMs, but each control will again refer
to a specific one.

To do this PRM has data fields for all information necessary for the view. This concerns
the content of the controls, and it also includes information about their visual – if they are
visible, enabled or disabled, highlighted, etc. It does require PRM having these fields for
every control. Unused properties can be omitted.

PRM comes with a drawback linked to a tight synchronisation. Suddenly, synchronisa-
tion does not only happen on the level of screens, it also happens on a lower level – field
or key level synchronisation. This opens the possibility for fine-grained synchronisation.
Fowler [85] discourages from it as it brings a lot of difficulties, especially when things do not
work as intended. However, it depends on the nature of a specific project. Coarse-grained
synchronisation in the form of syncing the whole state of View with Presentation Model is
definitely simpler.

There is also a question of where to put the synchronisation code. PRM enables us
to test the synchronisation, which should already be a fairly simple code (coarse-grained
sync for sure). On the other hand we can choose the View, this is a natural place for it
as the PRM can be oblivious to the View completely. If we ever feel the need to write
tests for anything in the View objects, it might signal that we need to rethink how this
synchronisation works and what code lives where.

55

4. Technological Developments

PRM steps into providing a place for visual logic and View state. Widgets do not
observe domain Model instead they observe PRM. This fits well to the architecture of
rich and complex GUIs. On the other hand, it calls for tighter synchronisation with View
making heavy use of OP that could be alleviated by frameworks.

Model View ViewModel. Model View ViewModel (MVVM) architecture pattern was
first presented by Gossman [146] in 2005, when he shared this idea in Microsoft’s blog.
Essentially, it is grounded in the PRM. This pattern was primarily developed for Windows
Presentation Foundation (WPF) and then used by Silverlight and Universal Windows
Platform (UWP).

Its idea is identical to Fowler’s PRM [85]. However, it brings more to the table. The
View described declaratively using a modified EXtensible Markup Language (XML), so-
called EXtensible Application Markup Language (XAML). XAML determines the visual
appearance. It is expected that XAML is maintained by a designer, not necessarily a
developer.

MVVM builds on a strong Data Binding between View and ViewModel. This is handled
by the framework and the problem of tight synchronisation is solved under the hood for
anyone using this technology. MVVM promotes using ViewModel commands that are
triggered by GUI events. Again, this is beneficial for reusability and testing.

Figure 4.7: MVVM Pattern

MVVM grew from .NET ecosystem and thereby is linked to Microsoft’s implement-
ation, the idea is also referred to as Model View Binder. Correspondingly, Java has its
own implementation, ZK framework [235] that does not uses Microsoft’s XAML, but ZK
User Interface Markup Language (ZUML). Similar, fairly popular implementation is in
JavaScript – KnockoutJS. MVVM does not bring anything completely new in terms of
architecture it is more of an extended implementation of PRM.

Model View Intent. MVI is the latest evolution on the MVVM pattern. It was in-
troduced by Medeiros [46] in his JavaScript framework Cycle.js. Further, it was readily
adopted by Android developers and Kotlin environment where it tackles few cumbersome
problems in mobile GUIs.

It mainly focuses on the mutability of ViewModel which gets often misused by de-
velopers. Additionally, it addresses the coupling between View and ViewModel in the
form of tight synchronisation, and it concerns asynchronous events that are more present
in web and mobile applications rather than on desktop. To answer this problems MVI is
building on the concept of Reactive programming from functional programming. The term
is spread to reactive applications and reactive frameworks. Adding ideas of states together

56

4.2. GUI Architectural and Design Patterns

with related immutability and unidirectional flow. The core principle can be described in
terms of a mathematical formula as follows:

view(model(intent()))

User acts on the GUI and exhibits intents. These intents are processed by a Model.
They become a basis for the View to render the results. The Fig. 4.8 illustrates the
essentials of the MVI pattern.

Figure 4.8: MVI Pattern

The View listens to the user actions. These actions are further handed over to the
Model in the form of intents. The Model is created for the purpose of GUI. Thus, it plays
the same role as ViewModel or Presenter in MVVM or PRM patterns. In this pattern,
the Model consumes intents. As an intermediate product it creates a result caused by user
intent. Finally, it goes through state reduction. In this step, it combines the current State
of the GUI with results, and it produces a new instance of State. It is passed to View and
represents a complete description for rendering. The loop is closed when View renders this
State and awaits the next user’s action. The flow of information goes only this way. There
are also no side effects, the only place where information is held and exchanged is during
processing in business layer.

This is a pretty complex setup, but it allows for multiple asynchronous actions ulti-
mately affecting the View without the aforementioned problems. This is achieved thanks
to the immutable State, that is created in the state reduction step. The problem of tight
coupling of View and Model is minimised as the contracts are very simple. The View is
only capable of rendering State and producing Intents. The Model is ultimately capable

57

4. Technological Developments

of consuming Intents and producing a new State. The connection here is realised just by
OP.

Overall, this is the most complex pattern for a presentation layer. However, it addresses
problems in web and mobile GUIs that are hard to solve in other architectural patterns.
It makes it a powerful pattern, if we consider that it works smoothly with asynchronous
actions and asynchronous streams where data trickle by pieces. Ultimately, developer has
to decide if the trade-off for this complexity is worth it.

S
ec

ti
o
n

T
a
ke

aw
ay Software developers distinguish between design and architecture patterns. Design patterns

are abstract ways of solving recurring problems. Architecture patterns focus on describing
the highest level of abstraction and are often orchestrated from different design patterns.
Although they are often discussed and implemented by GUI frameworks, there is no
consensus in their definition, nor their implementation. However, they are continuously
developed from 90s to reflect the needs of current HW and SW requirements.

4.3 GUI Frameworks

In the previous section, we discovered design and architecture patterns that are common
to many GUI technologies. It is not realistic to elaborate on all available GUI frameworks
and libraries in different technology stacks. Therefore, with DSRM, we limited our research
environment to .NET and JavaScript. In this section, we will introduce a few that have
something in common with our research goal and objectives, or they were determined by
the technology stack of our industrial case study.

4.3.1 ASP.NET MVC

The framework ASP.NET MVC is Microsoft’s edge technology. It intends to develop web
pages following a general MVC pattern introduced in Section 4.2.3. This pattern is based
on separation of concerns principle mentioned in Section 2.2.2. In terms of TAO theory,
ASP.NET MVC separates a function from its construction. Let us review it now.

In our research, we are concerned with the creation of convenient GUI that corresponds
to a functional decomposition of an application and that may continuously move from one
technology to another. In Section 12.3.1, we will show that the functional decomposition
can be obtained from an information about the purpose for which the component can be
used. ASP.NET MVC tends to describe this purpose by so-called annotations.

The annotation is a set of attributes extending the GUI components with an inform-
ation about what they can be used for. In ASP.NET MVC, it is a domain model that is
annotated, not the GUI itself. Therefore, the GUI elements understand their purpose out
of the related annotated model.

58

4.3. GUI Frameworks

For instance, we can annotate a string property2 with [Email] attribute to state that
value of this property should be a valid email address. Consequently, the text field inten-
ded to edit the email automatically restricts the user from entering grammatically invalid
email addresses. The attribute [StringLength] defines a maximal allowed length of a string
property. The attribute [IsRequired] forces the user to enter a value of a mandatory prop-
erty. Property annotated with a [Regexp] represents a custom validation of strings against
a defined regular expression. Moreover, we can use an attribute [UIHint] to advice the
GUI to generate required GUI element. For instance, if a property represents a gender, we
can ask for a drop-down menu with two options, male and female.

To summarize, ASP.NET MVC is a flexible framework. It can derive some GUI charac-
teristics from a domain model and adapt the GUI components accordingly. It automatically
finds a convenient editor if a developer encrypts the purpose into the annotation, e.g., an
[Email] attribute. However, out of the box, it can not cope with domain-specific attrib-
utes and GUI elements. The ASP.NET MVC attributes only cover general annotations.
Moreover, it does not consider a notion of the affordance (see Section 3.2) when building
the GUI. Thus, it hardly adapts GUI to a user that is, e.g., physically challenged. In the
scope of our research, we must cover both a broader domain of possible annotations, and
a notion of affordance to tailor the GUI with respect to the purpose of the user.

Nevertheless, ASP.NET MVC shows that not just a purpose of required GUI compon-
ents matters. The domain model is equally important to find a suitable construction of
GUI.

4.3.2 Windows Forms (WinForms)

Let us now discuss the GUI framework that is often referred to in this dissertation thesis.

Windows Forms (WinForms) [144] is the GUI framework shipped by Microsoft together
with the first version of .NET in 2002. It was meant to support the GUI development of
.NET applications. At that point of time, it was a completely new concept. It builds
on a previous Microsoft Foundation Class Library written in C++. Back then, Windows
XP operating system was trending on the market. Nearly all applications were desktop-
oriented as the internet was booming.

Even though it is an almost two-decades old framework, it is by no means not a dead
platform. WinForms is still supported today, like high DPI3 scaling coming in with .NET
Framework 4.8. It is also supported by the latest version of .NET Core 5.0. These decisions
might be indicators that the framework is present in many business critical applications
that are hard to replace. Microsoft does not want to let its corporate customers down.

The architecture of WinForms. Let us take a closer look at the architecture of Win-
Forms. As suggested by its name, it is based on FaC architectural pattern put forward in

2Property is a language construct in C#. It is a class member providing a flexible mechanism to access
private class fields.

3Dots per inch (DPI) is a measure of spatial printing, video or image scanner dot density.

59

4. Technological Developments

Section 4.2.3. Certainly, the documentation presents it as visual surface on which we dis-
play information to the user. As already explained in Section 4.2.3, WinForms works with
so-called controls. They represent the elements of the GUI – text-boxes, buttons, labels,
etc. They display data to users and they trigger events when interacting with them. Many
controls are available out of the box. However, it is possible to bring new custom controls
as well. They help WinForms to be extended with new shareable GUI elements.

Another concept introduced by WinForms is called component. Technically speaking,
it is any class that either represents the business logic or it performs a background work.
It does not have a GUI representation. A special type of a component is the mentioned
control. It comes with visual representation and can be rendered on the screen. Microsoft
provides several traditional controls with the framework itself.

Developers have two alternatives to adjust them. They either define a custom control
with brand new visuals and possibly enhanced capabilities over the provided controls, or
they create a composite control called user control. User control is built out of already
made controls and the visuals cannot be redefined here. However, it is possible is to
introduce more complex behavior. For example the add/remove control is commonly used
by many applications even today. We depict it in Fig. 4.9. Finally, the form in WinForms
is a representation of any window displayed in the application. Its class can be used to
create standard, tool, borderless, and floating windows.

Figure 4.9: Example of Add/Remove User Control in WinForms

Certainly, since WinForms is quite matured technology, there are many implementation
details and approaches to achieve specific goals. This is reflected in the current state of
its documentation, different fragments of the original approaches are peaking between new
layers and functionality that was added in later versions of .NET. It is impossible to uncover
how the framework was originally released, but the origins have big ramifications for the
current state. It is not our intention to go into detail. However, in Chapter 11, we will
elaborate on Section 4.3.2 with respect to its evolvability in terms of NST.

60

4.3. GUI Frameworks

4.3.3 Windows Presentation Foundation (WPF)

The WPF [145] is another GUI framework frequently referred to in this dissertation thesis.
It was released in 2006 with .NET Framework version 3.0. It was formerly known as
Avalon. Although it was introduced as a new take on GUI development, it is not a direct
replacement of WinForms. It allows similar concepts and code practices. However, initially,
it was a mean providing support for rich content such as animations, media, documents,
etc. Nowadays, it is an extensive GUI framework for building desktop applications with
rich contents, controls, dynamic layouts, data binding, and more. Through the years, WPF
evolved to a very versatile framework supporting modern GUI approaches. Currently, the
WPF project is hosted on GitHub pages [231] and turned to open source under the MIT
license4.

The architecture of WPF. It is based on the MVVM architectural pattern discussed
in Section 4.2.3. We explained that it builds on the idea of a declarative approach to define
GUI. It goes even as far as having a graphical designer doing this job. Microsoft supports
this approach with standalone product called Blend, where one can fully engage with the
design part of GUI. It uses XAML to describe the GUI. XAML is a markup language
based on XML. Therefore, it describes a tree-like structure. For instance, the root element
represents a window that encapsulates layout elements such as grid views, stack panels,
etc., each of which hosts other elements like buttons, text-boxes, labels, etc. Although
Microsoft provides an option to use XAML, it is not enforced by WPF. It does not depend
on that. The GUI elements can be also defined as procedures. However, as it also resonates
throughout the WPF community, XAML looks much cleaner than that.

Similarly to WinForms, there is a concept of controls such as drop-down menu, text-
box, etc. However, their visual is rendered depending on its template, what is usually a
XAML file. This template can be overridden to change the visuals of any given control. It
also supports the concept of user controls that we know from WinForms.

The WPF ecosystem is large. It is out of scope of this dissertation thesis to describe it
in detail. However, since our focus is on evolvability we will touch certain WPF concepts
in Chapter 11 where we review it in terms of NST.

S
ec

ti
on

T
ak

ea
w

ay

.NET GUI frameworks are often based on architecture patterns. Although some were
invented more than two decades ago, they are still actively used and developed. Some
manifest concepts that may support technology transitions, e.g., annotations, data bind-
ing, etc.

4The MIT License (X11 License) is a permissive free software license originating at the Massachusetts
Institute of Technology (MIT) in the late 1980s. [1]

61

4. Technological Developments

4.4 GUI Component Libraries

To gain an understanding of the current trends in sharing reusable components, and the
fulfilment of McIlroy’s dream put forward in Section 4.1.1, we reviewed trending component
repositories. Few will be briefly introduced in the next sections.

4.4.1 NPM – NodeJS

Node Package Manager (NPM) [186] is a package manager for JavaScript. It helps to share
and reuse controls created by different developers. NPM offers a browsing functionality.
One can explore the portfolio of thousands of controls. By entering a filter condition, the
relevant controls are found.

For example, the keyword ‘filter’ results in 2323 results. A more restrictive ‘filter table’
ends up in 79 options. From our perspective, the entered keyword is a sort of purpose in
TAO theory put forward in Section 3.2. It indicates for what the component may be used,
e.g., to filter data. This keyword helps us to find a construction that TAO theory talks
about. Such a construction is capable of satisfying the purpose one searches for. Let us
pick a random result, e.g., tablefilter component labelled with ‘JavaScript library making
HyperText Markup Language (HTML) tables filterable and a bit more’ [186]. From this
rough description, we can easily find that it is a library extending any HTML table with a
‘filter by column’ feature to easily manipulate with long tables. To use this component, one
must understand the documented Application Programming Interface (API) and consider
its technical dependency on other JavaScript packages. In this particular case, there is
none.

However, we are mostly concerned with the purpose for which the component can be
used. Besides the verbose documentation, it is represented by the following keywords:
‘pagination’, ‘sort’, ‘datagrid’, ‘grid’, ‘filterable’, ‘javascript’, ‘table’, ‘filter’. The question
is whether we can rely on them. Can we smoothly replace the component with another
one exhibiting similar keywords? For example, another component called ‘listfilter’ declares
nearly the same keywords. It does not have a technical dependency either. Is it possible
to replace ‘tablefilter’ with ‘listfilter’ while keeping the functionality?

In NPM, these keywords are assigned manually. The documentation of NPM advise:
‘Put keywords in it. It is an array of strings. This helps people discover your package as it
is listed in NPM search’ [186] . Therefore, even if strict rules for using the keywords would
have existed, they might be violated. This answers the question whether we can rely on
the keywords when replacing a component with another one – there is no guarantee that
the components are functionally equivalent although they list the same set of keywords.

To summarise, NPM is an interesting platform to establish a component library along
McIlroy’s dream. However, the purpose of the components is vague – captured only by
keywords. It helps to browse thousands of components, yet it does not guarantee their
functionality.

62

4.4. GUI Component Libraries

4.4.2 Syncfusion

The next example of GUI component library is Syncfusion [160]. It is a company delivering
a range of web, mobile, and desktop controls for enterprise technologies. There are more
vendors with the similar business strategy, e.g., DevExpress, or Telerik. All of them sell a
portfolio of reusable components. Our goal is not to benchmark them against each other.
We decided to pick one to analyse the drawbacks and benefits of such a technology.

For an overview, Syncfusion was founded already in 2001, and they claim to gain already
23000 customers by 2021. Syncfusion has grown up into a company, we could easily call
a ‘GUI components factory’. They generate controls for a number of technologies. Beside
components for Microsoft’s edge technologies like ASP.NET Core, ASP.NET MVC (see
Section 4.3.1), Xamarin, or UWP5, they support a market with components for JavaScript,
Angular, AngularJS, and PHP, or even ageing Silverlight and Windows Phone parts.

Control panel is a catalogue of controls. All in all, it seems that Syncfusion really
follows the vision of McIlroy. They create a large portfolio of controls. The purchaser
just picks a package that suits demanded technology, e.g., WPF, WinForms JavaScript,
AngularJS, or PHP. The best fitting control can be browsed in the catalogue. One can
easily filter the components by their name. Moreover, it is possible to play around with a
live prototype showing the integration of a control in a broader context of use. Fig. 4.10
depicts the control panel. In this particular case, the developer filtered the Line Chart
control. Its sample can be explored, or its code can be viewed.

Undoubtedly, Syncfusion (similarly to other vendors) provides a vast portfolio of con-
trols. They seem to be aligned with the McIlroy’s dream rather well. However, their
controls suffer from the same problem as the aforementioned NPM. Although one can
scrutinise the construction of each control deeply, its functional side is vague. The com-
ponents do not exhibit much information about the purpose the component can be used
for. Therefore, the elaborated changes of their controls and their replacement with func-
tionally similar controls is still an issue.

S
ec

ti
on

T
ak

ea
w

ay GUI component libraries are quite often used by developers. However, it does not seem
to be a common practice to focus on describing the purpose for which the components
can be used. Therefore, although the components can typically be searched by a keyword
and by the desired technology, this information is typically insufficient to understand the
higher purpose for what the component can be used, or to possibly automatically replace
one component by another matching the keyword.

5Universal Windows Platform

63

4. Technological Developments

Figure 4.10: Control panel of Syncfusion catalogue

4.5 Robotic/Business Process Automation

In recent years, there has been a growing trend of digitalisation where digital technology is
often used to change the business model to provide new value opportunities. In Chapter 1,
we explained that many businesses are urged towards this trend to improve traditional
working practices. According to KPMG consulting company, in the next 10 to 20 years,
47% of the jobs will be automated or replaced by robot labour [126].

RPA in a combination with well-known BPM come in handy under this situation. RPA
is defined by Gartner [91] as follows:

Definition 9. RPA is a productivity tool that allows a user to configure one or more
scripts known as ‘robots’ or ‘bots’, to activate specific keystrokes in an automated fashion.
The result is that the bots can be used to mimic or emulate selected tasks within an overall
business or IT process. These may include manipulating data, passing data to and from
different applications, triggering responses, or executing transactions by combining user
interface interaction and descriptor technologies. [91].

However, not just RPA helps with digitalisation, it seems to also support technology
transitions. Let us add RPA to our knowledge base and thereby respond to RO 2.3.

64

4.5. Robotic/Business Process Automation

4.5.1 RPA and Technology Innovation

RPA helps organisations to quickly accelerate their digital transformation initiatives and
cut the cost of repetitive work. This allows them to reinvest the resources in more strategic
and analytical activities. These activities can in turn help their business to grow.

Since RPAs often automate the routine work of employees working in GUI of legacy
SW, our assumption is that they may also contribute to transform legacy SW products
into those aimed at better technology transition. Thus, RPAs should not only be seen as a
tool to automate tedious work and as a means to digital transformation initiatives. They
may serve as entry points to discover business processes.

According to OMG [158], RPAs are often independent of any particular implementation
environment. This may help the organisation to distinguish between its operations and its
technology. When recalling BETA theory explained in Section 3.6, RPAs may help them
to distinguish between F/C of organisations. It is argued that properly captured business
processes may help them to increase their Capability Maturity Model Integration (CMMI)6

level. We argue that this in turn may support their evolvability. Thereby, organisations
may replace ageing technologies better if their business processes are known and correctly
managed.

From this perspective, RPA may be seen as a bridge that organisations can cross to
become manageable by BPM systems. At that point, the organisations gain all related
benefits that help them to evolve their technology better, what is our research goal.

Together with Nacevska [A.14], we did a broad inspection of different RPA vendors.
Next, with Vahalik [A.15], we used it to automate certain academic processes. Finally,
with Woola [A.16], we are evaluating it in terms of its integration with Optical Character
Recognition (OCR) and Neural Networks. An excerpt of our findings is presented next.

4.5.2 Challenges of RPA in Finance

The current market sees many opportunities to use RPA in Finance. We also reviewed
them together with Nacevska [A.14]. In this section, we shortly present the background
we revealed.

International companies such as Deloitte, PwC, Capgemini, KPMG, EY, and others,
have already implemented RPA solutions and use it for their day to day tasks [126, 57, 223,
196]. These companies benefit from using RPA as it provides accurate, reliable, consistent
output with high productivity rates [126, 57, 223, 196]. The implementation of RPA is
typically compatible with systems that already exist in the business. Therefore, RPA
finds application in various sectors such as healthcare, accounting, financial and customer
services, and human resources by making work easier in a reliable manner.

Our research scope anchored in Section 1.5.1 mainly concentrates on financial services
and digital treasury. Therefore, we analyse the usability of RPA in this area. Further,

6CMMI is a set of practices that help organisations to improve processes and increase productiv-
ity. It was developed by the Software Engineering Institute at Carnegie Mellon University as a process
improvement tool for projects, divisions or organisations [35].

65

4. Technological Developments

Figure 4.11: McKinsey Global Institute Analysis: Potential for automation in Finance
[120]

we investigate the challenges companies are facing when implementing it. Since RPA has
been trending in the last couple of years, many consulting companies conducted surveys
and studies to present the development, application, implementation, and the benefits it
brings. Most of the results are in favour of using RPA automating processes in financial
services.

For example, Grand Thornton conducted a survey ‘2019 CFO Survey report’ [223]
among 378 senior finance executives from companies with revenues between 100 million
and over 20 billion US dollars. 87% of executives agree that the technology will impact the
way their finance function operates. According to their report, 40% of financial activities
can be fully automated with the use of RPA. It is mentioned that 25% of the questioned
Chief Financial Officers (CFOs) have already implemented RPA in 2019. This shows
significant growth compared to 2018 when only 7% had it while 23% plan to invest in RPA
during the next 12 months. The technical report from McKinsey outlines the extent to
which certain financial functions may be automated. The results are depicted in Fig. 4.11.

According to another report, ‘2020 Hot Topics IT Internal Audit in Financial Ser-
vices’ [196] from Deloitte, the opportunities of automation in the area of finance are: auto-

66

4.5. Robotic/Business Process Automation

mating of processes, automating controls testing and transforming metrics, and reporting.
They point out that by using RPA tools the key benefits will be:

◦ Enhancing the quality – removing error-prone manually intensive activities.

◦ Standardisation – codifying activities to reduce inconsistent performance.

◦ More timely and frequent insights – rapidly integrate data from multiple systems to
provide a more real-time view.

◦ Increase time for value-added activities – more time spent on high-value activities
that increase the development and skills of the team.

◦ Reducing cost – reduce manual effort and reduce the cost of operating, testing, mon-
itoring and reporting.

2019 Global Treasury Benchmark survey conducted by PwC [57] shows that more than
60% of the respondents see the potential of RPA in the next 3 years. This should increase
productivity and allow insights that were once unattainable, also in cash flow forecasting
and financial risk management. The most relevant areas in treasury where RPA finds
application are:

◦ Payment execution

◦ Deal confirmation

◦ Accounting

◦ Monitoring of payments

◦ Deal settlements

◦ Management reporting

◦ Financial reporting

◦ Deal execution

◦ Exposure capture and exposure ana-
lysis

The same survey also explores the challenges that companies generally face in the
process of implementing RPA. One of the biggest obstacles is considered having no clear
business use case and no long-term strategy. Missing standardisation of the processes as
well digitalisation of the same are another challenge that might need to be tackled. Once
these challenges are faced and RPA is implemented successfully, companies can use it daily.

Even though many processes can be automated, it is crucial to keep in mind that
there are finance tasks which are not very suitable for RPA. For example, performing due
diligence on acquisition targets, finding the lowest cost of funds or allocating an investment
portfolio, anything that requires significant decision-making, or tasks that do not need to
be executed frequently (e.g., annually) or with uncertain frequency. Processes with too
bigger complexity are also not recommended to be automated.

Additionally, together with Woola [A.16], RPA may find many use-cases in a combin-
ation with tools for OCR. This term refers to software which can electronically extract
text from visual stimuli such as images and documents. It is often linked to the ‘robot’s
eyes’ [130]. It may be used for many types of documents including common office files,

67

4. Technological Developments

contracts, pictures, invoices, bills, and reports. When combined with RPA, OCR brings
numerous capabilities. It is especially popular in financial institutions where stacks of
unstructured data in paper format are common.

4.5.3 Robots in RPA

There are currently more than 80 RPA vendors globally with most of Fortune 500 com-
panies using RPA software [151]. Their RPA tools can be used to configure and automate
manual and repetitive tasks. Before we compare the market leaders, let us rephrase RPA
definition set in Definition 9. In other words, RPA is the technology that allows automa-
tion of business processes by creating software robots (‘bots’) to reduce human intervention
within digital systems. The term Robots [208] refers to entities that mimic human actions
in order to perform variety of repetitive tasks, while Process [112] is a set of activities that
transforms the input into output.

The RPA robots are agents running on client computers and executing assigned work-
flows. They can be categorised as either front and back office robots [197], also corres-
pondingly known as attended and unattended robots. Below, we list some of the main
differences between them.

Attended robots (Front office robots). They usually perform only repetitive, easy
to define steps in a larger process (e.g., copying data from one system to another or to put
some data into an Excel table). The employee can then use the result of the robot and
decide what to do next in the process. Their essential characteristics are:

◦ User intervention is needed

◦ Standalone

◦ Triggered by the user, runs only under human supervision

◦ Mainly used in service desk, call centres, key accounts/control towers

◦ Drives customer satisfaction

Unattended robots (Back office robots). Unattended robots, on the other hand,
are fully independent and do not require any human interaction at all. They are started
automatically, either by some event or at a predefined time. Unattended robots are used
to fully replace human employees. They are available 24/7, not only if someone tells them
to run. Their essential characteristics are:

◦ They do not require human intervention.

◦ Initiation of robots is on server-side.

68

4.5. Robotic/Business Process Automation

◦ Triggered by a schedule or monitoring.

◦ Mainly used in Order Management, Finance, IT, HR, Shared service centres.

◦ Drives cost down and reduces errors.

Depending on the needs of automation, the user can choose a vendor that supports
both of them or only front office robots.

RPA Processes As mentions before, not every process can be automated. Therefore,
the question is ‘What makes a process to be a good candidate for automation?’. To see
whether a process can or cannot be automated, some rules need to be followed. One option
is to use a methodical framework from Fingent [117]. This framework helps to distinguish
the process based on process fitness and automation complexity. They use the process
fitness to categorise tasks into different categories.

◦ Rule–based – decisions made (including data interpretation) in the process can be
captured in a predefined logic. The exception rate is either low or can be included
as well in the business logic.

◦ Automatable and repetitive processes - there are processes that have been already
automated using other technologies than RPA.

◦ Standard input – input in the process should either be electronic and easily readable
or readable using a technology that can be associated with RPA.

◦ Stable – processes that have been the same for a certain period of time and no changes
are expected within the next months.

As for the automaton complexity, they name several factors upon which the process
automation depends [117], such as:

◦ Number of screens – the higher the number of screens, the more elements have to be
captured and configured prior to the process automation.

◦ Type of applications – some applications are more easily automated (such as the
Office suite or browsers), others heavily increase the automation effort (Mainframe,
for example).

◦ Business logic scenarios – an automation’s complexity increases with the number of
decision points in the business logic.

◦ Type and number of inputs – standard input is desirable. Non-standard inputs can
be of different complexity grades, with free text being the most complex.

By using the above explained factors, Fingent [117] sorts the process into four categories:

69

4. Technological Developments

◦ No RPA – process that cannot be automated with the help of RPA tools.

◦ Semi-Automation – not completely automated.

◦ High-Cost RPA – use complex tech or require programming skills.

◦ Zero-Touch Automation – processes that are digital and involve a highly static system
and process environment, so that they can be easily broken into instructions and
simple triggers can be defined.

4.5.4 RPA Vendors

IT Central Station [200] analysed RPA vendors based on key factors such as user reviews,
pros and cons, etc. According to them, the top eight vendors are the following.

◦ UiPath

◦ Automation Anywhere

◦ Blue Prism

◦ Blue Prism Cloud,

◦ Kryon RPA

◦ Microsoft Power Automate,

◦ WorkFusion,

◦ VisualCron

Typically, the choice of the vendor depends on the type of administrative processes to
be automated. Some of the major criteria are summarised below:

◦ Technology – in which technology is the RPA tool built. Has to be platform-
independent and should support any application and platform.

◦ Interface – how easy is the tool to use. Complex interface will cause a delay in the
process of implementation. (Prefer drag and drop, auto-capture, image recognition,
etc.).

◦ Management – how effectively and easy the robots can be managed. Should provide
a high level of visibility and control in terms of process monitoring, change, develop-
ment, and reuse.

◦ Security – how safe are robots compared to humans.

According to Forrester Research ‘The Forrester Wave: Robotic Process Automation, Q4
2019’ [33], the leaders on the market are UiPath, Blue Prism and Automation Anywhere.
Another report issued by PwC ‘Digital masters’ in November 2019 [174], reports that
companies, based on the survey results, favour the same RPA vendors.

Although with Nacevska [A.14], we deeply reviewed a number of vendors, in the scope
of this dissertation thesis, we only take a closer look at UiPath. First, it seems to be a
market leader, and second, it is written in .NET where most of our case studies reside.
Nevertheless, our results show that the other vendors do not differ much in terms of their
functionality.

70

4.5. Robotic/Business Process Automation

UiPath. UiPath is one of the fastest growing enterprise software companies in history.
By 2019, it was named a leader in the Gartner Magic Quadrant for Robotic Process Auto-
mation Software [176]. By 2005, the company was founded in Romania under the name
‘DeskOver’. Later, in 2013, they launched the desktop automation product and finally, in
2015 they introduced the enterprise platform along with the new name UiPath [209].

The main goal of the company, according to their Chief Executive Officer (CEO), is
having a robot for every person [209].

‘Bill Gates used to talk in Microsoft about a computer in every home. I want
a robot for every person.’

– Daniel Dines, CEO of UiPath

UiPath is built on the Microsoft .NET platform. Thus, it offers a native integration
with other Microsoft’s products such as Microsoft Office, Office365, and Dynamics 365,
as well as PowerBI. The tool is available for customers to deploy in Microsoft Azure and
thereby has out-of–of-box integration with many Azure Services, including Azure Cognitive
Services, enabling more intelligent RPA solutions to be created. UiPath product is only
available for Windows OS [210]. Technologies that are covered within UiPath:

◦ Desktop automation

◦ Web automation

◦ GUI automation

◦ Screen scraping

◦ Citrix automation

◦ Mainframe automation

◦ SAP automation

◦ SAP S/4HANA migration

◦ Excel automation

◦ Macro recorder

UiPath Platform offers all components needed to design and develop automation pro-
jects, execute the instructions automatically and manage the robot workforce. The main
components are UiPath Studio, Orchestrator, and UiPath Robot.

1. UiPath Studio helps to design and model automation workflows from prebuild activit-
ies. It is available for developers, Studio, or business users, StudioX Preview. UiPath
Studio offers many predefined operations that allow interaction with a variety of
desktop applications, web browsers, and OCR engines.

2. UiPath Orchestrator is a web application that provides an overview of the processes
and allows the user to manage the robots. Its main uses are control, management,
and monitoring.

3. UiPath Robot is used for executing workflows and instructions sent locally or via
Orchestrator. There are two types of Robots:

71

4. Technological Developments

◦ Attended – is triggered by events and needs human interaction. Always operates
on the same workstation.

◦ Unattended – run unattended in virtual environments and can automate any
number of processes.

UiPath platform offers many possibilities of automation. However, according to the
study ‘Ovum Decision Matrix: Selecting RPA’ [190], the main reason why the customers
choose this vendor is due to ‘ease of use for less-skilled business users, computer vision,
simplified automation development based on Microsoft Workflow foundation, orchestrator
multitenancy, and support for high-density robotics’.

4.5.4.1 Embedding in Practice

RPA allows organisations to automate tasks across applications and systems. Its main
focus is on replacing repetitive tasks performed by humans with a virtual workforce. The
companies employing RPA mainly benefit from a cost reduction, saving precious time
and resources, increasing scalability, providing real-time visibility and discovering of bugs.
The majority of the RPA tools available on the market are drag-and-drop. Almost no
programming skills are needed to configure a software robot. Thus, many nontechnical
staff can set up a ‘bot’ or even record their steps to automate the process.

RPA also comes with disadvantages such as the limitation of robot to the speed of
the application. Small changes made in the automation application will require robots to
be reconfigured. RPA generally targets large companies, though small to medium-sized
organisations can deploy RPA to automate their business with very high initial costing.

The selection of RPA vendor should be based on the decision whether the tool allows
easy reading and writing business data into multiple systems, which type of tasks are being
mainly performed (rule-based or knowledge-based processes), whether the tools work across
multiple applications, does it provide built-in Artificial Intelligence (AI) support to mimic
human users, etc.

4.5.5 Business Process Management

Unlike RPA, BPM is end-to-end decision-making workflow. It is defined as follows:

Definition 10. BPM is a discipline involving any combination of modeling, automation,
execution, control, measurement, and optimisation of business activity flows, in support of
enterprise goals, spanning systems, employees, customers and partners within and beyond
the enterprise boundaries [168].

To better understand the definition, Palmer [168] clarifies that:

◦ Modeling a process means defining and representing a process so that it is supported
in every step of the communication.

72

4.5. Robotic/Business Process Automation

◦ Automation in most of the cases means providing a software solution that executes
the process.

◦ Execution means that instances of a process are performed, by following the BPM
model.

◦ Control, either strict or loose, means that there is some aspect of making sure that
the process follows the designed course.

◦ Measurement is understood the effort taken to determine how well the process is
working.

◦ Optimisation means that the discipline of BPM is an ongoing activity that builds
over time to steadily improve the measures of the process.

Therefore, the aforementioned RPA is more system-to-system interface dealing with
discrete repetitive tasks typically occurring at the beginning of the process. Unlike RPA,
BPM should be done in the context of a whole enterprise and not only a part of it. Thus,
it provides business-level automation.

One of the most used conventions for BPM is BPMN. It is a standard that provides a
graphical representation of the business process. The BPMN models are typically managed
by BPMS what is a software used to automate, analyse, organise and improve existing
business processes [166]. BPMS lets the user map existing processes, ensure communication
efficiency, and look for further improvements over time. These systems are not supposed
to be a one-time solution, rather they are meant to be used for continuous use.

4.5.6 BPMS Vendors

Nowadays, we can find a number of BPMS. Their choice depends on the customers’ needs
and on the size of a company. With Nacevska [A.14], we reviewed the BPMS below.
They seems to be the most relevant in our research scope. However, in the scope of this
dissertation thesis we only provide an excerpt of Camunda that is further referred to in
Chapter 9.

◦ Camunda BPM

◦ Bizagi BPM

◦ IBM BPM

Camunda. Camunda is an open-source BPM platform that provides tools for creating
and modelling workflows, deploying and executing process models, and completing of a
workflow task assigned to specific user [149]. Initially, it was formed as a consulting com-
pany and gradually switched to software development [149]. The platform consists of tools
such as:

◦ Modeler – a desktop application used for designing BPMN diagrams as well as De-
cision Model and Notation (DMN) decision tables [28].

73

4. Technological Developments

◦ Cockpit – tool for monitoring of processes, analysing and solving technical problems.

◦ Tasklist – application allowing end users to work on assigned tasks.

◦ Workflow engine - tool for deployment of workflows and their execution. Can be
used as an orchestration service, event handler or for human task management. By
using BPMN parser, the engine is able to translate BPMN 2.0 XML files to Java
Objects [28].

◦ Decision engine – used for executing DMN decision tables. Can be used as a stand-
alone application via REpresentational State Transfer (REST)7 or Java application
or as pre-integrated with the Workflow engine [28].

The implementation of BPMS is a complex process. It requires and integration across
the whole organisation. This type of implementation might bring significant challenges.
However, by 2018, RedHat [100] conducted a survey showing that that more than 50%
of companies are implementing BPM, because it provides cost reduction. Participants in
business processes experience improvements in productivity, understanding, and commu-
nication [80].

S
ec

ti
on

T
ak

ea
w

ay

RPA and BPM are trending approaches supporting the automation. While RPA typically
concentrates on automating discrete repetitive system-to-system tasks, BPM targets the
business-level automation of the whole enterprise. The majority of BPMSs offers some kind
of integration with RPAs. Therefore, a variety of use-cases can be covered by combining
them.

4.6 Chapter Summary

This chapter was dedicated to the state-of-the-art of the technological developments in our
research scope. First, in Section 4.1.1, we introduced a brief history of CBSs as means to
achieve reusability in GUI. Second, in Section 4.2, we deeply inspected the architecture and
design patterns that many GUI technologies are built on. Some particular GUI frameworks
were presented in Section 4.3. In Section 4.4, we also briefly revisited component libraries
that are traditionally used when building GUI. Finally, in Section 4.5, we analysed RPA
and BPM as means that may help to transition from the legacy SW solution to those aimed
at better technology transitions.

7REST defines an architectural style for distributed hypermedia systems [78].

74

Chapter 5

Previous Results and Related Work

In this chapter, we describe the work that we find related or complementary to our re-
search. First, in Section 5.1, we introduce Normalised Systems (NS) expanders. Second,
we mention low-code platforms in Section 5.2. Last, in Section 5.3, we relate our research
to feature-rich descriptions based on event calculus.

5.1 Normalised Systems (NSX)

In Section 2.2, we introduced NST. Although the theory was formulated, its principles
can be violated. It may be explained by the design freedom offered to developers. NST
emphasises that ‘any developer violating any theorem at any time during development or
maintenance will generate CEs’ [137]. They attach that ‘applying all theorems leads to
a software architecture being a very fine-grained modular structure of separated concerns
which are version transparent towards one another and executed statefully’ [137].

Such a CE-free system is difficult to create manually. Systems complied with NST are
typically generated. This ensures the alignment with all their grounding principles.

NSX, a spin-off company of the University of Antwerp, developed so-called NS ex-
panders. These expanders can generate a CE-free system from NS descriptors, which are
conceptual models of the structure and behaviour of a system. In typical applications, only
a small part of the code must be designed manually in the form of customisation [136].
The expanders has already been applied in practice on a large scale. In [165], Op’t Land
reminds that by 2011, NS approach and tools have already been used in 12 real-life projects.

Compared to our research, NS expanders guarantee high evolvability from the perspect-
ive of change impact limits (magnitude of only a few classes). However, in our research, we
want to answer RQ 2. We want to develop a methodical framework that aids in the con-
struction of SW suited for technology transitions. Moreover, we want to ground it in EE
findings and possibly use NST to evaluate it. Thereby, our focus is on involving higher-level
concepts of EE theories such as the notion of affordances described in Section 3.3.

From that perspective, NS descriptors are technical in nature. They operate on a tech-
nical level of typical relational and finite-state machine modelling. In our case, we want

75

5. Previous Results and Related Work

to work with a higher level system description facilitating new ways of thinking about
and automating technology transitions, such as distributed repositories of components and
(semi-)automated upgrades with guaranteed parameters or the (semi-)automated genera-
tion of different types of applications (desktop, web, and mobile).

Nevertheless, we argue that our methodical framework and NSX might not necessary
result in disjoint architectures. We can develop NS expanders for a system aligned with
our methodical framework, thereby combining the powerful aspects of each method.

5.2 Low-code Platforms

According to Waszowski [224], ‘the low-code platform enables quick generation and delivery
of business applications with minimum effort to write in a coding language’. Such a
development approach is typically based on drag-and-drop modules, and other user-friendly
manipulations meant for building the application and configuring them. These platforms
are typically focused on design and development of databases, business processes, or GUI.
Although the coding is reduced, certain uncommon, or personalised situations may require
it. According to Gartner [218], Mendix low-code is one of the market leaders popular
among both professional developers as well as business staff. Nevertheless, other solutions
are also trending on the today’s market – K2, ServiceNow, Appian.

However, similarly to NS expanders, most low-code platforms are typically focused on
a specific type of applications, in a specific technology stack. Our approach and low-code
approach are not disjoint. We target technology-independent approach in general, the
existing low-code solutions may benefit from it. For instance, low-code platforms may
choose to adapt it to enable building the final application and help better transition from
one technology to another.

5.3 Feature-Rich Descriptions based on Event Calculus

Similar to our research, Tun et al. [207] addressed the need for ‘creating mappings between
requirements and features, and between problem and solution structures to support the
evolution of a feature-rich software system’. They derived an engineering approach for
a clear separation between requirements for new features, requirements for incremental
features, requirements for their composition, and their correspondences with specifica-
tions [207]. They demonstrated how to describe the requirements in a modular manner,
how to map them to features specified using natural language, and how to apply a form
of temporal logic called event calculus. However, they primarily focused on enabling ‘de-
velopers to capture and reuse knowledge for solving similar problems’ [207]. Our goals are
similar, but our methodical framework is supposed to offer a more detailed conceptualisa-
tion of users and purposes. It should involve mapping functional requirements to technical
constructions.

76

Part III

Our Approach

77

Chapter 6

Research Methodology

Klein and Myers [124] remind that it is essential to understand what guided us in mak-
ing decisions through our research journey. Specifically, what guided us from an initial
research problem and goals to a suitable solution answering them. According to them,
this contributes to the perceived validity of the research process. Therefore, while in the
previous chapters, we discussed the foundation of our research, its background, state-of-
the-art, possible theories, methodologies, and technologies to address the research problem,
now we provide details of how we employed DSRM and how we designed the research to
achieve its objectives put forward in Section 1.5. We respectfully follow the approach and
argumentation introduced by Amirebrahimi [4] in his dissertation thesis.

We structure this chapter into five parts. In the first section Section 6.1, we present
a conceptual design framework meant for achieving our research goal put forward in Sec-
tion 1.5. Throughout the research, a number of research outcomes were tested in a com-
mercial system Corima. Since we often refer to Corima in the entire thesis, we provide
its brief overview in Section 6.2. Hence DSRM was selected as our methodical tool, we
introduce and justify this choice in Section 6.3. Next, in Section 6.4 we elaborate the
details of how we adapted DSRM in our research. Finally, the overall research design and
its process is presented in Section 6.5.

6.1 Research Design

In Part II, the theory and practice behind evolvability, EE, and CBS development were
reviewed. In this thorough review, a number of gaps and opportunities were revealed.
However, many concepts and technical developments may seek solutions to our research
problem put forward in Section 1.4 – the lack of guidance and architectural pattern on
adapting software artefacts into the latest technologies in a more efficient and manageable
manner. Since our goal is to build a methodical framework solving it, a combination of
EE-thories applied to SE and the evaluation in terms of evolvability may facilitate this
methodical framework. While our first research question concerned the state-of-the-art,
the other RQ 2 remain unanswered.

79

6. Research Methodology

Figure 6.1: Conceptual design framework of our research

To address them, we designed a conceptual design framework to bring together the
necessary concepts, theories, and methodologies to develop a new methodical framework for
better technology transitions. It is a guideline to this research to identify the basic concepts
and outline of the design flow or design solution. This conceptual design framework is
depicted in Fig. 6.1. The research problem, scope, questions, and objectives were already
discussed in Chapter 1. However, the research methodology to achieve the research goal
(the methodical framework) is yet to be explained now.

6.2 Conjunction with COPS on the Research

Throughout our research, a number of research outputs were done in conjunction with
company COPS [40]. We used its knowledge and products to design & develop artefacts
connected to our research goal formulated in Section 1.5.

COPS is a group of SMEs1 in Czech Republic, Austria, and Germany. They are on
the market since 1979. In the last few decades, their main focus is to the financial sector,
in particular to the area of corporate and banking treasury management. By 2021, they
mainly target DACH2 market.

6.2.1 Treasury Management System – Corima

The company implemented an application framework called Corima. It is a software de-
velopment platform capable of hosting applications in various business domains3. In 2021,
the most significant application suite is focused on supporting the banking and corporate
industry. It is a Treasury Management System (TMS) and is contained in the Corima.cfs
suite. However, in the last years, COPS extends this suite of BPM subsystem. Thereby
supports treasury teams with a step by step automation of business processes related to
finance.

1SME is an acronym used to describe small and medium-sized enterprises.
2DACH is an acronym used to describe Germany (D), Austria (A), and Switzerland (CH).
3Business domains refer to different areas of business, such as finance or healthcare

80

6.3. Design Science Research

6.3 Design Science Research

Nowadays, we may recognise two different research styles – Explanatory Science Research
and Design Science Research.

The explanatory research is mostly common for social and natural sciences such as
biology, chemistry, physics, and astronomy. Here, the emphasis is to understand the real-
ity [138]. According to Van Aken [213], the goal of explanatory science is to develop
knowledge to describe, explain, and predict. Gerts [92] puts it in other words: ‘Natural
science research papers typically adhere to a structure that consists of the following steps:
problem definition, literature review, hypothesis development, data collection, analysis,
results, and discussion’. According to Peffers et al. [170], the resulting research outputs
are mostly explanatory. Often, these outputs are arguably not applicable to other discip-
lines such as engineering or information systems. Peffers [171] explains it by the artificial
nature of the so-called human-constructed domains. These are focused on creating and
improving artificial solutions and products, rather than on answering ‘how things work,
and why they work the way they do?’.

Design Science Research (DSR) emerged in a response to the limitations above. March
et al. [138] clarify that the focus of natural science is on understanding reality. The DSR, on
the other hand, attempts to create things that serve human purposes. Walls et al. [222] add
that it became an important methodology for discipline-oriented design or an improvement
of solutions for human-related problems. Therefore, contrary to explanatory research, DSR
puts an emphasis on ‘how things ought to be in order to attain goals, and to function?’ [193].
The key principle of DSR is to achieve understanding by building so-called ‘artefacts’ that
satisfy a set of functional requirements. Peffers et al. [171] define the artefact as ‘any
designed object with an embedded solution to an understood research problem’. According
to Hevner [103], the artefact can be a social innovation, information resource, construct,
method, model, or an instantiation. However, the DSR artefact in IS is much broader. It
may include methods, models, or frameworks on different levels of abstraction.

In our research, the artefact is a methodical framework that can aid in the construction
of more evolvable software solutions. Such a framework may additionally contribute to BA
of an organisation. Hence DSR is a good fit for its design, it is further adapted by this
research. In particular, we employ Design Science Research Process (DSRP) from Peffers
et al. [170] that builds on DSRM introduced by Hevner. This employment is discussed in
Section 6.4.

6.4 Employing Design Science Research Methodology

In this research, the aim is to design a method for constructing software systems that are
better suited to technological transitions. It contrasts with the aforementioned explanatory
research attempting to understand the truth. Here, we design an artefact and investigate
its feasibility for a defined problem. Therefore, it ‘...should not only try to understand how

81

6. Research Methodology

Figure 6.2: Selected Design Science model (adapted from Hevner [103])

the world is, but also how to change it’ [29]. This makes our research suitable to employ
DSR.

The selected DSR model in here is the DSRM originally presented by Hevner et al. [103].
Recently, Cater-Steel et al. [30] conducted a research across doctoral projects applying
DSR. They positioned DSRM among the most matured and well-accepted methodologies
in the research community. That is the reason we selected this particular model for our
research.

Hevner et al. [103] explain it as ‘a conceptual framework for understanding, execut-
ing, and evaluating DSR combining behavioral-science and design-science paradigms’. In
DSRM, the artefacts are produced by enhancing an existing body of knowledge (knowledge
base) to address a problem (business needs) emerged in an organisation (Environment). We
present it in Fig. 6.2 with slight visual modifications. However, after DSRM was published
in 2004, it got an attention of the research community. Iivari [110] contributed to a clearer
understanding of the key properties of the design science research paradigm–ontology, epi-
stemology, methods, and ethics. With a reference to Iivari, Hevner [102] enhanced the
picture of what it means to do high quality design science research in IS. He borrowed the
original model, and embodied three closely related concepts: relevance, rigour, and design
shown in Fig. 6.3.

Hevner [102] explained these concepts as follows: ‘The relevance cycle inputs require-
ments from a contextual environment into research and introduces research artefacts into
environmental field testing. The rigour cycle provides grounding theories and methods
along with domain experience and expertise from the foundations knowledge base into the
research and adds the new knowledge generated by the research to the growing knowledge
base. The central design cycle supports a tighter loop of research activity for the con-

82

6.4. Employing Design Science Research Methodology

Figure 6.3: DSR cycles, environment, and the final knowledge base for our research

struction and evaluation of design artefacts and processes.’ In other words, Hevner [102]
reinforced the need to maintain a balance between academic rigour and industry relevance
while representing the artefact as a major outcome of any design science project.

The three-cycle activities of DSRM were iteratively applied to address our research goal
for over seven years, and we are now in a position to present our design cycles in terms of
artefact development and evaluation backed by the rigour cycle (grounding of the scientific
methods and related work) and the relevance cycle (alignment with the industry and best
practices). In our context, the relevance cycle incorporates requirements from relevant
software development practices and related industries (such as banking and corporate fin-
ance management) into the research and introduces the research artefacts into real-world
applications. Among these artefacts, we can include prototype applications of EE the-
ories to SW, flexibility-usability analysis, methodical framework, and others described in
Part IV. The rigour cycle develops the theoretical concepts of our research artefacts along
with resources and expertise from the body of knowledge (EE theories, ontology, theories
of evolvability, concepts of BA, etc.) for the research. The design cycle supports the loop of
research activities that provide the development, evaluation, and improvement of research
artefacts.

The three research cycles that demonstrate the evolution of Affordance Driven Assem-
bling (ADA) are discussed and illustrated in Fig. 6.3.

6.4.1 Environment and Relevance Cycle

Hevner [102] explains that design science research is motivated by the desire to improve
the environment by introducing new and innovative artefacts and processes required for
building these artefacts [193]. He stated that ‘an application domain consists of the people,
organisational systems, and technical systems that interact to work toward a goal’.

83

6. Research Methodology

In our research, we focus on the application domain of GUI development. Therefore, in
terms of relevance cycles, we focus on an environment that enables us to better understand
the tools, languages, and frameworks used for GUI development, where we can learn the
processes of the software development cycle, including requirements specification.

In addition, we have strengthened our connections with companies that may help us
assess the challenges related to evolvable software development in practice, which can be
beneficial for the relevance cycle of this research.

◦ NSX Normalised Systems [155] – a spin-off company of the University of Antwerp
focused on applying NST on an industrial scale.

◦ COPS [40] – a company focused on providing TMSs for banking and corporate in-
dustries, where we can apply our research on an enterprise scale.

◦ Design and Architectural Patterns – to understand to understand the historical and
latest development of patterns that are commonly used by GUI technology.

◦ Software Engineering Practices – to understand the state-of-the-art based on diverse
areas of software engineering, e.g., the development of CBS, and to adapt relevant
principles and formalism in the artefacts of a methodical framework.

6.4.2 Knowledge Base and Rigour Cycle

Hevner [102] reported that ‘design science draws from a vast knowledge base of scientific
theories and engineering methods that provide the foundations for rigorous design science
research’. Our knowledge base has been extended by the following resources:

◦ Ontologies – to describe our concepts in a platform-agnostic manner and study ob-
jects in GUI development ‘as they are, how they are composed of parts, of which
substances the parts are, or how the parts are connected, etc., completely disregard-
ing the purposes(s) subjects could use them for’ [63].

◦ EE theories – to elaborate artefacts from the function-construction perspective based
on theories rooted in teleology and ontology.

◦ Evolvability theories – to understand the state-of-the-art of the domain of systems
evolvability.

◦ Business Agility – to understand the state-of-the-art and trending principles of busi-
ness agility.

◦ Normalised Systems Theory – to evaluate our proposals in terms of mathematically
proven theories regarding constructing evolvable systems from fine-grained, loosely
coupled modules.

84

6.5. Applying Design Science Research Process

6.4.3 Design Science Research and Design Cycle

As discussed by Hevner [102], in the design cycle, ‘the requirements are input from the
relevance cycle, and the design and evaluation theories and methods are drawn from the
rigour cycle’. Therefore, to propose a design approach that can help us construct more
evolvable software solutions, we have been ‘generating design alternatives and evaluating
these alternatives against requirements until a satisfactory design is achieved’ [102].

The initial requirements emerged from the aforementioned real-life application frame-
work Corima. It was a rapidly growing ecosystem, which introduced new functionality into
banking and corporate finance industries. However, the GUI layer was shown to be difficult
to maintain. It was not easy to reuse certain elements without having an unforeseeable
impact on the entire system. It was difficult to keep up with modern GUI technologies
and to smoothly move GUI from one technology to another, e.g., from desktop to the
web. As Corima grew, the core development team scaled up to multiple business-oriented
teams across Austria, Germany, and the Czech Republic. Although the team used Scrum
of Scrums and common development best practices to respond to changing requirements
from businesses, it became difficult to preserve the GUI consistency across all applications
they had developed. However, the observations showed that the requirements were similar
in nature. They differed slightly depending on the user and his/her intention, regardless
of the technology to be used in the future.

By assessing these requirements, the loops between our theoretical proposals and prac-
tical applications in industry led to the ADA approach described in Chapter 12. Through-
out these improvement loops, we validated our research artefacts with mechanisms includ-
ing expert reviews, experiments with early adopters, and real-life applications in Corima.
In the research cycle, we analysed the theoretical concepts of evolvability, affordances, func-
tions, constructions, and their relationships, and we have been reifying them in terms of
concepts and approaches in software engineering (SE). At the same time, throughout these
cycles, we improved so-called class descriptors and class annotations in Corima to evaluate
ADA in practice. The implementation was continuously adjusted to reflect the challenges
related to the new GUI technologies introduced in Corima. We also used insights into the
formalisation of the whole-part relationship in UML from Barbier et al. [14], the notion
of scope of interest in the DEMO methodology proposed by Dietz and Mulder [65], the
orthographic software modelling concept proposed by Atkinson et al. [7], and Semantics
of Business Vocabulary and Business Rules (SBVR) [159]. Finally, to evaluate ADA with
respect to other related efforts in the SE industry, we positioned it in a related work that
focused on reusability and evolvability.

6.5 Applying Design Science Research Process

Having the adoption of DSRM for this research explained and justified in the aforemen-
tioned section, now we present a corresponding process that guided us throughout the
entire research.

85

6. Research Methodology

Figure 6.4: DSRP model [170] and the entry point for our research.

Although DSRM is broadly known among researchers, it does not provide generally
accepted process to carry out the research. Peffers et al. [170] fill this gap by constructing
DSRP model that is consistent with the prior literature about DSR, provides a nominal
process model for doing DSR, and it grounds a mental model for processing and appreci-
ating DSR in ISs. Fig. 6.4 illustrates the process.

It suggests that there might be multiple possible entry points for DSR. It distinguishes
between the four entry points described by Peffers et al. [170]:

◦ Problem centred approach – if the research idea resulted from observing the problem
or from suggested future research in a paper from a prior project.

◦ Objective centred solution – if the research idea resulted from by-product or consulting
experiences whose results did not meet clients expectations.

◦ Design & Development centred approach – if the research idea resulted from the
existence of an artefact that has not yet been formally thought through as a solution
for the explicit problem domain.

◦ Observing a solution – if the researchers work backwards to apply rigour to the
process retroactively.

Our research problem stated in Section 1.4 was observed by researchers and business
in the IT domain. Therefore, the ‘Problem centred approach’ is the best fit for us.

Peffers et al. [170] explains that DSRP is structured in a nominally sequential order.
However, the researchers are not expected to always proceed in a sequential order from

86

6.5. Applying Design Science Research Process

activity 1 through activity 6. It consists of six steps: i.e., Problem Identification & Motiv-
ation, Objectives of a Solution, Design & Development, Demonstration, Evaluation, and
Communication. In our research, we group these steps into four phases: Conceptualisation,
Design & Development, Demonstration & Evaluation, and Communication. We discuss
them thoroughly below. In Fig. 1.2, we already outlined a roadmap of this dissertation
thesis. Now, we can be more concrete in terms of DSRP. Therefore, in Fig. 6.5, we link
the aforementioned research phases to the objectives and chapters in this thesis. We also
briefly describe the deliverable of each of them.

6.5.1 Conceptualisation Phase

Step 1: Problem Identification & Motivation. In Section 1.3, we revealed our
motivation to the long-lasting research. We presented the increasing need of organisations
to improve their BA in order to thrive with uncertainty of today’s and future unforeseeable
market. We explained that such a capacity to adapt to, create, and leverage changes
partially depends on the capacity to innovate technologies. Therefore, we decided to focus
on the technology transitions on the technology level, in particular on the GUI level. This
led to formulating a research problem put forward in Section 1.4.

Step 2: Objectives of a Solution. Our main objective is to develop a methodical
framework aiming at better technology transition. This is represented by a research goal
put forward in Section 1.5. The major challenges include the awareness of current GUI
technology and the corresponding design & architecture patterns. Additionally, they ad-
dress the understanding of theories on evolvability, and EE theories. Overall, the main
challenge is to build a methodical framework that will combine aforementioned concepts,
and that will be applicable to industry across a vast range of different GUI technology
stacks. These objectives are formulated along the research questions RQ 1 and RQ 2 in
Section 1.5.2.

6.5.2 Design & Development Phase

Step 3: Design & Development. Based on the acquired knowledge during the concep-
tualisation phase, now we design & develop different artefacts (methods, SW prototypes).
They include a new methodical framework ADA that emerged from their integration.

6.5.3 Demonstration & Evaluation Phase

DSRM requires a demonstration of the designed artefact. This helps answering questions
about whether the solution actually works or not. However, in applied DSRP, the demon-
stration of the methodical framework is formalised prior its evaluation. Therefore, we
conceptually merge these steps together. The evaluation step of DSRP is redefined as a
twofold process:

87

6. Research Methodology

Figure 6.5: DSRP model of our research

88

6.5. Applying Design Science Research Process

◦ Demonstration of the methodical framework together with its prototype implement-
ation in Corima.

◦ Formal validation and verification of the methodical framework, and the evaluation
of its industrial feasibility.

Step 4: Demonstration. After developing proof-of-concept-level prototypes, the res-
ulting ADA artefact was extensively adapted by COPS to production use in Corima. From
the research point of view, we derived the software architecture of the implementation, and
we extracted statistical data to understand the extent in which ADA is used. This helps
us to further investigate its strengths and weaknesses in both industry scale as well as in
the academic scale.

In this research, Corima becomes our case study. Since the prototypes are developed
in that case study, other research methodologies like system development and prototyping
were considered as part of the overarching DSR. As explained by Olfat [157], in a prototyp-
ing methodology the tasks flow from constructing conceptual framework and developing
system architecture, to building prototype system, observing and evaluating it. Along the
way, the prototype architecture is refined via simultaneous consideration for alternative
design before building it using appropriate technologies. Although, testing the usability
of the prototype should be included as a part of prototyping, it is not considered here.
The prototype (in a case study) is only for demonstration of the feasibility of using ADA
and not testing it. The formal evaluation of the ADA artefact is performed later in the
evaluation phase. The details of the implementation of the prototype will be explained in
Section 12.4.

Step 5: Evaluation. The ADA methodical framework has been used and refined for
more than 7 years. It was included in shifting Corima across multiple GUI stacks, and
thereby practically used by world-wide biggest corporate and banking customers of COPS.
It helps us to further evaluate its strengths and weaknesses from the industrial as well as
academic stand point.

6.5.4 Communication Phase.

Step 6: Communication. Manuscripts relating to all artefacts have been published in
academic journals, academic conference proceedings, and posters. Mainly, the early-stage
results were presented on Conference on Business Informatics in Lisbon in 2015 [A.1]. The
same year, on the Enterprise Engineering Working Conference in Prague [A.2], the original
idea of applying EE into SW was proposed. Later in 2017, we shared our progress on a
Doctoral Consortium along Enterprise Engineering Working Conference in Antwerp [A.4].
On the same conference, in a conjunction with University of Antwerp Management School,
we showed the results of applying NST to financial models [A.3]. Additionally, the same
year, on World Conference on Information Systems and Technologies on Porto Santo [A.5],
we revealed our perspective on the flexibility-usability trade-off. Finally, in 2018, we laid

89

6. Research Methodology

down the roots of ADA and disclosed it in a paper on Enterprise Engineering Working
Conference [A.6] in Luxembourg. The next year, 2019, the progress on ADA was presented
on another Enterprise Engineering Working Conference [A.7], this time in Lisbon. By 2021,
we submitted the paper to Journal of Science of Computer Programming, and we believe
the results should be published later in 2021.

In addition, this research effort received attention in international journals and confer-
ences. Namely, by 2018, it was referenced in IEEE International Conference on Research
Challenges in Information Science [79]. The same year, it was referenced in a journal JMIR
mHealth and uHealth ranking Q1 in the health informatics category. By 2019, it was re-
cognised on International Symposium on Business Modeling and Software Design [42].
Finally, by 2021, it was spotted in two journals – Information Software and Technology
journal ranking high in Q2 category, and Software and Systems Modeling journal, also
ranked in Q2 category.

Moreover, along the way, a number of corresponding bachelor and master theses on
Faculty of Information Technology along Czech Technical University as well as on Masaryk
University in Brno were published, some of which we supervised [A.11, A.12, A.13, A.14,
A.15, A.16], some got reviewed by us [A.17, A.18]. Finally, the very early stage idea of
this research emerged from the diploma thesis about projectional editors, this thesis was
also recently spotted on the Nordic conference NISK in 2020 [13].

6.6 Chapter Summary

In this chapter, we explained the overall research strategy and design employed in this
research. We started with presenting a conceptual framework that helps us to answer the
research questions formulated during the conceptualisation phase in Section 1.5.2. Fur-
thermore, we discussed in detail DSRM, the selected research methodology. We outlined
its brief history and justified its choice for our research. Because DSRM does not prescribe
the research steps, we decided to use DSRP. We mapped different aspects of this process
into the research objectives put forward in Section 1.5.2. The process goes through four
phases – conceptualisation, design & development, demonstration & evaluation, and com-
munication. Their details and approaches employed to complete them were described and
visually presented.

Having the detailed understanding of state-of-the-art and the research path clarified,
the next part of this dissertation thesis includes the remaining chapters of the design &
development phase, and it also partially covers the evaluation phase.

90

Part IV

Main Results

91

Chapter 7

Interactions Between People and
Technology

During design of Corima, a requirement for so-called confirmation principle came up. By
2015, we published a corresponding article on a Workshop on Cross-Organizational and
Crosscompany BPM (XOC-BPM) co-located with the 17th IEEE Conference on Busi-
ness Informatics in Lisbon [A.1]. In this chapter, we provide its version adjusted for this
dissertation thesis and updated with respect to the latest version of DEMO.

In Corima, several users communicate their demands to a server connected to a risk
management banking system. Corima processes various operations carrying out needed
information (deals, Foreign eXchange (FX) rates, balances, etc.). This information is
necessary for an underlying risk management system to do proper calculations. Since
much of this information is critical for risk calculations, it cannot appear in the target risk
management system unapproved by privileged users, so-called confirmators. This integral
principle is called the confirmation principle.

While the confirmation principle includes actors that are in a social interaction, we
argue it may benefit from General PSI theory described in Section 3.7. Therefore, in the
context of this chapter, the term transaction refers to transactions defined in General PSI
theory, and used in DEMO introduced in Section 3.8.

The transaction axiom of the General PSI theory declares that the acts are performed
in patterns called transactions [61]. Within transactions, the commitments of subjects
(human beings) are raised. Our hypothesis is that the confirmations in Corima are es-
sentially these transactions. Users of Corima are mostly human beings acting in the roles
of subjects. They enter into a commitment regarding a certain object affirmation. The
affirmation is a specific outcome of the confirmator’s decision. It may be a yes/no result
or something more complex, like a scale value or even a free comment.

In this chapter, we sum up the key expectations from the confirmation principle in
Corima, and we map them to the concepts described by General PSI theory and DEMO.
We also outline a possible design and a basic implementation. This is our first attempt to
map EE theory into SW what helps us to address our research objective RO 2.1.

This chapter contains a modified version of: Ondřej Dvořák,

Robert Pergl, and Petr Kroha. Confirmation engine design

based on PSI theory. Published in: 17th IEEE CBI, Workshop

XOC-BPM. Lisbon, Portugal, 2015. [A.1]

93

7. Interactions Between People and Technology

Figure 7.1: Corima architecture

This chapter is organised as follows. In Section 7.1, we describe the purpose of a con-
firmation engine in Corima. We map the confirmation principle to DEMO and bring
a suitable naming of all its fundamentals in Section 7.2. On the top of the confirmation
principle we introduce the confirmation engine in Section 7.3. We show how it fits the
Corima architecture, and we present code snippets of its main components. Finally, we
present an example of a deal confirmation in Section 7.4, we mention the related work in
Section 7.5, and we conclude the paper in Section 7.6.

7.1 Corima and the Confirmation Principle

In Section 6.2.1, we put forward Corima. We explained that it is an application platform for
the development and execution of financial-oriented applications. It consists of a runtime
and a framework. Runtime is a client-server application that can host and execute plugins
composed of modules and features offered by the framework. The plugins themselves
implement a client and a server core that is executable within a corresponding part of the
runtime. Each plugin maintains certain instruments from a financial market. Its client-
core views the instruments, its server-core transfers the instruments into an underlying risk
management system. For example, FX rates of currencies are displayed in the client-core,
whereas the physical deposition of rates happens within the server-core.

Various instruments with which the plugins operate must undergo a specific confirma-
tion process before landing in the risk management system. This process must go hand in
hand with the so-called confirmation principle. The principle guides the process through
predefined mandatory and optional steps. The use-cases for confirmation can significantly
differ among the instruments. Some instruments can be confirmed automatically after
a given time is elapsed. Some can be changed by a confirmator, while others cannot. Some
instruments can even be cancelled and consequently result in a cancellation of the confirm-

94

7.2. DEMO and the Confirmation Principle

ation. All in all, the demands for various kinds of confirmations can be custom-built.

The general idea is to design a unit in the Corima framework that would meet ex-
pectations regarding the confirmation principle. It should be clearly defined and easily
applicable by a developer facing a request on confirming a given instrument. We call this
unit confirmation engine, and we elaborate it in Section 7.3. The basic architecture of our
approach is presented in Fig. 7.1.

7.2 DEMO and the Confirmation Principle

On top of the transactions, we can develop an infinite number of systems to maintain
them. These systems can use various technologies, techniques, and platforms that are vital
to the enterprise. However, they still have something in common – all are functionally
equivalent. It means that regardless of the implementation, any such system must be
updated when a single process of an enterprise changes. Clearly, as heavily discussed by
NST (see Section 2.2), the process change then becomes a rather big cost.

The true power may come with a system that would not be sensitive to such a process
change. Ideally, a system that would not even require any manual modification when
a conceptual level evolves. The confirmation principle may be seen as such a process.
Regardless the actual technology used by Corima, the confirmation process remains the
same.

A range of similarities can be identified when comparing the confirmation principle and
DEMO. Nevertheless, these can only be seen from a certain point of view. In this section,
we analyse these similarities, and we evaluate a possibility of the confirmation principle
benefiting from them. We follow up this section by outlining a DEMO-based design and an
implementation of the confirmation engine as a software unit supporting the confirmation
principle.

7.2.1 Requester, Confirmator, Confirmation Pattern, Confirmation,
and Affirmation

In Section 3.7, we introduced DEMO transactions. It is a sequence of acts involving
two actor roles, an initiator and an executor. The sequence must respect the transaction
pattern defining legal acts during a transaction processing. A transaction is started by the
initiator who performs a request to have a desired product declared. Such an act leads to
the status requested. The executor reacts by promising the product, and the transaction
advances to the status promised. This act represents a guarantee that the executor is
going to produce the requested product within an execution phase of the transaction1. As
soon as the executor finishes the production, it performs the declare act, thus bringing
the transaction into the status declared meaning the product is ready. At this moment,

1Technically, it may happen that the promise is revoked later by the executor, however, we do not deal
with this possibility at this place.

95

7. Interactions Between People and Technology

the initiator can accept the product and the transaction ends. However, by rejecting the
product, the initiator could express its disagreement with the product, and the transaction
goes back to the status declared. Such a decision would result in a negotiation to clarify
mutual expectations on the product.

In Corima, the confirmation is a sequence of acts, too. It involves two subjects, a re-
quester and a confirmator. As well as in DEMO, the sequence must respect a given con-
firmation pattern. The sequence is started by a requester performing a request to create
a desired product. However, it is important to realise what the product actually is. The
confirmation principle insists on preventing a subject to persist an object that has not been
seen and subsequently confirmed by anybody else. Thus, the object itself is not a product,
the sole affirmation pertaining to an object is. In case the confirmator has in mind to
analyse the created object, it can give a promise and proceed to an execution phase. The
production of an affirmation must result in a declare act performed by a confirmator.
Again, it is highly important to realise what the declare practically means in a context of
the confirmation principle. The confirmator must have at least an option to express its
agreement or disagreement with an object, yet there can be much more. Nevertheless, this
outcome must be a property of the affirmation. As soon as the confirmation is brought
to the status declared, the initiator can proceed with either accepting or rejecting the
declared affirmation.

Let us summarise the initial mapping between DEMO and the confirmation principle.
The confirmation principle is generally a PSI theory from DEMO adapted to the needs of
Corima. The notions of initiator and executor in DEMO are represented by the notions
of requester and confirmator in the confirmation principle. The transaction pattern and
the confirmation pattern both define appropriate steps of a process and relations among
them. Transaction resp. confirmation is then a walkthrough in the corresponding pat-
tern. Product and affirmation are the interests regarding of which subjects (requester and
confirmator) enter into a commitment by initiating the transaction (resp. confirmation).

7.2.2 Confirmation Kind and Affirmation Kind

In DEMO, the transaction kinds imply a specific flow of allowed acts and the corresponding
states of the transaction.

The same may be applied to a confirmation kind. The confirmation kind is based
on a specific confirmation pattern. The main difference is that within the confirmation
engine, the acts are performed explicitly (e.g., by calling a method request()). One can
only define what should be an evidence that the act just happened (e.g., sending an email
to its counterpart)2. If a certain act is senseless or not allowed for the given confirmation
kind (e.g., if the requester is not allowed to disagree with a created affirmation), this must
be declared. This is similar to specifying action rules in the AM of DEMO.

2This corresponds to facts in the PSI theory described above, however we do not go into such detail
here.

96

7.2. DEMO and the Confirmation Principle

A transaction in DEMO (hopefully) results in a product successfully delivered. Each
transaction kind has a specific product kind as its result. Similarly, each confirmation kind
has a specific affirmation kind as its result. An affirmation is the product of a confirmation.
Thus, a confirmation (hopefully) results in an affirmation successfully produced. The
affirmation itself is a set of properties and their corresponding values. All these properties
represent the confirmator’s notion regarding an object which is tasked to approve (e.g.,
a property called result can transfer an information whether the confirmator is fine with
the object or not). Nevertheless, one has to introduce all the required properties before
a confirmation process is started. This is done by an affirmation kind which defines it.

To sum up, a transaction kind in DEMO corresponds to a confirmation kind. The
product kind is represented by an affirmation kind. The product is the affirmation itself.
It expresses a decision of a confirmator whether the given object is approved or not.

7.2.3 Revocations

In DEMO, revocation is a situation when the initiator or the executor change their minds
after performing a certain act. DEMO defines four different revocation patterns for
request, promise, declare and accept, as we can see in Fig. 3.11. If allowed by the
other side, each of them can lead to a transaction step in the standard transaction pattern,
which constitutes the aforementioned complete transaction pattern shown in Fig. 3.11. It
means that not all transaction kinds allow to revoke an already performed act. Revocations
may be even technically impossible (e.g., shredding of a document).

Confirmations in Corima exhibit the same behaviour. For instance, shortly after a re-
quester requests an affirmation of a given object, it can change its mind and want to take
the request back. It depends on the confirmation kind if such a step is allowed, and how
the confirmation engine should react. Since these situations are expectable, we want to
support them, too. Thus, we have to introduce revocation patterns into the confirmation
principle. To make it work, we have to define their specification for each confirmation kind
individually.

7.2.4 The Confirmation Principle Summary

In this section, we clarified how DEMO and the underlying PSI theory can be mapped to
the confirmation principle. We identified a mapping between a requester and an initiator,
and a mapping between a confirmator and an executor. We showed that a confirmation kind
maps to a transaction kind, and an affirmation maps to a product in DEMO. DEMO models
successfully describe the whole enterprise process logic by transaction kinds derived from
the complete transaction pattern. Thus, we argue that confirmations based on the same
complete transaction pattern can handle all necessary situations of various confirmation
processes. Table 7.1 presents the overview of the resulting mapping.

97

7. Interactions Between People and Technology

DEMO Confirmation Principle

Transaction Pattern Confirmation Pattern

Transaction Kind Confirmation Kind

Transaction Confirmation

Product Kind Affirmation Kind

Product Affirmation

Initiator Requester

Executor Confirmator

Table 7.1: Mapping between DEMO and the confirmation principle

7.3 The Confirmation Engine

Let us recall that the confirmation engine is supposed to be a unit in Corima supporting
the confirmation principle. It should be universal, thus independent of the objects it is
used for. It must allow an easy creation of a new confirmation kind for a given type of
object. Finally, it must be able to integrate new confirmation kinds and thereby enable
the confirmation principle for any corresponding object.

In this section, we elaborate a possible design of the confirmation engine. We show how
it fits the architecture of Corima.

Since the implementation itself is out of the scope of this paper, we only present basic
code snippets in C# of its most interesting parts. We follow a similar scenario as we did
while describing the mapping of DEMO to the confirmation principle in Section 7.2. We
start with an overall architecture by identifying the key components. We subsequently
investigate these components deeper. We discuss a design of a requester, an executor, and
a confirmation service. We show how the notions of a confirmation pattern, a confirmation,
and an affirmation are embodied in these components. We continue with a confirmation
and an affirmation kind, and we explain how they are integrated in the whole engine. We
end up with revocations by determining their proper involvement.

7.3.1 The Overall Architecture (The Confirmation Clients and the
Confirmation Service

Corima is a client-server application platform. Users interact only with a Corima client.
In a suitable GUI, they observe and maintain financial-based data. All data changes are
communicated to a server that stores them into an underlying risk management system.
The confirmation is a process (a sequence of acts) between two users, the first one in a role
of a requester and the second one in a role of a confirmator. The requester performs a data
change, and a confirmator approves it before leaving it in the underlying risk management
system.

98

7.3. The Confirmation Engine

Figure 7.2: General Confirmation Process

Fig. 7.2 covers the usual confirmation process. A user in a requester role is connected
to a Corima client. It performs a change of a certain data object. The object is sent to
a server within a request call. The server just publishes a temporary created object for the
corresponding confirmator. The object is transferred to the Corima client and displayed
within an user interface designed for making confirmations.

A user in a role of a confirmator confirms the given object (i.e., it creates the affirmation)
and sends it back to a server. Finally, the confirmed object is saved to the risk management
system by the confirmation service.

It is obvious that a unit supporting such a confirmation process must take a part on
both, client, and server side. On the client side, two components must be introduced. The
first component comes from the requester, the second from the confirmator point of view.
Let us call them Requester Client and Confirmator Client. These components represent
actors in DEMO, the initiator and the executor. They provide methods for performing
all valid acts. Technically, RequesterClient and ConfirmatorClient are classes that
mediate all clients’ demands to the server (see the C# code snippet below). For a simplicity,
access modifiers and the detailed implementation are omitted. The ConfirmatorClient will
be implemented analogously.

class RequesterClient <...>

...

void Request(object obj) {

// Client -server call requesting an

// affirmation of an object

};

void Quit(object obj) { ... };

void Accept(object obj) { ... };

void Reject(object obj) { ... };

...

}

Listing 7.1: Snippet of the RequesterClent class

99

7. Interactions Between People and Technology

On the server, a confirmation service component will take a part. It is a component
responsible for reacting on acts performed on the client. It basically contains two subcom-
ponents, Confirmation Provider and a Confirmation Handler. The Confirmation Provider
publishes end points to which the client-server calls are communicated. The calls are dir-
ectly forwarded to a Confirmation Handler that maintains the whole confirmation process.
Technically, these subcomponents are implemented by two classes, ConfirmationProvider
and ConfirmationHandler. Again, we omit the implementation details and concentrate
on the general structure only. We list the code snippets below.

class ConfirmationProvider

...

void OnRequested(

...,

object obj) {

// Forward of a request to a Confirmation Handler

};

void OnQuit (...) { ... };

void OnAccepted (...) { ... };

void OnRejected (...) { ...};

void OnPromised (... { ... };

void OnDeclined (...) { ... };

void OnDeclared (...) { ... };

void OnStopped (...) { ... };

...

}

Listing 7.2: Snippet of the ConfirmationProvider class.

class ConfirmationHandler {

...

void Register (...) { }

void Request(

...,

object obj) {

// Request confirmation of a given id

};

void Quit (...) { ... };

void Accept (...) { ... };

void Reject (...) { ... };

void Promise (...) { ... };

void Decline (...) { ... };

void Declare (...) { ... };

void Stop (...) { ... };

...

}

100

7.3. The Confirmation Engine

Listing 7.3: Snippet of the ConfirmationHandler class.

In this section, we clarified key components of the whole confirmation engine architec-
ture. A requester and a confirmator roles, we identified in Section 7.2.1, are represented
by RequesterClient and ConfirmatorClient. Both mediate demands to the server side.
The confirmation principle itself is realised using two components – ConfirmationProvider
and ConfirmationHandler. These constitute a Confirmation Service maintaining the en-
tire confirmation logic. In the next section, we describe how the confirmation pattern, a
confirmation, and an affirmation fits into the Confirmation Service.

7.3.2 The Confirmation Pattern in the Confirmation Service

The confirmation in Corima is a sequence of legit acts (see Section 7.2.2). Their legality
is given by the current context of a confirmation (who is executing the act, which acts
have already passed, and which object is a subject of the confirmation). Such a sequence
must respect a certain confirmation pattern. We already pointed out that we suppose
the standard transaction pattern in DEMO should satisfy all needs for confirming various
objects. Thus, the valid subsequences of acts in a confirmation are driven by a standard
transaction pattern.

In fact, the Confirmation Service, we built up in the previous section, is merely an
implementation of this pattern. It contains a method for each possible act in the standard
transaction pattern. It behaves in accordance to that pattern and evaluates if a given act
(method call) is legal in the current situation. If so, it moves the confirmation into another
state.

Each confirmation in Corima is of a specific kind, a confirmation kind. The purpose
of each confirmation is a creation of an affirmation. Technically, an affirmation is just
a set of properties and their values. It is an instance of a class specifying these proper-
ties. Confirmation Service only have to know how to deal with such an instance. When
a confirmator performs a declare act, a new value of this instance is delivered within
a client-server call. In case the Confirmation Service persists this value, a proper way of
persisting it must take place. We already explained in Section 7.2.2) that an affirmation
kind specifies the information contained in an affirmation (being its product). It means
that if a Confirmation Service knows beforehand the affirmation kind, it can persist the
affirmation appropriately.

Now, we are ready to discuss which information is actually needed by a Confirmation
Service to serve the acts performed on the client (e.g. request or declare). It must
at least know the confirmation kind, and the affirmation kind, and the object being con-
firmed. To identify this information smoothly, we introduce a concept of registrations. The
confirmation kind is paired with the corresponding affirmation kind and registered with
a confirmation handler. All client-server calls use the identifier of a registration to manifest
in which confirmation kind they are interested in. The methods of ConfirmationHandler
are enhanced as follows:

101

7. Interactions Between People and Technology

...

void Register(

int registrationId ,

IConfirmationKind ck,

IAffirmationKind ak);

void Request(

int registrationId ,

object obj);

...

Listing 7.4: Snippet of the methods in ConfirmationHandler.

In this section, we outlined that the Confirmation Service implements the complete
transaction pattern from DEMO. It registers pairs of confirmation kinds and affirmation
kinds, and it uses these registrations for handling the client-server calls. To recognise the
registered pair, registrationId is placed in each client-server call. In the next section,
we show the purpose of a confirmation kind and an affirmation kind, and we describe how
the Confirmation Service uses them.

7.3.3 The Role of a Confirmation Kind and an Affirmation Kind

The primary responsibility of a confirmation kind is to manage the process flow, namely
to:

◦ decide if the act is allowed or not,

◦ specify whether the act is tacit3 or not.

Next, in Corima, it is necessary to support custom actions tied to different acts in differ-
ent confirmation kinds. For example, sending an email after giving a promise is a custom
action that is applied only for some confirmation kinds. Thus, the second responsibility of
a confirmation kind is to specify these custom actions.

Let us consider an interface of a confirmation kind in the code-snippet below. If each
method is implemented, the Confirmation Service can take it into account. For instance, if
the promise happens, the Confirmation Service can execute PromiseAct defining a custom
action (e.g., sending an email).

Another example is a tacit execution. Let us consider a situation when the accept is
tacit, and the reject is not allowed. If a confirmator performs the declare, the Confirm-
ation Service can react by directly moving the confirmation into the state accepted and
execute the custom method AcceptAct.

3A tacit execution of an act means that the act is performed automatically, without being explicitly
requested.

102

7.3. The Confirmation Engine

interface IConfirmationKind {

Act RequestAct { get; set; }

Act QuitAct { get; set; }

Act AcceptAct { get; set; }

Act RejectAct { get; set; }

Act PromiseAct { get; set; }

Act DeclineAct { get; set; }

Act DeclareAct { get; set; }

Act StopAct { get; set; }

}

class Act {

bool IsAllowed { get; }

bool IsTacit { get; set; }

Action <...> Execute { get; set; }

}

Listing 7.5: Snippet of the IConfirmationKind interface.

An affirmation kind is implemented as a class having a set of custom properties charac-
terising the affirmation. The requester and the confirmator operate with those properties
while performing acts (e.g., if the requester is deciding whether the declared affirmation is
acceptable or not).

To sum up, confirmation kinds define the process flow and the custom behaviour of
the Confirmation Service. Affirmation kinds hold custom properties, whose values consti-
tute the affirmation.

7.3.4 Revocations in the Confirmation Service

In Corima, a revocation is a situation when a requester or a confirmator change their mind
just after performing an act. If we want to support such situation, we have to enhance
the confirmation senrvice.

In DEMO, four revocation patterns exist in the complete transaction pattern (Sec-
tion 3.8). We believe that by extending the implementation with revocation patterns, we
cover all exceptional cases within the confirmation principle. The changes will affect all
the identified components. We do not pursue this topic any further here, let us just show
the relevant extension of RequesterClient:

class RequesterClient <...>

...

void RevokeRequest(object obj);

void RevokeAccept(object obj);

...

}

103

7. Interactions Between People and Technology

Figure 7.3: Confirmation engine in the Corima infrastructure

Listing 7.6: Snippet of the extension of RequesterClent class.

7.3.5 Confirmation Engine Summary

We conclude our description of the confirmation engine with Fig. 7.3 illustrating how the
engine fits into the Corima infrastructure.

The confirmation engine consists of the following key components:

◦ RequesterClient

◦ ConfirmatorClient

◦ ConfirmationProvider

◦ ConfirmationHandler

The client plugin dedicated for requesters uses RequesterClient to mediate its requests
to the server. The client plugin for confirmators handles its demands via ConfirmatorClient.

The server publishes end points using ConfirmationProvider that forwards all re-
quests into ConfirmationHandler. This is a central unit handling the entire confirm-
ation process. Without an extra information, this unit is useless. It must be supple-
mented by ConfirmationKind paired with AffirmationKind. Both are registered with
ConfirmationHandler during the Corima server startup.

104

7.4. An Illustrative Example

7.4 An Illustrative Example

Let us demonstrate how the engine can be used to address a concrete problem.

Let us consider deals and their confirmations. Each creation of a deal must be confirmed
before the deal ends up in the risk management system. It means that the created deal is
not automatically persisted in the risk management system. Instead, it stays in a temporary
state until a privileged confirmator approves it. In case the confirmator is not satisfied with
the deal, he can deny the creation and drop a comment explaining why.

First, we clarify the whole problem deeper and write down rules for deal confirma-
tions. Second, we show how the rules influence the implementation. We conclude with a
description of how the entire integration works.

7.4.1 Rules of the Deal Confirmation Case Study

To successfully integrate the confirmation of deals into Corima, we have to scrutinize the
problem and specify the rules first.

◦ Rule (1): The confirmator is not allowed to refuse a request to perform a confirmation.
Once he is asked to confirm a deal, he has to produce a result.

◦ Rule (2): No revocations are allowed. Neither the requester, nor the confirmator can
change their minds after performing an act.

◦ Rule (3): As soon as the confirmator approves or denies the deal, the confirmation is
over. The requester cannot express a disagreement with the confirmator’s decision.

◦ Rule (4): An email notification is sent to a confirmator once a request is performed.

◦ Rule (5): The confirmator does not have other option but to approve or deny a deal.
He can just optionally leave a comment.

We described that the confirmation engine (respectively its confirmation handler) does
not support any confirmation process on its own. This knowledge is represented by the
injected confirmation kind and an affirmation kind. Both the kinds have to be implemented
and registered in the confirmation handler. Thus, we have to implement the following:

◦ DealConfirmationKind, a class representing a confirmation kind. The interface
IConfirmationKind must be implemented by this class.

◦ DealAffirmationKind, a class representing an affirmation kind.

The way the classes are implemented directly depends on the rules stated before. Let
us examine each rule and describe how it is implemented:

105

7. Interactions Between People and Technology

◦ Rule (1): The fact that the confirmator cannot refuse a confirmation request means
that the promise act is performed tacitly. The implementation of DealConfirmationKind
must consider it and set a value of its PromiseAct property to IsTacit=true.

◦ Rule (2): No revocation is allowed, thus all the properties regarding the revocations
must be set accordingly
(e.g., RevokeRequestAct.IsAllowed=false).

◦ Rule (3): Because the requester cannot actually react on a decision done by a con-
firmator, his accept is tacit4. That means the property AcceptAct must reflect
this.

◦ Rule (4): Sending of an email is a custom action. It must follow the request. Thus
the method Execute of RequestAct must be implemented to send an email to the
confirmator.

◦ Rule (5): The look of DealAffirmationKind is determined by the options available
to a confirmator. It must be a class having two properties. One of a type enum,
having two possible values: Approved and Denied. The second property representing
a comment, so most probably of a type string.

In this part, we described how each of the rules affects the implementation of two
types of kinds – DealConfirmationKind and DealAffirmationKind. In the next part, we
register them in a confirmation handler. We show how the requester and the confirmator
undertake the expected deal confirmation process.

7.4.2 Deal Confirmation Process

Let us demonstrate the entire deal confirmation process now. It is depicted in Fig. 7.4.
During a Corima server startup, the server-side Deal Confirmation plugin is loaded

and DealConfirmationKind together with DealAffirmationKind are registered in the
confirmation handler under a specific identifier Id, let us assume the number 248. This
identifier must be known to both the client and the server-side.

A pair of client-side Corima plugins must be present to provide user interfaces for the
deal confirmations. One plugin aimed for the creation of the deal, the other is dedicated
for its approval. Once a requester creates a deal, the deal must be confirmed. It is done by
pressing a Request button. The command related to this button is implemented as follows:

OnRequestExecuted(Deal deal) {

var rct = new RequesterClient (248);

rct.Request(deal);

...

4This means that the result phase will practically lack the accept act, however, formally, it is present,
so the transaction axiom is still valid.

106

7.5. Related Work

Figure 7.4: Deal Confirmation Process

}

Listing 7.7: The implementation of a request command

This method results in a client/server call to the confirmation provider. The provider
forwards the call to the confirmation handler asking for a confirmation identified by 248.
The confirmation handler searches for the confirmation kind registered under the number
248. Subsequently, the handler changes the status of the confirmation to requested, and
it executes the method Execute of the corresponding RequestAct. Since RequestAct of
the DealAffirmationKind has to send an email to the confirmator, it is done consequently.
Because the PromiseAct is tacit, the handler instantly adjusts the status of the confirma-
tion to promised.

Now, the whole process waits for the confirmator’s act. The client-side plugin Deal
Approval responsible for making approvals is designed for this purpose. Its implementation
is more or less analogical to the previous one, thus we do not elaborate it any further.

7.5 Related Work

Formetis is a Dutch commercial company that has developed and successfully applied
a DEMO Engine (also called a DEMO Processor) for its customers, as documented in [97]
and [105]. The DEMO Engine enables the construction and execution of DEMO models.
It is also implemented in the .NET platform using the C# language. The engine itself
is independent on the technological environment. It has been used to implement desktop
workflow applications and an educational application http://demoworld.nl.

The first DEMO Engine application in production is a case management system for
a company that provides energy and utility services. The customers – citizens – are active

107

http://demoworld.nl

7. Interactions Between People and Technology

co-producers of the service by providing information, coordination of some tasks, approval
of decisions, etc. The contract covers issues such as type of services provided, costs, costs
calculation procedures, conditions for payments, letters, mails, instructions for the sub-
contractors, etc. There is an enforced compliance to legal procedures, policies, conditions,
approvals etc.

Formetis’s solution is currently the leading industrial solution of a software system
based on DEMO and its underlying theories. However, its scope is much broader than
our confirmation engine. It is a complete general workflow engine, while our confirmation
engine is a rather lightweight, compact module for Corima fully focused on its specific
task. Overall, technically, it would be perfectly possible to use Formetis’ DEMO Engine
as a confirmation engine, however, from the software engineering point, often lightweight
focused solutions may be preferred, as is the case of Corima.

Agreement Technologies [167] may seem similar to our approach, however there is a
fundamental difference. Our approach addresses confirmations of ontological transactions,
which cannot be automated [59], while agreement technologies are focused on automated
agents, i.e., the infological level.

7.6 Chapter Summary

In this chapter, we mapped the PSI theory to the confirmation principle. We designed a
research artefact prototyping a confirmation engine. We outlined its implementation and
described it as an independent unit in the Corima framework. At the time of prototyping
the confirmation engine, we were not in a position to evaluate the solution broadly as it was
not used in practice. However, later it was deployed to an environment of few banking and
corporate customers of Corima. Since 2015, it has been widely used in a production. This
gives us an empirical proof that the concepts were designed adequately, and the mapping
of PSI theory to SW fulfilled its goal.

The goal of this chapter was to show that utilising the PSI theory for a design of
the confirmation engine in Corima brought considerable benefits. Mainly, designing the
confirmation pattern by mapping the corresponding concepts from the PSI theory results
in a guarantee that all possible confirmation situations are covered.

More importantly, it revealed that each object can be confirmed in an independent GUI
defined in a Corima plugin. This means that when the GUI technology of Corima changes,
only the GUI plugins need to be recreated, the confirmation process remains unchanged.

108

Chapter 8

Flexibility-Usability Trade-off

In our research, we cope with designing SW better suited for technology transition. Indeed,
an important concept of such a SW might be a split of its function and the construction that
we investigated in Section 3.6. The function of SW is typically more stable compared to its
construction that often continues to adapt to new technologies indefinitely. Therefore, one
direction might be to orchestrate the SW from components having the required function
yet differing in a construction. The function of confirming objects described in the previous
chapter can be an example. Although its construction (GUI where the user confirms the
objects) may change, the function remains the same.

However, as addressed by RO 2.2, we have to understand how flexible the components
need to be to stay usable in such an orchestration. In 2017, we inspected the phenomenon
of the trade-off between flexibility and usability in CBS development. We published a
paper in the proceedings of World Conference on Information Systems and Technologies
in Porto Santo [A.5]. In this chapter, we adjust it for the needs of this dissertation thesis.

8.1 Introduction

‘Increase flexibility, decrease usability’ is a well-known trade-off influencing the effectiveness
of reusing artefacts in many engineering disciplines. We claim that software development
is influenced, too. We propose a model of building components that can help to decrease
the costs of software development, while providing a demanded level of flexibility.

In Section 4.1.1, we explained that NATO Symposium in 1968 was a tipping point in
SE. McIlroy [68] brought his vision of software assembling instead of programming it. The
overall motivation behind the components organised into standard libraries was to produce
a software with a higher quality, while reducing costs on its development. The fundamental
question is how to design the reusable component in the best way. Antovski [5] explains
that ‘to cover different aspects of using components, they have to be sufficiently general,
but at the same time, they have to be concrete and simple enough to serve to particular
requirements in an efficient way’.

This chapter contains a modified version of: Ondřej Dvořák,

Robert Pergl, and Petr Kroha. Tackling the flexibility-usability

trade-off in component-based software development. Published

in: WorldCIST, Porto Santo, Madeira, 2017. [A.5]

109

8. Flexibility-Usability Trade-off

However, notwithstanding the mass of component libraries created for decades, software
projects still exhibit a high rate of failure, as documented by the reports of the renowned
Standish Group1. They usually address topics like ‘unclear project objectives’, ‘scope
creep’, ‘communication gap’, etc. [2]. We argue the next topic is the decision about the
kind of reusable components. Since the component libraries exhibit volatile quality, it is
important to select the right one.

In general, the trade-off indicates that an increase of a flexibility decreases a usability.
Our opinion is that a widespread trade-off between flexibility and usability may bring an
explanation of the varying qualities of components.

In the next sections, we elaborate on the definitions of flexibility and usability. We will
explain the circumstances under which the mentioned trade-off is valid in the domain of
CBSs. Our hypothesis is that the trade-off is legit, however, equally flexible components can
significantly vary in their usability. The architecture of components seems to influence the
flexibility/usability rate. Our intention is to measure the trade-off based on a constructional
decomposition of components. The relations between the semantics of the component and
the semantics of the system build another dimension of the problem. As we show below,
the existing definitions of flexibility and usability do not consider this aspect in reality,
thus they do not answer the problem of costs.

8.2 Overview of Flexibility and Usability

Here we use the flexibility definition put forward in Section 4.1: ‘the ability of a resource to
be used for more than one end product’ [69], as it may be easily mapped into the domain
of CBS:

Definition 11. Flexibility is the ability of a component to be used for more than one
CBS.

Usability is a broad term. We already touched in in Section 4.1. It is often used for
user experience topics, i.e., handiness, elegance, clarity, etc. [76], commonly exhibited by
a software to its end-users. However, for our purpose we need to understand usability in a
narrower sense as defined in [111]: ‘Usability is the degree to which a software can be used
by specified consumers to achieve quantified objectives with effectiveness, efficiency, and
satisfaction in a quantified context of use’. In terms of CBS, the specified consumers are
software engineers using the given component. Therefore, we can translate the definition
as:

Definition 12. Usability is the degree to which a component can be used by software
engineers to achieve quantified objectives with effectiveness, efficiency, and satisfaction in
a quantified context of use.

1Standish Group is an international advisory company famous for its research on IT projects failures
and improvements.

110

8.3. The Core of the Problem

8.2.1 Flexibility-Usability Trade-off

A cross-disciplinary book [132] reminds that ‘as the flexibility of the system increases, its
usability decreases’ is a design principle trade-off. It compares the trade-off to a well-
known maxim ‘jack of all, master of none’ and explains it as follows: ‘flexible designs are,
by definition, more complex than inflexible designs, and as a result are more difficult to
use’. The principle trade-off between flexibility and usability is widespread, e.g., in science
– philosophy has a very high flexibility but a very low usability.

However, we argue that the above definition may not be true depending on the definition
of flexibility and usability. The following example illustrates that by a certain slightly
modified understanding of the flexibility and usability, we can easily find components that
exhibit high flexibility and high usability at the same time.

There are companies (such as SAP) delivering cross-industry, standardised software
for business lines like finance, sales, marketing, human resources, and many more. The
software is designed to be modular: For example, customers can buy an accounting module
and integrate it into their enterprise environment. Following Definition 11, the accounting
module is highly flexible, as it can be applied in an accounting department of nearly any
company. Simultaneously, according to Definition 12, it is highly usable, as it claims to
satisfy all needs of account management efficiently. In this case, the flexibility does not
seem to decrease usability. Thus, the trade-off is not valid in this case.

The gist lies in the fact that the given definition of flexibility completely ignores the costs
of a component integration. The integration of the accounting module may be enormously
expensive in practice. All surrounding systems may need changes. In addition, there
may be high costs of integration at the side of the accounting module. Therefore, in this
particular case, the costs are mostly related to adopting the surrounding infrastructure
to the standardised interfaces of the given accounting module, which is not addressed in
Definition 11.

To come to more realistic considerations about modular component systems, we revisit
this scenario in Section 8.3, where we reformulate it in a more formal way, including the
consideration of integration efforts.

8.3 The Core of the Problem

The definition of flexibility does not say anything about the costs related to the amount
of labour of fitting the component into a system. The costs are given by the difference in
the functionality offered by the integrated component and the functionality demanded by
the system in which the component should be integrated. We can speak about a semantic
difference. If the component absolutely fits, no changes are needed, and the costs are
marginal. In other cases, we may distinguish two situations2:

2In practice, we encounter typically mix of the situations, however, this does not affect the reasoning
made.

111

8. Flexibility-Usability Trade-off

1. The integrated component is changed minimally, but the remaining system is adapted
intensively to cooperate with the component.

2. The system stays untouched, but the integrated component is modified thoroughly
to fit into the system.

These cases support the idea that changes in a component have another (smaller)
weight compared to changes in the system when calculating their costs. Fig. 8.1 depicts
the described situations. Suppose that CBS is represented by the nodes in the figure. The
node with a question mark in the middle represents the integrated component. Suppose,
we have two different components, A and B. Let us assume that when using the component
A, all the surrounding components need to be changed. On the other hand, when using
the component B, we only need to slightly adopt B to fit in the whole system, but we
change the system itself intensively. In the view of Definition 11, A and B are equally
flexible because they both can be used in the given system. However, the situations are
very different and may significantly differ in costs.

The relation between costs, flexibility, and usability has to be extended to respect the
influence of Semantic DiFference (SDF) between the demand of the system and the offer
of the component. We can write:

costs = f(SDF, flexibility, usability). (8.1)

In some cases, the SDF has to be removed by changes of the component. In other cases,
the SDF has to be removed by changes in the system, or both.

Figure 8.1: Flexibility of components

The first situation refers to the notion of integrability. Merriam-Webster defines this
term as ‘having different parts working together as a unit’ – the different parts are related
to the surrounding system plus the integrated component, which should work together as
a unit.

The second situation refers to the notion of moldability. Merriam-Webster explains the
roots of this term as the ability ‘to knead (dough) into a desired consistency or shape’ –
the dough is the integrated component, which is kneaded into the shape fitting system.

We believe that the original McIlroy’s idea, as well as the proper component-based
nature goes the way of moldability. Thus, we base our following considerations in this
perspective:

Assumption 1. The surrounding system is not changed considerably when integrating a
new component.

112

8.3. The Core of the Problem

By including the word ‘considerably’, we acknowledge that there must always be per-
formed some integration changes to the surrounding system. However, these should be
marginal compared to changes of the component itself.

Now, we may offer an alternative definition of flexibility:

Definition 13. Flexibility is the ability of a component to be molded for use in more
than one CBS.

By formulating Definition 13, we specified more clearly what does it mean to reuse the
component – the component is molded into a shape to be integrated into a new system.
Now if we have a high moldability, how do we measure the cost of it?

8.3.1 Two Architectures

To realistically compute the cost of moldability, we argue that we need to distinguish two
situations. We call these situations a ‘Carpenter model’ and a ‘Mosaic model’: Carpenter
builds a (wooden) system by taking various generic components available (logs, beams,
planks, etc.) and molds them into a desired shape to be integrated into the resulting
system.

Definition 14. Carpenter model in building a component-based system means taking
independent components and molding them to be integrated into the resulting system.

These independent components are usually the programming language libraries or some
higher-level components, e.g., web development components, or persistence solutions. The
building process is typically hierarchical, i.e., we compose more complex components from
the simple ones. This forms the architecture of the system. This model also applies to
building the system from the scratch. The left arrow in Fig. 8.2 illustrates the Carpenter
model when building a system.

Figure 8.2: Carpenter/Mosaic model of building a component system

On the other hand, imagine a situation where we have a mosaic. The mosaic consists of
simple pieces put together to form parts of a picture, like a house. Once we have the ‘house
component’ in the mosaic, we may like to reuse it in another mosaic3. To fit the ‘house
component’4 into another mosaic, we typically need to mold the component to fit it. It is

3In practice, to use the part of the mosaic would mean to recreate it, however, in software, we have
the luxury of cloning a piece of code with no effort.

4i.e., the house component clone

113

8. Flexibility-Usability Trade-off

possible, as we may assume that there exists an original former mosaic that was created
using the Carpenter model, i.e., built by combining simple pieces into more complex ones.
These complex pieces may be disassembled and molded into the proper new shape. The
right arrow in Fig. 8.2 illustrates the Mosaic model when building a system.

To summarise, we may distinguish two models of molding components to be fitted into
the resulting system: the Carpenter model, where we mold generic simple components into
bigger ones by composing them, and the Mosaic model where we take complex components
and mold them by disassembling and changing some parts. These two models obviously
differ in how costs should be calculated.

8.4 Proposed Measures

In this section, we discuss and propose measures to calculate the effort/costs of reusing
components by means of moldability. Moldability represents the reducing of the semantic
difference between the system and the component.

The Carpenter model. This model is essentially a traditional way how software is
built. If the components degrade into atomic expressions of a programming language,
the composition of the system means putting together these expressions. As we typically
assume a text-oriented computer program, we come to well-known counting of Lines of
Code (LoC). There are well-established, documented, and discussed methods of assessing
the effort/cost of such model of development: Constructive Cost Model (CoCoMo) [88],
Function Points Analysis (FPA) [48], and others. CoCoMo computes a development effort
as a function of the size of a program. FPA tries to estimate a cost on top of the demanded
SW functions. A cost estimation performed by CoCoMo is based on LoC, and it is affected
by certain variables. There are several types of CoCoMo models that differ in the selection
of variables (basic, intermediate, detailed). As the CBS development increases in its use –
mostly by using GUI toolkits – the original CoCoMo model [88] becomes imprecise [24].

FPA incorporates this observation more precisely in the form of the language gearing
factor [175], which is specified for the most used languages and programming systems. More
CBS exhibit lower values – e.g., Powerbuilder scores 26, while assembler scores 119. This
illustrates the need to tune the cost estimation methods for various levels of components.

To summarise, the cost of building the Carpenter model component leads to determ-
ining a traditional software building effort by taking into account the level of component
architecture.

The Mosaic model. This model of molding a component is based on the required
functional and non-functional changes to the component. There are several established
methods in SE for functional analysis like UML use-case model [93], Extreme Programming
User Stories [18], or CoCoMo II Object Points [24]. All these models represent a functional

114

8.5. Assessing Effectiveness and Efficiency in Usability

decomposition tree. As explained in Section 3.4, the functional decomposition represents
so-called black-box perspective on a system. It is mostly about how the system can be
used.

However, the tree nodes represent just abstraction classes of the functionality, which is
in the leaves. Thus, we measure the functional changes as the number of changes of the
leaves. We may observe that leaves represent a list structure in the end, which is analogous
to use-cases or User Stories mentioned above. For the illustration in our example, we use
the UML use-case diagram (Fig. 8.3).

The traditional estimation methods cannot be used for the Mosaic model, as molding
means here changing some of the (existing) parts of the components.

The effort of molding a Mosaic component can be measured as the number of changes
in its construction decomposition tree representing its decomposition into sub-components.
Construction tree represents so-called white-box perspective of a system, what is ‘a model
capturing construction and the operation of a system, while abstracting from implement-
ation details; they are assumed to be irrelevant’ [58]. A corresponding constructional
perspective on a system thus captures of which parts the components are composed, and
how the parts are interconnected. We depict construction decomposition using UML com-
ponent diagram [177] (Fig. 8.4).

The effort of molding corresponds to operations of adding, deleting, and moving a node
in the construction decomposition tree [212].

Adding a node means developing a sub-component, which leads to the Carpenter model.
Moving of a node is related to restructuring (sub-)components in the system, which is
usually done during refactoring of a code. Changing of a node is not listed, as it can be
expressed by additions and deletions.

If we denote E(CA) the total effort of addition operation, E(CD) the total effort of
deletion operation and E(CM) the effort of moving operation, the resulting effort E of
molding a Mosaic component M is:

E(M) =
∑
i

E(CAi) +
∑
i

E(CDi) +
∑
i

E(CMi), (8.2)

E(CAi) may be computed using the Carpenter model estimation method. E(CDi) are
the efforts of deletions, which are typically much lower, however, in specific cases, the
deletion may require additional changes to the component, so we leave it in this general
formula. E(CMi) is the effort of modifying a constructional node. It may not be easy to
assess it, as it typically is a complex set of additions and deletions. One of the feasible
practical approaches is to assess the effort by an expert estimation using a work break-down
decomposition [101].

8.5 Assessing Effectiveness and Efficiency in Usability

We may assume that the required efficiency and effectiveness in the usability definition
in Definition 12 are concerned by costs. The costs correlate with effort. All the three

115

8. Flexibility-Usability Trade-off

components of Equation (8.2) can be transformed to costs. The first one, as usual in the
Carpenter model. The second one can be measured in Man-Days (MDs). The third may
refer to a fixed cost of contracting or it can also be expressed in MD.

The first example. It presents our approach on an illustrative problem from the GUI of
Corima – a tabular data viewer. Let us imagine a situation where we have a system using
a tabular data viewer component. Its UML use-case diagram is in Fig. 8.3 (just white
use-cases UC1 - UC5). Corresponding UML component diagram is depicted in Fig. 8.4
(just white nodes).

Figure 8.3: Use-case diagram of a tabular data viewer

Figure 8.4: UML component diagram

We would like to reuse this component in a different system. However, we need to mold
it, as the original system contained just a small number of viewed data, so they always
fitted to one screen. On the other hand, the new one contains a big number of data,
which do not fit on one screen. By performing a functional analysis, we come to three new
use-cases UC7 –UC9 in Fig. 8.3, we dyed them grey. By performing an impact analysis,
we come to adding new grey component Data Filter in Fig. 8.4. In addition, we need

116

8.6. Revisiting the Flexibility-Usability Trade-off

to change two components Data Retriever and Viewer Configurator). The resulting
effort of molding the tabular data visualiser can be expressed as:

E(M) = E(CA(C10)) + E(CM(C3)) + E(CM(C7)). (8.3)

We neglected deletion operations in the expression. Let us assume that E(CA(C10)) has
been computed with the result 10MD, E(CM(C3)) = 3MD and E(CM(C7)) = 1MD, thus
E(M) = 14MD. We can now assess the usability as high, because the effort of molding
the component is feasible.

The second example. It discusses the situation when we want to reuse the resulting
tabular data visualiser from the first example yet for another system. In this situation,
we determine that the functionality is equal, however, the system contains an even bigger
number of data, and their retrieving is too slow. Thus, we need to mold the component for
this situation. The use-cases do not change, but the non-functional attribute of ‘Picking
Data’ use-cases changes. Based on this change, we need to change construction node Data

Retriever to become more efficient for big amount of data. The resulting effort is thus:

E(M) = E(CM(C3)). (8.4)

Let us assume that an expert estimation results in 50MDs. Now the usability is assessed
as considerably lower due to low efficiency. We may like to explore alternatives, like using
a different component or switching to the Carpenter model.

8.5.1 Discussion

Examples 1 and 2 show two different scenarios of Mosaic model component reusability.
Example 1 exhibits a situation with high usability of the tabular data visualiser component:
the effort of molding the component is not high, thus the usability is high. On the other
hand, in Example 2 the effort of moldability is too high, thus the usability is low.

8.6 Revisiting the Flexibility-Usability Trade-off

Let us now elaborate on the mentioned trade-off between flexibility and usability. We
argue that the trade-off holds inevitably just for the Carpenter model. In this situation, it
is obvious that greater flexibility leads to a more elaborate need of molding (configuring)
the component to be used in the building process. Higher effort means lower efficiency and
thus lower usability.

On the other hand, in the Mosaic model, the high flexibility is beneficial, because
it increases the chances of effective reuse. At the same time, it may be the case that
molding the component for a different system may not be elaborate, it may be even trivial,
depending on the F/C impact analysis.

117

8. Flexibility-Usability Trade-off

8.7 Related Work

Flexibility and usability in component design is heavily discussed in manufacturing systems
domain as the reconfigurable manufacturing approach. It is known as a manufacturing
systems paradigm that aims at achieving cost-effective and rapid changes by designing the
manufacturing system and its machines ... to facilitate reconfiguration (e.g., as described
by ElMaraghy [72]). The challenges faced are very similar to ours [72].

Naab et al. [152] deal with architectural flexibility in SW lifecycle. They also observe
that ‘realising flexibility scenarios means to be prepared for conducting changes at a later
point in time with limited effort’. Evolvability of SW components (see Chapter 2) seems to
be the same class of problem as moldability for reuse, as it poses requirements on flexibility.

8.8 Chapter Summary

In this chapter, we clarified the definitions of flexibility, usability, and their trade-offs in
the context of CBS. We distinguished the integrability and moldability view on compon-
ents integration. Next, we followed the way of moldability as the required model of CBS
development. We explained that there are two models of CBS building: the Carpenter
and the Mosaic. We formulated a method to assess the effort of moldability of each of the
models. We illustrated our approach using two examples.

There are several limitations and open questions. First, the applicability of the method
relies heavily on the ability to properly assess efforts. We showed that there is a lot of
existing work done, but not entirely tailored for component-based development. Here
lies a lot of future work. The second issue lies in the ability to perform a constructional
decomposition and F/C impact analysis, which is trivial in small systems like we presented,
but complicated in a big, heterogeneous system. This is also a topic for future work.

Next, the ‘quantified objectives’ that are claimed to be achieved in Definition 12 need
attention. Sometimes, some functional requirements are consciously ignored to increase
efficiency (i.e., decrease the cost). An extreme situation is the shelf software, where the
user is forced into the functionality of the system and not vice versa. In this situation, we
may theoretically get to high usability, but this is not the desired state.

The chapter culminates in Section 8.6. Based on the presented method, we argued that
the famous flexibility-usability trade-off may not hold for the Mosaic model. This may
be a good motivation to employ the Mosaic model in programming practice. It repres-
ents a prototype-based programming, where existing solutions are molded into new ones.
This idea may be seen in the old Self programming language [188] or today’s JavaScript’s
prototype-based inheritance. However, these are mainly language concepts, while true Mo-
saic model component development should work with higher-level components. A better
illustration of it may be REST service web server implementation, where a new implement-
ation may be achieved by taking the original one from a system and molding it for another
system. Today, most of the molding is performed by copy-paste, lacking an engineering
rigour.

118

Chapter 9

RPA Bridge to New Technologies

In Chapter 7, we concluded that systems based on PSI theory might be a great basis for
technology transitions. More specifically, we presented so-called confirmation principle.
We translated it to concepts introduced by General PSI theory and DEMO. This revealed
that if a process where people interact is well-described and independent from GUI, the
concrete tasks requiring user interaction may be generated. In that particular case, tasks
in a confirmation process. This is another example of F/C separation discussed by BETA
theory in Section 3.6. In other words, the resulting tasks could be seen as artefacts from
TAO theory introduced in Section 3.2. They are typically designed and created with some
affordance in mind to provide corresponding functions. In case of the confirmation prin-
ciple, the tasks are designed with the function of confirming various financial instruments
before they land in the risk management system. However, having these tasks described
independently from the GUI technology, their GUI may transit from technology to another.
Specifically, while the task’s function remains the same, its construction in certain GUI
technology may evolve. We only need to properly describe the mapping between them.

Nevertheless, this idea of describing tasks as technology-independent activities done by
users is not new. It is heavily practised with the help of BPM introduced in Section 4.5.5.
It is focused on generic end-to-end processes. In BPM, the user’s tasks are described along
other activities in an enterprise. It represents a foundation platform for companies to
orchestrate users, data, and systems. Therefore, it often comes with big cross-company
transformation project. While it aims for integration of many systems in enterprises, so-
called RPA introduced in Section 4.5 rather focuses on task-level automation. Although it
is not able to provide a powerful end-to-end business process automation as BPM does, it
may be very powerful in its combination.

Therefore, in this part of our research, we want to evaluate how RPA technology may
contribute to smoother technology transitions. We focus on routine activities requiring
users to interact via GUI of a legacy SW. We want to explore if RPA is able to shield
users from using legacy SW by creating tasks independent from a specific GUI technology.
RPA may translate these tasks into BPM activities, thereby become a bridge between GUI
workflows in legacy SW and technically independent processes in BPM.

This chapter contains a modified excerpt of: Ivana Nacevska.

The evolvability of technologies with the help of Robotic Process

Automation. Published in: CTU in Prague, Faculty of Inform-

ation Technology. Prague, Czech Republic, 2020. [A.14]

119

9. RPA Bridge to New Technologies

9.1 Combining RPA with BPM

In Section 4.5, we provided a general information regarding RPA. Even though, both RPA
and BPM seek process automation, these two concepts have different areas of influence.
Thus, they are not in conflict. Typically, BPM systems support an integration with RPA
tools. In this section, we will investigate how this integration is done by analysing examples.
Although in the work of Nacevska [A.14], we elaborated on different BPM vendors, here
we only provide the most relevant results.

Triggering RPA workflow in BPM process. We will exemplify our findings on a
combination of UiPath that we described in Section 4.5.4, and Camunda that we introduced
in Section 4.5.6. The Camunda company itself provides official articles regarding the end-
to-end workflow automation. They explain how to get the best out of both tools [230].

The process for automation includes legacy systems without APIs, such as Customer
Relationship Management (CRM) and Enterprise Resource Planning (ERP). Since updat-
ing the BPMS would take a longer time, they use RPA as a short-term solution.

The Fig. 9.1 depicts BPMN diagram with two so-called Service tasks, each triggering
RPA process. The diagram shows all steps that RPA robot will execute. The author
uses BPMN notation to demonstrate the process visually, even though RPA tools do not
use BPMN for modelling workflows. The diagram may give an impression that RPA
can complete both CRM and ERP task without the need of having BPMS. However,
Winters [230] explains that ‘Camunda manages the business process as a whole while RPA
handles rote manual tasks within a process that can not be completed programmatically’.

Figure 9.1: RPA as a part of a BPM process [230]

Under this scenario, RPA process is triggered from BPMS. Camunda offers integration
with RPA tools via External task pattern, which uses REST API for communication.

Triggering BPM process in RPA workflow. From the previous example, it is obvious
that BPMSs manage to use RPA functionalities in the process modelling. Integrating RPA

120

9.1. Combining RPA with BPM

capabilities means that they are able to trigger an automated workflow that has been
previously deployed. However, the integration can be also done the other way around.
RPA can start the execution of BPM process. If the BPMS provides API for interaction
with third-party applications, RPA can define an activity that will trigger the business
process. In this way, RPA is able to deal with all exceptions that might arise, as well as
gaining the ability to handle activities that need user confirmation.

Combining RPA workflow with BPM process. The Previous examples show that
both RPA and BPM systems can trigger a process/workflow in the other one. BPMS can
replace rule-based user tasks with robots, while RPA can handle exceptions by exporting
tasks to BPMS. Since both ways of interaction are possible, we would like to further
explore the idea of combining RPA and BPM processes. For this, we will use a collaboration
diagram to model a process that will use both systems. While RPA will be seen as the main
automation system, BPMS will be used only for activities that require human decision-
making capabilities. Integrating both systems provides a nice workaround for companies
to overcome the limitations of both approaches of automation.

The RPA workflow and BPM process notation typically differ. Consequently, the rep-
resentation of the RPA process shown in Fig. 9.2 is not correct. Despite that, we are using
BPMN so that we can present the RPA process visually, rather than mapping it as ‘black
box’. The process shown in the diagram is a typical invoice processing done in accounting.
Each step of the work is mapped to an appropriate activity representing a separate task.
Most of the activities are rule-based and executed in the same way, therefore, can be ex-
ecuted by RPA robot. The one that involves working with more sensitive data or making
decisions that cannot be done by robot, will be managed as user tasks in BPMS.

Figure 9.2: Combining RPA and BPM process

The idea of using RPA as main automation system is a bit naive, having in mind that
throughout the thesis of Nacevska [A.14], we stressed out that RPA should not be used
for end-to-end business processing. Rather, it should focus on single task automation.
However, this is a perspective that we investigated further. Moreover, in such a combined
workflow, this would move the entire user interaction to BPMS and may build a basis

121

9. RPA Bridge to New Technologies

for mining end-to-end business processes. As a result, the organisation could step-by-step
determine the technically independent business process, execute it, and either replace the
entire RPA, or still trigger it from BPMS. The implementation of this idea will be presented
in the next section.

9.2 The Case Study

In this chapter, we will investigate the scenario of combining RPA with BPM as outlined in
Section 9.1. First, we will demonstrate typical administrative process in the area of finance.
We will explain each step of the process that is executed manually by the worker. Next,
we will implement this process using pure RPA, and later in a combination with BPM.
Together with Nacevska [A.14], we assessed this implementation using RPA tools UiPath
and Microsoft Power Automate. However, for the scope of this thesis, we only outline
the approach with UiPath and we explain its combination with Corima BPM subsystem.
Further details can be found in the work of Nacevska [A.14].

Many market studies suggest that RPA is suitable for processing invoices and filling in
data tables in Excel. Having this in mind, we map one end-to-end process involving a range
of applications. This helps us to understand RPA automation capabilities. The process
involves receiving invoices, extracting data from files, generating Excel files from it, and
sending back a confirmation. Let us call the undermentioned process ‘invoice processing’.
Broken down into smaller and simpler steps, it looks as follows:

1. Gets an email with attached invoices (in .pdf format) that must be processed

2. Downloads all invoices

3. Place them in a folder ‘Invoices for processing’ contains all unprocessed invoices

4. Signs in to software used for keeping track of all invoices and customers

5. Uploads all .pdf files for processing

6. Starts reviewing and extracts necessary data

7. Confirm extraction of important data fields

8. Writes data in Excel sheets from the the accounting book

9. Moves files that are processed in ‘Processed invoices’ folder

10. Writes reply email (that the invoices were processed)

The RPA processes must be always executed in exactly the same way. Therefore, to
automate the invoice processing using RPA tool such as UiPath, some changes need to be
applied. To be able to simulate the process from the beginning to end, we slightly adapted
it to the scope of this dissertation thesis. Therefore, web-based application was used to

122

9.2. The Case Study

Figure 9.3: Flowchart diagram representation of the case study

simulate professional accounting software. Free online web application Invoice Simple was
used to generate invoices. This allows us to register some clients, set parameters, generate
invoices, and email them to customers [194]. Here, we do not present all details regarding
this invoice generator since it is unimportant in the context of process automation.

Rossum is another third-party software we incorporate. It is a cloud-based application
using AI to extract data from the invoices [181]. Rossum provides many alternatives to
import invoices. It can be done either directly from email, or with a simple upload of scans
and pictures. We are using Rossum API in order to upload the invoices from UiPath.

9.2.1 Automating the Invoice Processing with UiPath

As mentioned at the beginning of this section, the process automation will be achieved by
using UiPath, and by combining it with BPM. Now, we present UiPath automation. Since
this implementation is described in detail by Nacevska [A.14], we only simplify it here.

After defining the steps of the invoice processing clearly, the automation in UiPath
is rather straightforward. The whole process executed by UiPath robot is mapped to
flowchart layout diagram depicted in Fig. 9.4.

123

9. RPA Bridge to New Technologies

Figure 9.4: The case study implementation in UiPath studio

Every 60 seconds, the robot checks new incoming emails. If there is no new email,
the process waits 60 seconds and then returns to the beginning. Otherwise, the email
attachment is inspected. If it is in a required format, it is processed further. Otherwise,
the process again listens to a new email.

In the thesis of Nacevska [A.14], we explained the entire automation of invoice pro-
cessing in depth. We tackled the implementation details of how UiPath fetches emails,
generates invoices, interacts with external services such as Rossum, etc. However, in the
research scope nailed in Section 1.5.1, and in the corresponding research objective RO 2.3,
we only want to understand how UiPath supports user interactions. Especially, how these
interactions may be done in different technologies. Therefore, we skip all other details and
we solely focus on the aspect of user interaction.

In the invoice processing example, the user interaction is required to confirm an invoice
processed by Rossum that extracts the structured data from the pdf. This confirmation
may be solved in UiPath using either the Recording option or using GUI activities such as

124

9.2. The Case Study

clicking, typing, and capturing elements from the GUI design. The Recording option is an
important part of UiPath. This functionality enables to easily capture the user’s actions
on the screen and translates them into sequences. With its help, the user interactions are
captured and UiPath automatically maps each step to a suitable activity. In our case, we
used only Message Box activity that will display a message to remind the user that the
files are already uploaded and the extraction of the data, which is done automatically by
Rossum, needs to be confirmed. This demonstrates that UiPath supports tasks requiring
a certain user’s approval. However, they may still be tight to the specific GUI captured
when recording that user’s interaction in UiPath.

9.2.2 Automating the Invoice Processing with UiPath and Corima
BPM

In this section, we will explore the idea of combining RPA with BPM in practice. We will
present a prototype that integrates UiPath and a BPM subsystem of Corima.

UiPath has API based on OData protocol1 and allows GET, POST, PUT, and DELETE
request. Similarly, Corima provides APIs enabling us to start a BPM process. The initial
idea is to automate the RPA process presented in Fig. 9.4 and to modify it so that it can
be combined with BPMS. Instead of having a Message Log activity that pops up to notify
the user to confirm the sensitive data in Rossum, we want to activate BPM process where
a task to confirm the data will be created.

After the user completes the task, the BPM process notifies RPA to continue. However,
this cannot be done in such a way. The tendency of RPA is to automate the process from the
beginning to end without any interruption. All user interactions are handled by Message
log activities. Because of these reasons, we divide the initial process mapped in UiPath to
two different fully automated workflows – the workflow to check emails, and the workflow
of exporting data to Rossum.

The first workflow is depicted in Fig. 9.5. It is executed by the unattended robot
described in Section 4.5.3. It is constantly running and checking for new emails to be
processed. After going over the emails, sorting them in files and uploading them for
processing, UiPath starts BPM process in Corima. It executes a sequence ‘Trigger BPM
process’ and continues to check for new emails. By handing over the user activity to Corima,
UiPath can execute the process uninterruptedly, while still having handled data-sensitive
activities with more attention. This increases the flexibility of the solution.

The Fig. 9.6 shows a part of the process that was previously mapped with collaboration
diagram in Fig. 9.2. It is designed and executed in the BPM subsystem of Corima. When
the BPM process is triggered by UiPath, the corresponding task is created in Corima.
In this particular case, the task is represented in a module presenting the extracted in-
formation from the invoice such as account number, amount to pay, due date, etc. After

1OData (Open Data Protocol) is an ISO/IEC approved, OASIS standard that defines a set of best
practices for building and consuming RESTful APIs, which allow resources, identified using Uniform
Resource Locators (URLs) and defined in a data model, to be published and edited by web clients using
simple Hypertext Transfer Protocol (HTTP) messages. [156]

125

9. RPA Bridge to New Technologies

Figure 9.5: Uploading invoices to Rossum

Figure 9.6: BPM process in Corima

126

9.3. Chapter Summary

the invoice is confirmed in Corima, the BPM subsystem in Corima will move to a next
activity, a Service Task. Specifically, it calls an external service to perform another action.
As in this case, it triggers a job in UiPath Orchestrator that will write the data into an
accounting book, or so.

9.3 Chapter Summary

In this chapter, we presented a typical use-case in the area of accounting. We tried to
automate the invoice processing process by using UiPath and later by its combination
with BPM. UiPath offers many possibilities for automating tasks, even when working with
third-party software for which they do not have connectors, as in the case with Rossum.
The mapping of the process with UiPath workflows can be sometimes overwhelming. Even
a rather simple task requires many activities.

Next, we integrated UiPath and Corima BPM subsystem to support the same invoice
processing process. The goal was to export the tasks that require user attention to BPMS,
rather than to use Message windows in UiPath. Since, both UiPath and Corima provide
APIs for communication with third-party software, their integration was rather smooth.

UiPath, or better said RPA seems to be a nice complement to BPMS. However, it should
not be seen as the main system for managing business processes. By combining RPA with
BPMS, the business processes can be improved. BPM can handle exceptions that might
come along in RPA process, as well as activities that require human approval, especially
when working with sensitive data. In this way, RPA processes will not be interrupted,
while all exceptions will be nicely dealt with. On the other hand, RPA can be used to
cover all the rule-based, boring User tasks and can serve as API for legacy systems without
APIs or web services. So instead of changing the existing system to implement those
functionalities, BPM can use RPA as a solution.

Finally, this chapter helped us to address the research objective RO 2.3. It turned out
that RPA might be extremely helpful in digitalisation. Recently, Kirchmer et al. [123] pub-
lished a paper on topic ‘Value-Driven RPA’. They discussed opportunities and challenges
of applying RPA as process improvement approach. They mentioned that: ‘Value-driven
RPA is a part of a discipline of process-led digital transformation management, leveraging
the capabilities of BPM to realise the full value of digital initiatives, fast and at minimal
risk’ [123]. We additionally revealed that not just digitalisation, RPA may represent a
bridge to BPM activities that are described in a technology-independent BPMN model.
The user activities that are present in these BPMN models are typically mapped by BPMS
into a specific GUI. Therefore, if the BPMS can map them into different GUI technology,
the move to a new one may be easier. Thus, RPA itself does not seem to directly solve the
problem of technology transitions, yet it may contribute it.

127

Chapter 10

Evolvability of Financial Models

As explained in Chapter 2, evolvability is a characteristic dealing with changes in ISs. In
time, the complexity of the system may increase with changing requirements. In turn, the
ability to change it decreases. Consequently, the cost of a change can become unbearable.
A domain model is an important abstraction covering key aspects of ISs. Similarly to IS
it represents, it can suffer from the same evolvability issues.

The scope of our research is a financial industry. At the same time, our research goal
is to design and develop a new methodical framework that aids in the construction of
software solutions enabling controlled technology transition. Technology transitions often
come with CEs defined in Definition 1. Therefore in 2017, we assessed CEs in finance.
In conjunction with the University of Antwerp, we created a domain model of a financial
risk management domain. It was settled thanks to the experience of the authors from
Belfius bank, and the knowledge of COPS in banking area. On Enterprise Engineering
Working Conference in Antwerp, with Deryck et al. [A.3], we published a joined paper.
Its adjusted version is provided in this chapter. It reveals difficulties related to identifying
CEs in domain models in general and presents some insights on the nature of CEs on this
level. By this, it also helps us to address RO 2.4.

10.1 Introduction

As introduced in Section 2.2, NST proposes a systematic methodology for a modular
design with the objective of creating evolvable systems [137]. Its applicability as a theory
for evolvable modular software systems has been proven by the development of critical
software systems for multiple organisations [109]. The use of the theory in the broader
scope of EE has been demonstrated by the research performed by De Bruyn, Huysmans
and Van Nuffel [214]; [107]; [51]. However, the successful identification of CEs in some
EE instruments does not guarantee the general applicability. CEs typically emerge at a
very low and fine-grained level. Aggregating this in higher-level abstractions may hide the
underlying impacts.

This chapter contains a modified version of: Marjolein Deryck,

Ondřej Dvořák, Peter De Bruyn, and Jan Verelst. Investigat-

ing the evolvability of financial domain models. Published in:

EEWC. Springer, Antwerp, Belgium, 2017. [A.3]

129

10. Evolvability of Financial Models

Moreover, the application of NST to specific industries only took off recently, e.g., as
researched by Vanhoof [216]. Its mission is to demonstrate the factors that may hamper
evolvable modular design. Such an analysis has not been done yet on the level of domain
models, neither in the financial industry.

Thus, the purpose of this chapter is to investigate the evolvability of domain models in
the finance industry. We will focus on the sub-domain of market risk management that is
expected to be subject to regulatory changes in the coming years. Due to the importance
of domain models in software development in general, the main focus is on analysing the
corresponding reference models using NST. We present typical change requests, and we
show their possible implementation. By doing so, CE inherent in the models are uncovered
and described. The presence (or absence) of these effects indicates how hard (or not) it is
for companies to implement changes within a reasonable time frame. Ergo, CE in this case
may point to an increased risk for regulatory penalties if short-term changes are imposed.

In Section 10.2, we elaborate in general on what is meant by a change, and what might
be its consequences. Next, in Section 10.3, we deeply introduce a finance domain model and
we outline its possible changes. In Section 10.4 we revisit evolvability in domain models.
We present related work in Section 10.5, and we conclude and summarise the chapter in
Section 10.6.

10.2 Evolvability

In Chapter 2, we mentioned that the complexity of ISs increases due to new functional
requirements. However, in itself the requirement does not incline the increase of complexity.
Rather, the corresponding changes effect it. Thus, in this section, we will clarify what it
is meant by a change.

Clearly, ISs can be changed at various levels. On the level of its source code, we usually
refactor, optimise, add, or delete certain code constructs, e.g., functions in SP [47], or
classes in OOP [195]. On the level of a database, we alter, drop, or create new database
objects, e.g., tables, triggers, and views in relational databases [36]. The modification of
a software configuration is a change as well. Moreover, several cloud computing services
offer a scalability option. For example, Microsoft Azure platform can adapt the system to
an unexpected amount of workload by increasing or decreasing resources for an application
[225]. Therefore, by introducing a new functional requirement ‘adopt to a workload auto-
matically’, we do not change the system itself at all. Yet the changes in the surrounding
environment can affect it significantly.

Thus, in any kind of system, the formalisation of what a change means is crucial. NST
formalises it by a term task as a subject to an independent change [137]. In SP, such a task
is represented by a function. In OOP, a method plays that role. A number of code lines
usually implements the given function, respective method. These can be logically grouped
into a sub-function, respective a sub-method, to signify they belong to a different change
driver. Therefore, similarly to SP, or OOP, we have to formalise a change in the area of
domain models, e.g., in the area of finance domain model.

130

10.3. Finance Domain Model

10.3 Finance Domain Model

This chapter covers the domain of risk management in financial institutions. Risk manage-
ment has always been an essential activity of the banking sector, and since the financial
crisis in 2008, it is under even closer scrutiny of local and international regulators [185].
Furthermore, banks themselves seek to optimise the internal models they use to calculate
the regulatory capital, to avoid losses and capital punishment (the so-called plus-factor in
case the actual loss exceeds the loss predicted by the internal model more than five times
in one year) [17].

The Basel regulations discern three types of risk in the financial sector: credit risk
(i.e., the risk that a counterparty will not honor his obligations), market risk (i.e., the
negative financial impact of changing market conditions), and operational risk (e.g., fraud,
settlement risk, etc.) [15]. Each of these risks cover multiple risk factors. For example,
some factors that contribute to the market risk are changes in interest rates, share prices,
commodity prices, inflation, FX rates, volatility and credit spread.

The scope of this chapter is the measurement of market risk using Value-at-Risk (VaR).
The choice for this scope emanates first from the fact that this instrument shows clear
disadvantages (i.e., lack of sub-additivity) and has been said to have played a significant
role in the 2008 financial crisis. Second, eight out of the ten largest Belgian banks report
the use of VaR in their annual (risk) report and the measure is accepted to calculate the
regulatory capital for market risk. Therefore, VaR might continue to play an important
role in market risk management, but it will probably be subject to changes in the years to
come.

The VaR is a single currency amount that reflects the maximal loss that is expected in
the given time period. Regulators require at least 99% confidence on a ten day period, so a
10day VaR(99%) of 500k means that the bank is 99% certain that the loss on the considered
portfolio over the next 10 days will not exceed 500k. Note that VaR does not give any
indication of the amplitude of the loss in case it is exceeded. The expected shortfall, the
calculation of which will be mandatory as from 2018, is adequate to that end [16].

10.3.1 Establishment of the Domain Model

The focus of this chapter is a domain model of the market risk domain extended with
a focus on market data import and trade repository. The model does not represent the
situation in a single case company, but rather constitutes a realistic representation of
common parts, based on the experience of the authors in multiple cases. The advantages
of this approach are twofold. On the one hand, this generalisation allows the abstraction
of company-specific implementations that are not only the result of business requirements,
but also of the company history, its specific systems and the quality of its implementation
decisions. Even though the importance of these factors is recognised, they are not relevant
in the light of this chapter that aims to demonstrate the identification of CEs in reference
models. On the other hand, a real and detailed data model of a single case would require

131

10. Evolvability of Financial Models

extensive access to the company’s IS architecture, which might even not be readily available
in the company.

10.3.2 Overview of the Domain Model

The domain model depicted in Fig. 10.1 abstracts the overall finance model. It displays
three large parts. Situated in the upper left part (in gray) is a part related to the import
of market data from an external market data supplier. In the lower right part (with black
cubes) a trade repository for foreign exchange and interest rate trades is depicted. The
part in between relates to the calculation of VaR following the historical method. The
paragraph below explains how these blocks fit together in the process to calculate the
VaR.

Figure 10.1: Abstraction of a finance domain model

10.3.3 Business Process Introduction

Fig. 10.2 schematically represents the VaR-calculation process with the use of the historical
method. In this method, the historical changes of the risk factors that have been observed
during the last x days (often 300 to 500 days) are applied to the current trade portfolio. The
process starts with the upload of relevant market information from external market data
suppliers, such as Bloomberg, Reuters or others. The bank needs to specify which data
should be downloaded at which moment. This is done by so-called schedulers. Certainly,
also corresponding data entities to store the information are needed. In the next step, the
shift from one day to the other is calculated. This is nothing more than calculating the
difference between yesterday’s and today’s value for, let’s say, the 300 last days. Afterwards,

132

10.4. Revisiting Evolvability of Domain Models

Figure 10.2: High-level overview of the HVaR-proces

the one-day shifts are scaled up with the factor
√

10 to obtain the ten-day shifts necessary
for the calculation of the ten-day VaR. In the full reval scenario, the outstanding positions
are valued against the ten-day shifts. It means that for each outstanding position, 300
possible profit and loss scenarios are calculated. The method is very simple, but it is
heavy on calculating resources and available market data. For some deals with heavy
pricing models, it can be beneficial to calculate a proxy. This can be done with the use of
sensitivities, e.g., delta, which reflects the change in value of a derivative when the value
of the underlying changes. The sensitivities are used in the calculation of the profit and
loss scenarios. Their VaR-calculations have their own parameters, including the alpha that
indicates the certainty level. In Fig. 10.2 the method is represented by the rectangle below
the full reval scenario- rectangle. They are situated in front of a background with black
cubes that represent the trades in the trade repository. The resulting outcomes of both the
so-called full reval and sensi method need to be aggregated with the purpose of obtaining
a single VaR-number in the end. As VaR is not sub-additive, this aggregation needs to
follow strict business rules determining the appropriate calculations for the appropriate
positions. Afterwards, the possible aggregated profit and loss outcomes are sorted from
the most negative (i.e., loss) to the most positive. Based on the desired certainty level
(usually 99%) the appropriate cut-off value corresponding to the alpha is selected as the
VaR.

This section offered a high-level overview of the general VaR-process. The individual
process phases are covered by the corresponding paragraphs in Section 10.4.

10.4 Revisiting Evolvability of Domain Models

The models described in Section 10.3 breaks down the VaR-calculation in blocks and classes
needed to execute it. The different parts are linked with each other through interfaces. In
short, the domain model exhibits a modular structure. As explained above, the specific
scope of the model was chosen because of the expected regulatory changes in this domain.
The characteristics of change and modularity are exactly two fundamental concepts in
NST. Therefore, in the section below, we investigate the applicability of the theory on the

133

10. Evolvability of Financial Models

VaR-domain model by applying some changes as defined below:

Definition 15. [Changes to ISs are] (1) the addition of new requirements; (2) the modi-
fication of existing requirements; and 3) the obsolescence of existing requirements ([137],
p. 258).

This results in changes in the domain model, e.g., adding or renaming an attribute, adding
a relation, changing cardinality, etc. More specifically, in this case, the appended changes
are the addition of equity market data, a new version of 10day VaR calculation, amendment
of the alpha, and the addition of a new product.

10.4.1 Revealing Combinatorial Effects

The proposed domain model is limited to the follow-up of the foreign exchange risk factor
and the interest rate risk factor. The choice of the risk factors included in the model de-
pends on the nature of the business conducted by the bank. However, these two are most
commonly measured by the VaR. In this section, we will introduce a few changes to the
model to investigate how the model reacts.

Addition of the equity risk factor. The first change is the addition of a new risk
factor, e.g., the equity risk factor. This means that the share prices need to be uploaded
in the system. To this end, a new data-entity Share needs to be introduced. Usually, this
type of market data, along with information on bonds, futures, and funds, will inherit some
general attributes from an instrument class. To induce the upload of share prices from an
external market data supplier, the schedulers that start the retrieval of the data need to
be amended. This means the impact of the five schedulers that are currently identified.
Moreover, the number of schedulers is not cast in the stone itself. It is thinkable that new
schedulers, e.g., quarterly or biyearly schedules, need to be introduced. That means that
introducing a new data entity is not only dependent on the size of the system, but also
grows along with the growth of the system. This demonstrates that the addition of a new
data entity of equity risk factor leads to CEs. Fig. 10.3 schematically shows the discussed
changes.

Going further down the process, the market data are translated into Risk Factor Data
(RFD). In the drafted domain model, this is represented by a single RFD – entity. In fact,
this hides two possible solutions – generic entity, or multiversion entity.

The generic entity is configured in a way that it can include all necessary details on FX,
interest rate, and equity risk. It means that in this case a data structure with superfluous
data fields are sent as an input for the return shifts. This is an example of stamp coupling.
Even though at first sight it may be tempting to tolerate this kind of coupling at the start,
the risks associated with this structure are:

1. The overly large data structure using an extravagant amount of resources.

134

10.4. Revisiting Evolvability of Domain Models

Figure 10.3: Abstraction of a market data sub-model

2. If one of the attributes changes or an additional attribute needs to be included,
additional versions of the data-structure will need to be created. This leads to CEs
if updates need to be done on the different versions.

The multiversion entity solution helps to avoid this kind of coupling. We can create
new versions of this RFD for each product. This would mean that at first there exists
RFD for FX, and RFD for Interest Rate (IR). We denote them RFD(FX) and RFD(IR)
respectively. Upon the addition of the EQuity (EQ) risk factor, a new version, RFD(EQ),
needs to be created. Going forward, when using separate versions of risk factor data, this
logically leads to different versions of return shifts. An additional return shift would thus
need to be created for equity risk. Fig. 10.3 depicts the multiversion entity solution of
RFD.

This shows that the addition of a new risk factor leads to multiple amendments in the
system. To ascertain that these amendments are truly CEs, the number of amendments
should even increase with the growth of the system. This is the case, which is demonstrated
by the example below.

Amendment of 10day VaR calculation method. In the current way of working,
we recognise two return shifts for each risk factor, i.e., the one-day shift that is scaled
to the ten-day return shift. However, this kind of scaling will probably not be allowed
anymore in new risk models. Regulators ask for a full calculation of the ten day VaR,
and the adaptation of the existing domain models is unavoidable. This means that the
return shifts in the new system will represent only one-day changes. Therefore, next to the
one-day return shifts, a new data entity to capture ten-day changes must be introduced.
Such an adaptation must cover FX risk, IR risk, and EQ risk. Conversely, if a new risk
factor is added at this point in time, as before, the risk factor data and the one-day return

135

10. Evolvability of Financial Models

shift need to be created. Furthermore, a 10-day return shift and possibly even more return
shifts will be affected. This may happen if regulators estimate that the liquidity on the
market has structurally changed and, e.g., 1-month VaRss are necessary. If a new risk
factor is added at this point in time, it requires more changes than the ones described for
the addition of the EQ risk factor.

The amendment of calculation methodology for +1-day VaRs shows another CE when
a full calculation (in contrast to the scaling calculation) is used. These changes are repres-
ented in Fig. 10.4.

At a basic level, the difference between two consecutive days can either be absolute
or relative. In the scaling method, this difference can be multiplied with the square root
of the number of days, both for the 1-day calculation (as

√
1 = 1), as for the 10-day

calculation (with δ10day = δ1day ∗
√

10). However, if a full calculation of a multiple day VaR
is mandatory, this would mean that separate formulas for one-day and ten-day variations
need to be created.

Figure 10.4: Abstraction of return shift calculation sub-model

Unfortunately, this is not the end of the story. Again, the impact of another VaR
horizon does not always limit itself to the amendment of the two calculation methods.
Although there are not an unlimited amount of possibilities, the number of calculation
methods itself might increase as well. This consciousness emerged recently, with prolonged
low interest rates as an example. If the interest rate is at 0.01% at day 1, and rises to 0.02%
at day 2, this is a relative change of +100%, and an absolute change of 0.01. Whereas the
relative change exaggerates the impact, the absolute change would not show any differen-
tiating power. A combination of relative and absolute elements in (one or more) ‘mixed’
calculation methods could be implemented to remediate this. The introduction of logar-

136

10.4. Revisiting Evolvability of Domain Models

ithmic calculations could be envisaged as well. If these different methods are implemented,
it means that a change in VaR horizon would be needed for each of them, hence demon-
strating the definition of a CE.

Addition of a new product. Another example is a change in the certainly level of VaR,
which is the second important characteristic next to the time period under consideration.
Currently, the required alpha for the 10day VaR is 1% maximum. However, if longer time-
horizons are envisaged or in combination with other risk measures, regulators might be
satisfied with a 2.5% alpha. Or conversely, they might require a higher level of certainty
by lowering alpha to 0.5% maximum. In the current domain model, this would mean that
the alpha needs to be amended at two places: one time in the VaR-parameters (necessary
for the full reval method), and one time for the calculation based on sensitivities (in the
analysis parameters). The choice between the two methods is implemented as a business
rule at the full reval ccenario versus sensi scenario level.

Figure 10.5: Abstraction of model with new product type and changed alpha.

Now imagine yet another kind of change, e.g., the creation of a new type of product.
In the current model only the clear-cut instruments from a risk factor point of view were
described: two FX instruments (option and forward) and three interest rate instruments
(swap, capfloor and future).

Let us see what happens if we add Currency Interest Rate Swap (CIRS) to the portfolio.
As the name suggests, this instrument contains both characteristics of the interest rate

137

10. Evolvability of Financial Models

business (e.g., the respective IRs of the currencies) and of the foreign exchange business (FX
rate between the two legs). Therefore, a new data entity will inherit some attributes from
both businesses. Furthermore, traders will need to be able to price this new instrument, so
a new valuation model will be developed. This model will contain parts of IR-models and
FX-models. As the CIRS contains IR-characteristics, the most probable scenario is the full
reval Scenario, which means that the business rule that determines the calculation scenario
(full reval or sensi) needs to be updated. Moreover, in this scenario a new Risk Portfolio
needs to be created. This results in the adaptation of aggregation scenario, as it defines
aggregation rules per portfolio. Again, as with the previous examples, it is the reaction of
these changes to changes on another dimension.This clarifies whether these are true CEs
or effects due to the original change. Imagine for example that the expression of change in
foreign exchange rates does not happen in percentages anymore, but in pips (0.0001). It
means that the original FX valuation models will need to be adapted. However, the CIRS
model, that contains parts of a FX model, will be impacted as well. This applies to every
new valuation model annexed to a new product. On the level of the business rules in the
full reval / sensi scenario, the straightforward structure (with only one business rule) gets
increasingly complicated each time a new product is introduced.

10.4.2 Insights in Exploring the Domain Model

NST aims to promote evolvability in large and complex systems. One of its key concepts is
CE. In analyzing the domain model, some insights on key characteristics of CE stemming
from their purpose were provoked. To start with, CE are found in complex systems.
Complex systems deal with entities that are prone to changes in different dimensions.
Because of this, it seems difficult at first sight to uncover the CEs in a domain model.
Both knowledge on the domain to recognise the different change dimensions as insight on
the reasoning to reveal CEs are necessary. In turn, this implies that the use of CEs to
analyse a small system that mainly consist of uni-dimensional constructs is less fit. Next,
CEs appear at a very basic level of analysis. Models, which are essentially abstractions of
reality, may thus hide this complexity. This was shown in the examples above in which we
identified CEs on the level of business rules and attributes.

10.5 Related Work

Originally, NST defines CEs on the software level. In subsequent research, the concepts
and theorems of the theory proved useful to evaluate evolvability on the enterprise level
and in process models [51, 107, 214]. Eesaar [71, 70] focuses on the database level of ISs,
and tackles the common ground between database normalisation and NST. His research
concludes that even though both theories overlap at some extent in their goals (avoid
update anomalies), manner (multistep nonloss-decomposition), and results (an increased
number of smaller tables/modules), NST covers a broader field with its focus on CEs [70].

138

10.6. Chapter Summary

Domain models are frequently used as the input for the creation of data models, and they
often display the desired normalisation form of the final data model.

In line with the conclusion of Eesaar [71] the current chapter illustrates that normal-
isation is a first, but by no means sufficient, step to avoid CEs.

The related work in the area of risk management does not seem to provide relevant re-
search on evolvability and implementation. Implementation in this domain focuses mainly
on the choice of unbiased parameters and financial calculations, which is not the scope of
our research.

10.6 Chapter Summary

This chapter started by establishing the importance of evolvability for current ISs. ISs
are built to fulfil certain requirements, but these requirements tend to change over time.
NST proposes four design theorems to create evolvable software, defined as software free
from CEs. CE on this level is the impact from a change that does not only depend on the
change itself, but also depends on the size of the system. CE can also be identified on the
level of process models, and guidelines exist to avoid them at this level [214].

However, when applying the concept of CE to business models, we need to take into
account that a high level of abstraction may hide CE present at lower levels. Therefore, the
research for CE typically needs to happen on a low level of aggregation. The current chapter
investigates whether the concept of CEs can be applied on the level of domain models, which
represent an abstraction of the ISs. And if this is the case, what can be concluded with
regard to the evolvability of domain models. By investigating a partial domain model of
financial risk management, it is demonstrated that CEs do exist in this domain. Earlier
research revealed the existence of CEs in, e.g., accounting systems, education programs,
and ERP-systems [216, 162, 31, 52]. It supports the belief that CEs exist in more, if not
all, economic sectors and types of ISs.

It also demonstrates that the application of the concept of CE may not always be
as straightforward as one might be led to believe by the simplicity of its definition. In
practice, it is not always clear which effects are ‘proprietary’ effects of the change itself,
and which ones are due to the size of the system. The reasoning build-up in the examples
of this chapter demonstrates a possible way to proceed. It leans on the definition of a
CE as being dependent on the size of the system, hence, its amplitude needs to grow
when the system grows. The system grows by adding changes of another dimension.
Here, it is demonstrated by considering different scenarios for one change. This way of
working emphasises the multidimensional nature of CE. Hence, it also contributes to the
understanding of the difference with database normalisation, which removes some data
redundancy but in a one-dimensional way. In fact, only the CE emanating from the
definition of the alpha at two different places would be solved by simply applying database
normalisation rules and isolating it in a new entity.

The changes that were applied to the original domain model show that CEs manifest
themselves on multiple levels. In the most visible form, a change leads to the amendment

139

10. Evolvability of Financial Models

of the domain model by the necessity to add additional classes (see change of 10 day
VaR calculation) or multiple relations (2 inheritance relations for CIRS). In other cases,
the effect is situated on the level of the attributes of (a) class(es). The increase in shift
methods and the adjustment of the alphas are examples of this. In yet other cases, the
business rules linked to certain classes need to be amended. This is shown by the addition
of the new product type CIRS, which alters business rules in multiple classes.

Because of this, future research should formalise the definition of ‘change’ at domain
model level. Moreover, future research should offer recommendations to avoid the described
CEs. Moreover, the current chapter is strictly limited to a well-defined scope that reflects
common practices in the sector, but nevertheless disregards others. Therefore, future
research should broaden the scope of the current chapter. The model should be expanded
to encompass the entire scope of market risk, including multiple risk factors, other VaR-
calculation methodologies, backtesing and stress testing practices, and future requirements
such as expected shortfall calculation. Moreover, as we know now that CEs do exist in one
sub-part of the financial industry, their existence in other sub-parts may be investigated.
In addition, these sub-parts can be considered as modules in themselves. The information
passing from one part to the other acts as the interface. Therefore, future research could
focus on possible CEs at a higher level. Of course, difficulties regarding the hiding of CEs
at higher levels of abstraction need to be taken into account.

In this chapter, we focused mainly on the data requirements in the domain. Future
work could consider the same domain from a dynamic point of view and focus on, e.g.,
process models like the HVaR process in Fig. 10.2.

140

Chapter 11

Architectural Concepts Limiting GUI
Transitions

Our research goal stated in Section 1.5 aims at improving technology transitions of GUI.
Regardless the specific technology, GUI frameworks typically use certain design or archi-
tectural patterns. However, as we showed in Section 4.2, there is a widespread confusion
between them. There is no clear consensus on their implementation nor their definition.
Therefore, we provided by no means a complete and exhaustive analysis of patterns that
have been commonly used in recent decades. Our review continued in Section 4.3, where
we introduced some of the concrete frameworks and libraries trending on the market. Fi-
nally, in the previous chapter Chapter 10, we explained that certain software artefacts,
e.g., domain models, may be analysed with respect to CEs defined in Definition 1.

Similarly to that, in this part of dissertation thesis, we want to reveal GUI concepts
limiting the shift to another GUI technology. One of the objectives is to understand CEs
caused by necessary changes throughout such a transition. However, we do not intend to
calculate the exact number of classes that need to be refactored, nor we do not intend to
provide a formula for an estimation of man hours required to modernise GUI. Instead, we
want to explore evolvability of GUIs. If possible, we want to provide an advice on what to
look for and what to avoid when designing them.

We researched this together with Mareš [A.13] who later published the results in his
master thesis. Its adjusted version is provided in this chapter. It also helps us tackling
RO 2.5 that we put forward in Section 1.5.2.

11.1 Analysing GUI Frameworks

The scope of this research part is large. In Section 4.2, we put forward a number of GUI
design and architecture patterns commonly used. We observed that the complexity of these
patterns graduates. Thus, it makes their understanding increasingly difficult and their
adaption imperfect. Since the analysis of a particular technology is a costly endeavour, we

This chapter contains a modified excerpt of: Václav Mareš.

Evolvability of UI technologies, MSc Thesis. Published in: CTU

in Prague, Faculty of Information Technology. Prague, Czech

Republic, 2019. [A.13]

141

11. Architectural Concepts Limiting GUI Transitions

decided to demonstrate our ideas on two sample technologies. Anyone anxious to analyse
and evaluate another technology can continue analogically.

We decided to use the following frameworks – WinForms introduced in Section 4.3.2
and WPF presented in Section 4.3.3. The decision comes from the expertise of authors,
and its possible contribution to Corima research that is largely using WPF. Although
some might consider these technologies ageing, Google Trends [96] shows both topics still
actively searched worldwide, just about half as much as was their peak search volume. The
Fig. 11.1 depicts it.

Figure 11.1: Search trend of WPF and WinForms captured by Google Trends [96]

Additionally, a quick search through GitHub1 shows several very active and highly
rated repositories [229, 231] extending or consuming these technologies. Not to mention,
products like DevExpress [56], Telerik [205], or Syncfusion [160] discussed in Section 4.4.2
that set their business models on extending these Microsoft’s frameworks and produce new
versions for both. Thereby, we conclude that WPF and WinForms are alive and actively
used. Furthermore, we are not reviewing the myriad of different libraries, extensions,
and frameworks built on top of what Microsoft provides as their GUI technologies. We
limit ourselves to the documentation, principles, and code samples provided directly by
Microsoft, mostly what can be found on their documentation website [144, 145].

11.2 Modifying WinForms GUI

In Section 4.3.2, we introduced WinForms based on FaC architectural pattern explained in
Section 4.2.3. Let us now present its simple example provided by the official documentation
from Microsoft. We show a code snippet in Listing 11.1. For brevity, we only present part
of the official example.

The example shows a source code of an application that displays a message box upon
clicking a button. The events raised by users are handled by event handler functions.
Even this simplistic code discloses clues of how the framework is meant to be used. The
constructor of the Form1 sets the control, i.e., button1, and fills up its properties. It also
hooks the button1 Click event handler function to the Click event of button1. In this
particular case, the message box dialog is directly shown when the button is clicked.

1GitHub is a provider of Internet hosting for software development and version control using Git. [1]

142

11.2. Modifying WinForms GUI

using System.Windows.Forms;

namespace FormWithButton {

public class Form1 : Form {

public Button button1;

public Form1 () {

button1 = new Button ();

button1.Size = new Size(40, 40);

button1.Location = new Point(30, 30);

button1.Text = "Click me";

this.Controls.Add(button1);

button1.Click += new EventHandler(button1_Click);

}

private void button1_Click(object sender , EventArgs e) {

MessageBox.Show("Hello World");

}

[STAThread]

static void Main() {

Application.EnableVisualStyles ();

Application.Run(new Form1 ());

}

}

}

Listing 11.1: Simple form example in WinForms

Unfortunately, this is not a toy example tailored for illustrative purposes. Microsoft
presents many examples where the code in the event handler function modifies other ele-
ments directly or manipulates session state data. For instance, the code snippet in List-
ing 11.2 is also provided by Microsoft. It demonstrates a code manipulating a visual of a
form upon clicking the button.

It shows the principle FaC is adhered to. The Form1 is the all knowing entity that
manipulates its controls. Its logic dictates what the controls do and how they behave.

11.2.1 WinForms in NST and EA Lens

Let us have a critical look at WinForms in the lens of NST and EA methodologies. Starting
with Separation of Concerns (see Theorem 2.2.1), the Form class might be even worthy of
the anti-pattern label ‘God class’2. These are its most obvious responsibilities:

◦ Visual representation – This responsibility might not be obvious at first sight.
WinForms developers often use Visual Studio Integrated Development Environment
(IDE) 3 from Microsoft. It provides so-called form designer where they drag and drop

2In OOP, a ‘God object’ is an object that knows too much or does too much. [1]
3IDE is software for building applications that combines common developer tools into a single GUI

143

11. Architectural Concepts Limiting GUI Transitions

private void button1_Click(object sender , System.EventArgs e) {

// Get the control the Button control is located in.

// In this case a GroupBox.

Control control = button1.Parent;

// Set the text and backcolor of the parent control.

control.Text = "My Groupbox";

control.BackColor = Color.Blue;

// Get the form that the Button control is contained

// within.

Form myForm = button1.FindForm ();

// Set the text and color of the form containing

// the Button.

myForm.Text = "The Form of My Control";

myForm.BackColor = Color.Red;

}

Listing 11.2: Event handler function in WinForms

controls, set their properties and even generate event handlers. Finally, the Form class
remains to be the one object responsible for handling the complex initialisation of the
controls. It takes care of the layout of controls and the population of their properties.

◦ Data Binding – In case of simple binding, the Binding object is created during
the initialisation of the Form. It knows what data binds to what control’s properties.
Considering a complex binding, it behaves similarly, only the instantiation of data
sources might be delayed. It may proceed during the form load or other startup
event.

◦ User input – Controls raise events that can be received and handled. Again, it is
in the realm of the form. Form designer from Visual Studio generates these event
handlers directly to the Form class leading developers to write the event handling
logic. This can expand to calling into business components and down the rabbit
hole. Potentially, this design can lead to freezing the application waiting for some
back-end response.

This is a staggering number and scope of responsibilities gathered in one class. In
terms of NST, we may recognise many change drivers. Considering the tight coupling
between components and methods fulfilling the different requirements, the CEs defined in
Definition 1 are present all over the place. Any change in a control triggers changes to
the initialisation of the form, its data binding, and event handlers. This propagates to
every form that use the control. This CE is also present in the other direction. If the data
changes, all different bindings and assignments to controls have to change too. There is
also no notion of view state. Only the controls hold the data they display. This again
mixes responsibilities and hinders any possibility to share the state across multiple views.

144

11.3. Modifying WPF

Lastly, there is a lack of modularity. Any time we would like to reuse an existing form,
add something to it, or adjust few controls, the framework forces us to create a new form
entirely. Composition exists only on the level of whole controls and even tweaking an
existing control leads to creating a completely new custom one.

11.2.2 WinForms Resume

WinForms was meant to support concepts of FaC architectural pattern. It is rather simple
starting a WinForms project and to develop a small application in a relatively short time.
However, the system is fundamentally flawed. There are change drivers that will lead to
CEs. This is mostly apparent in the core Form class that comes with too many responsib-
ilities, thereby too many possible change drivers.

However, we have to be critical to ourselves here. If anyone considers writing an applic-
ation with WinForms today, the community will suggest much better practices. The most
valuable professionals4 often voice their suggestions on how to isolate and limit certain
areas that we marked as sources of CEs. We must admit they are right. However, this may
count for the applications developed in WinForms now. Since our goal is to investigate
transitioning and evolving ageing applications, we dare to expect they may suffer from the
old troublesome aforementioned approaches.

11.3 Modifying WPF

In Section 4.3.3, we briefly introduced WPF. Let us now present its basic concepts on the
code snippet in Listing 11.3. We are using the example from Microsoft’s documentation of
the basic application [232].

Logical and Visual Tree. From the technical perspective, XAML defines so-called
logical and visual Tree. The logical tree is the description of higher level elements that
create the GUI. It is also used for Dependency Properties, Static and Dynamic Resources,
and Data Binding. All of that results in dynamic layouts as indicated by the row’s Height
parameter being set to Auto. This helps to render a responsive layout.

The visual tree is a super set of the logical tree with all different elements that are
being rendered. Therefore, a single node Button from the logical tree is expanded to a
subtree with Border, ContainerPresenter, and a TextBlock that we see on the screen.
The visual tree is utilised when rendering objects, layouts, and for routed events that travel
across it. Let us briefly explain certain WPF concepts.

◦ Dependency Property – an object property that is managed by WPF framework. It is
registered with its metadata and allows for new functionalities that were not possible

4Most Valuable Professionals are people awarded by Microsoft for ‘actively sharing their ... technical
expertise with the different technology communities related directly, or indirectly to Microsoft’. [1]

145

11. Architectural Concepts Limiting GUI Transitions

<Page x:Class="ExpenseIt.ExpenseReportPage" xmlns="http: //..."

...

mc:Ignorable="d" d:DesignHeight="300" d:DesignWidth="300"

Title="ExpenseIt - View Expense">

<Grid Margin="10,0,10,10">

<Grid.ColumnDefinitions >

<ColumnDefinition />

</Grid.ColumnDefinitions >

<Grid.RowDefinitions >

<RowDefinition Height="Auto"/>

<RowDefinition />

<RowDefinition Height="Auto"/>

</Grid.RowDefinitions >

<!-- People list -->

<Border Grid.Column="0" Grid.Row="0" Height="35" Padding="5"

Background="#4E87D4">

<Label VerticalAlignment="Center"

Foreground="White">Names </Label >

</Border >

<ListBox Name="peopleListBox" Grid.Column="0" Grid.Row="1">

<ListBoxItem >Mike</ListBoxItem >

<ListBoxItem >Lisa</ListBoxItem >

<ListBoxItem >John</ListBoxItem >

</ListBox >

<!-- View report button -->

<Button Grid.Column="1" Grid.Row="3" Margin="0,10,0,0"

Width="125" Height="25" HorizontalAlignment="Right"

Click="Button_Click">View</Button >

</Grid>

</Page>

Listing 11.3: XAML example

146

11.3. Modifying WPF

with the ordinary object properties such as: styling, data binding, using dynamic
resources, and animation.

◦ Resources – objects can be defined as resources making them available for reuse in
other XAML files. Static resources cause a single lookup where the dynamic resource
creates a link to the value and updates on change. Availability scope depends on the
declaration point and spans only the subtree. Resource dictionaries, separate files,
are a common practice that allows easy reuse of defined objects.

◦ Data Binding – the concept is identical to the one presented in this thesis. It is a
way to link data of GUI controls to data in objects behind GUI. XAML supports
multiple modes, the most used are one-way and two-way.

◦ Routed Events – this feature allows for CoR succession of event handlers to react to
an event. The chain progresses along the visual tree and can be bubbling (up) or
tunneling (down) depending on its direction. This allows for reacting only to events
that interest certain control and pass the others.

◦ Commands – a semantic level approach to actions that application should execute. It
allows for removing logic code from event handlers and sharing these objects encapsu-
lating the actions across GUI. There is a little more complexity for RoutedCommands,
but are the most useful in terms of reuse and isolation.

Code behind. There is one more concept worth explaining. It is called code behind.
We present its snippet in Listing 11.4. Essentially, all classes generated when adding new
XAML files have the extension .xaml.cs. All of them are code behind classes. These are
partial classes5 that are also described by the XAML files and one can write logic and
business code into them and their event handlers, but the best practice is to leave them
bare and empty, and use commands instead of other objects that encapsulate just logic.

11.3.1 WPF in NST and EA Lens

Let us have a critical look at WPF in the lens of NST and EA methodologies. The principle
of Separation of Concerns is fulfilled with XAML describing visualisation and layout, and
the code behind doing the rest. The user input is intercepted by controls and routed events
that traverse the tree structure. This isolation of elements allows components to focus only
on events relevant to them.

The action following the input could still be implemented into the event handlers, but
if we allow the influence of MVVM there should be a ViewModel objects with the relevant
commands. This makes a big difference as we can now bind to the commands directly
from the Controls even in XAML. This allows for complete separation of business logic,
but costs some extra effort.

5In languages supporting the feature, a partial class is a class whose definition may be split into
multiple pieces, within a single source-code file or across multiple files. [147]

147

11. Architectural Concepts Limiting GUI Transitions

using System;

...

namespace ExpenseIt {

/// <summary >

/// Interaction logic for ExpenseItHome.xaml

/// </summary >

public partial class ExpenseItHome : Page {

public ExpenseItHome () {

InitializeComponent ();

}

private void Button_Click(object sender , RoutedEventArgs e) {

// View Expense Report

ExpenseReportPage expenseReportPage = new

ExpenseReportPage ();

this.NavigationService.Navigate(expenseReportPage);

}

}

}

Listing 11.4: Code behind file ExpenseItHome.xaml.cs

The weak point is in the relation of Model and ViewModel that was not much discussed
here. The idea of MVVM is that the ViewModel is a wholesome description for the GUI
to render. Some of this might be very fragile depending on the exact implementation
of passing data between Model and ViewModel, but WPF does not describe this part.
Nonetheless this relationship can be a source of CEs if multiple ViewModels feed into a
shared Model, change to the Model can have unbounded impact.

The binding to data is also extended, allowing not only multiple modes, but also a
wide variety of targets. The most notable is the dependency property that allows for
all dynamic links. This results in evaluating these properties just-in-time even based on
multiple inputs that are not tightly coupled. This contributes to lowering the CEs since
instead of propagating and copying data there is a link to a central dictionary. Limiting
the possible number of object relationships from n2 to just n.

The last topic of our interest was modularity of the system. Looking at the View
side of the framework XAML is working very well in this direction. It allows for resource
dictionaries, separate styles, and each control to be defined independently. On the side
of business logic, it can be direct and simple written in the code behind, loosing the
modularity and reusability, but embracing the ViewModel concept that is supported with
commands and wide available data binding all the logic of the application can be made
reusable and wrapped in appropriate objects.

148

11.4. Transition Approaches

11.3.2 WPF Resume

From the evaluation above, it might look that WPF is clearly much better in terms of
functionality and also in terms of evolvability. We agree that WPF with the MVVM
architecture seems like a really good approach to GUI in general. However, we have to add
that the devil is in detail. We tried to describe the most notable concepts and make some
arguments for what they mean in terms of our scope. The point to get from this analysis
is the approach we took. We advise to be much more thorough in the case of real project
analysis that should be done on a specific code base.

11.4 Transition Approaches

Let us now elaborate on the typical approaches to use when migrating SW from one
technology to another. We can imagine a SW application having its presentation layer
written in a specific GUI framework, e.g., the aforementioned WinForms, or WPF. Let
us denote this framework by F1. This framework needs to be replaced by framework
F2. Although the vision of the application employing the new framework F2 is clear, the
approach to accomplish it is not entirely obvious.

Before transitioning F1 → F2, we typically formulate the initial state A and intended
state B of the application. This may encompass the required functionality, appearance,
and behavior. Also, it should cover the technical specification of the application using F1,
including its architecture, best practices, etc. Thus, a deep analysis of the frameworks F1

and F2 themselves is desired. Next to other activities, it may comprise discovering of CEs
exhibited by the particular technology as we outlined in Section 11.2 and Section 11.3.

However, the states A and B alone do not determine the approach to move between
them. Therefore, together with Mareš [A.13], we inspected two well-known transition
approaches:

◦ Rewrite from scratch – the presentation layer in state B would be developed from
scratch using F2. The application would not be shipped to the production until it
reaches the state B fully.

◦ Change incrementally – the application would be developed in steps. Each step
represents its intermediate state between A and B. Thus, the application schemat-
ically evolves as follows: A → A′ → A′′ → ... → B. It remains operational at each
intermediate state, and it is shipped incrementally to a production.

In the next sections, we will discuss and reason about the benefits and drawbacks of
each particular approach.

11.4.1 Rewrite from Scratch

This approach leads to a new development of the corresponding application. This requires
at least a rewrite of the presentation layer implemented using the framework F1. In practice,

149

11. Architectural Concepts Limiting GUI Transitions

we have to reverse engineer the application in its state A. We need to understand its
conceptual model and technology. We have to build a new presentation layer thereby
reaching the state B while using F2.

This idea of rewriting applications in need of an update or severe maintenance is not
new. Netscape 6.0 is a real-world example of such a rewrite. Joel Spolsky, co-founder and
CEO of StackOverflow shared the story of Netscape in Things You Should Never Do [198].
He explained that in the 90’s, Netscape was the most dominant web browser on the market.
When the company was developing version 5.0 of its browser, the code proved very difficult
to deal with new requirements. They decided to scrap it and create a new version 6.0 from
scratch. However, this full rewrite of the code base took almost three years, enough for the
company to lose its independence on the market. When Netscape 6.0 was finally released,
the product was rushed and not fully developed. Back then, Netscape was competing with
Internet Explorer from Microsoft. In the meantime, it already flooded the market, thereby
marking the end of Netscape era. These are also not unique consequences of such decisions
to rewrite an application. Similar stories can be found with Microsoft’s Word in 1991, that
effort was abandoned, and many others.

Nevertheless, our conclusion is that one needs to be cautious judging if this approach
is the right path forward. Rewriting implicitly could result in a great time delay, unexpec-
ted expenses, reverse engineering costs, and usually a broad scope even with only partial
rewrites (e.g., GUI), and lastly a great risk of failing at any point in time. This con-
clusion is confirmed by the aforementioned Standish Group Endless Modernisation: How
Infinite Flow Keeps Software Fresh [116]. They conducted a research about failures of IT
companies modernising software. The report was based on 50.000 projects in the CHAOS
2020 database including six individual attributes of success: on budget, on time, on target,
value, on goal, and on satisfaction. The study concluded that organisations starting from
scratch had a 26% success rate versus a 20% failure rate. Comparing to other approaches
to modernise SW, this one was the least successful and the most failing.

If we would want to relate to the agile approach outlined in Section 2.1, we cannot be
much further apart. Therefore, we mostly share the opinion of Spolsky who concluded that
‘A functioning application should never ever be rewritten from the ground up’ [198]. His
opinion is based on two reasons – first, ‘crufty-looking parts of the application’s code base
often embed hard-earned knowledge about corner cases and weird bugs’, and the second ‘a
rewrite is a lengthy undertaking that keeps you from improving on your existing product,
during which time the competition is gaining on you’.

11.4.2 Change Incrementally

Incremental change is an alternative to rewriting the application from scratch. It is an
approach employing gradual changes to achieve the intended state. As earlier discussed,
we have an initial state A and the intended state B of the application. The path is a series
of intermediate states altering the current state until B is reached. The key principle here
is that the application remains operational at each state, thus it is potentially production
ready. Schematically, the application evolves as follows:

150

11.4. Transition Approaches

A→ A′ → A′′ → A′′′ → ...→ B

Martin Fowler [86] calls this approach the Strangler Application. There are real world
examples that show success using this approach and promote the reduced risks that it
provides. For instance, Stevenson and Pols [202] gives an insight into the transition of the
legacy financial application InkBlot by employing this approach.

In their InkBlot example, they emphasise the importance of delivering the core func-
tionality first. It is built on the 80/20 rule saying that the most used 20% of features
satisfy 80% of users. Each step must help us with one of the two objectives below:

◦ Bring us closer to the intended state B. This can mean that some part of GUI is
migrated to the new framework F2 or some part of the architecture is transformed
to the new paradigm.

◦ Enable us to move closer to the intended state in the next step. This can mean
restructuring the code and opening new options.

There are several case studies [169], where we can see the the strangler pattern in
practice. The core idea is illustrated in Fig. 11.2. It shows that the abstraction layer is
developed between a consumer and a component providing a certain functionality. This
abstraction layer is often referred to as Anti-Corruption Layer pattern [154].

Figure 11.2: Abstraction layer placement

The step of creating the abstraction layer is beneficial on its own. It can point to
what is used and needed from the consumer perspective. Thanks to the existence of the
abstraction layer we can gradually replace the old component with the new one as depicted
in Fig. 11.3. When all the functionality is used from the new component, we can remove
the old one and potentially also the abstraction layer. This depends on the decision of a
development team that must consider possible penalties on the application performance.

151

11. Architectural Concepts Limiting GUI Transitions

Figure 11.3: Abstraction layer usage

We intentionally do not mention how broad the abstraction layer is and what granularity
the consumer and components are. This can be chosen during the transition and depends
on technical details and other contexts.

As we concluded with Mareš [A.13], if we step back a bit from the problem, we may
observe that this approach looks like combating technical debt. We argue that the root
problem is that the old framework F1 became a technical dept and we are now paying
interest to it during the migration. Furthermore, referring again to the report of Standish
Group [116], this approach can be seen as an incremental flow-like modernisation. Accord-
ing to that report, 71% of the companies enjoying this approach succeeded while only 1%
of them failed.

S
ec

ti
on

T
ak

ea
w

ay At least two approaches of transforming an application from one technology to another
are commonly used – rewrite from scratch, and change incrementally. Both are used in
real world projects. It seems the incremental approach is more popular with the rise of
agile in software engineering. However, it is difficult to make convincing conclusions of
which approach is better. However, according to the Standish Group, when employing
the iterative change, the numbers are in our favour.

11.5 Transition in Practice

In Section 11.1, we reinforced the importance of understanding the architecture of the spe-
cific GUI framework and its weaknesses in terms of CEs. Next, in Section 11.4, we intro-
duced possible transition approaches that deemed necessary to realise a transition between
these frameworks. Now, we will outline a case study done by Mareš [A.13] demonstrating
a transition in practice. Although Mareš in his master thesis describes the case study of
Car Dealership in detail, we only indicate the outcomes and conceptual steps.

152

11.6. Conclusion

11.5.1 The Case Study

The case study demonstrates a naive Car Dealership information system. It covers the
needs of multiple branches in different locations. It offers functionality to manipulate
different car models and it supports roles such as manager and a sales representative.

The information system is written in C# running on Windows. The application was
migrated from WinForms to WPF.

We decided for an incremental transition approach described in Section 11.4.2. There-
fore, we conceptually defined what needs to happen along the way:

◦ A – initial state of the application covering the use-cases from its functional specific-
ation.

◦ F1 – WinForms framework used by the application in its state A.

◦ B – intended state of the application covering the same use-cases as in A.

◦ F2 – WPF framework used by the application in its state B.

◦ A′..A′′′′ – intermediate states of the application during its transition. Each state is
either enabling, or it brings us closed to B.

Our takeaways from the case study resulted in a couple of observations. We realised
that even a simple Car Dealership application is challenging to be migrated if all presented
aspects are reflected. This means that in a real-life complex application, such a systematic
approach must tackle several topics. The code base should be analysed on multiple levels
– chosen architectural patterns, the framework’s support for the said pattern, the frame-
work’s functionality, and adherence to the implicit implementation rules that come from
these aspects. All these levels should be looked at on both ends of the transition, meaning
the starting state and the intended state. Adding to that, in real-world projects, we need
to pose the question whether the code base is fragmented and full of edge cases and ad hoc
solutions. This is one more overarching quality that needs to be reviewed before we even
consider transition at all. All of these angles are necessary in order to understand what
does the transition from one GUI technology to another actually mean for a given project.

11.6 Conclusion

In this chapter, we addressed the RO 1. We wanted to understand concepts that limit GUI
transitions. We gave a basic overview of two technologies that were used in the explor-
ation of the transition process. The descriptions were rather brief, primarily focused on
capturing concepts rather than the implementation details. However, one of the import-
ant realisations that came from the analysis is that frameworks can be leading developers
towards a certain GUI architectural pattern, but they can be adapted to others as well.

153

Chapter 12

Building methodical framework: ADA

At this stage of our research, we are finally in a position to propose a methodical framework
suited better for technology transitions – ADA. All the prerequisites depicted in Fig. 6.5
has already been tackled. Therefore, now we can address the research objective RO 3. Let
us first recapitulate what we learned from the research artefacts developed in the previous
chapters.

Understand the purpose. In Chapter 7, we addressed RO 2.1 concerning how user
interactions may be depicted in SW. For the first time, we applied EE PSI theory into SE.
We explained that one can focus on the business process where actors interact. Actors are
the ones that will carry out the tasks involved in a process. This brought two important
findings. First, at least one EE theory can be directly applied into SE. Second, the tasks
emerging from business processes may come with own independent GUI.

The first finding made us curious of how to describe the tasks, and possibly other means
where actors interact. In this case, we may focus on the purpose of their interaction,
describe it, and generate GUI in possibly any current and future technology. Therefore,
in Chapter 8, we inspected this from the perspective of flexibility-usability trade-off what
constitutes our next research objective RO 2.2. We generally discussed how complex the
descriptions of those purposes should be to remain usable for the developer.

The second finding made us to realise that even though we look forward the purpose-
driven approach in SE, the industry will still suffer with legacy SW solutions. Thus, we need
to bridge the gap between ageing SW used for people to interact, and new SW solutions
built with purpose in mind. Therefore, we started another track of our research – RPA. We
defined another research objective RO 2.3 to understand whether we can create business
processes from interactions with legacy systems. If we could, again, we can create a GUI
for the task in practically any technology. These ideas were researched in Chapter 9.

Experience the evolvability. Another prerequisite to build a methodical framework is
the evolvability. To justify that the system is aiming at a better technology transition, we
need to prove it. In Chapter 2, we already got a rough picture of evolvability. We decided

This chapter contains an extended version of: Ondřej Dvořák,

Robert Pergl, and Petr Kroha. Affordance-driven software as-

sembling. Published in: EEWC, Luxembourg, 2018. [A.6]

155

12. Building methodical framework: ADA

to use NST to evaluate evolvability. Yet, we never tried that in practice. Therefore, since
we exemplify our research on financial system Corima, in Chapter 10 we elaborated on the
evolvability of financial domain models. This helped us to address RO 2.4.

Based on that understanding, we revealed a lack of knowledge in nowadays practices
in GUI development itself. In Chapter 4, we did by no means a complete and exhaustive
analysis of each design and architecture patterns, and of certain GUI technology. However,
we did not explicitly derive concepts that limit the resulting SW to evolve its GUI. We
addressed that by the research objective RO 2.5 that was tackled Chapter 11.

Having the research objectives RO 2.1, RO 2.2, RO 2.3, RO 2.4, and RO 2.5 tackled in
the previous chapters, we can now design the heart of technology transitions – methodical
framework ADA. It should be grounded in a notion of purpose as it turns to be essential
when actors interact throughout the task’s GUI, or in general throughout any GUI.

The TAO theory and BETA theory discussed in Section 3.2 and Section 3.6 might
be crucial to this. They offer concepts of function, construction, and their relationships.
Moreover, they work with affordances that concern purposes. Therefore, let us now invest-
igate how to build SW based on these theories and concepts.

12.1 Running Example (part 1)

In Section 14.1, we discuss a substantial application of the research in a commercial TMS
Corima developed by the COPS company. However, a lasting Non-Disclosure Agreement
(NDA) does not allow us to disclose all the implementation details. Therefore, to illus-
trate the results sufficiently, we present a hypothetical application for a cryptocurrency
trading. In Section 12.4, we discuss how it would be implemented using the actual Corima
architecture meant for this type of financial applications.

Running Example (part 1). Imagine a cryptocurrency trading application. Traders
trade cryptocurrencies for other assets, such as conventional fiat money or other digital
currencies. A cryptocurrency exchange can be a market maker that typically takes the
bid–ask spreads as a transaction commission for its service or, as a matching platform,
simply charges fees. In such a trading platform, traders work with so-called trades – bids
or asks for a cryptocurrency. They exchange a specific amount of a cryptocurrency for
another one. These trades are typically used for a purpose of new buy or sell order, or
historical outline of the latest bids close to where they trade. One of the objectives is an
efficient user interaction. They want to do the common actions without using a mouse.
Also, it is important to clearly visualise the fee charged for the exchange, so they may do
the decision quickly. The task at hand is to migrate an original desktop application into a
web environment.

A possible GUI of such a cryptocurrency trading application is depicted in Fig. 12.1.
We refer to it throughout the next sections.

156

12.2. SW Based on the TAO Theory and BETA Theory

Figure 12.1: Wireframe of an application for cryptocurrency trading

12.2 SW Based on the TAO Theory and BETA Theory

We assume that the concepts of TAO theory and BETA theory play a crucial role for SW
aiming at technology transitions. Let us investigate the characteristics of systems built on
top of them. A system founded in TAO theory and BETA theory must be composed of
components that suit the needs of a given user with a specific purpose. As we remember
from Section 3.6, such a relationship is captured by the term affordance defined in Defini-
tion 6 as subject-object relationship represented by a formula (subject * purpose) * (object
* properties) where the symbol ‘∗’ denotes the concept ‘is in relation’.

By searching for a mapping from the general TAO theory and BETA theory in EE, we
made the following observations:

◦ A subject corresponds to a software user.

◦ The purpose can remain general.

◦ An object is a software component as defined in Definition 8.

◦ Properties can remain general.

Now, we can reformulate Definition 6 in terms of CBSs as follows:

Definition 16. An affordance is a user-component relationship that can be represented
by the following formula: affordance: (user * purpose) * (component * properties).

This definition is the key to constructing systems considering F/C division. We can now
reformulate this relationship as a function that takes users, their purposes, and components
with properties as inputs, and outputs a final construction. Fig. 12.2 visually represents
this function in a CBS. One can see that the components and properties are inherently

157

12. Building methodical framework: ADA

Figure 12.2: Affordances in CBSs [A.6]

bound together. This function expresses a software design process that results in the
construction of a CBS from the appropriate components.

A mapping algorithm that selects the proper components for a user-purpose relationship
is the key element of the software design process. Such an algorithm can be manual
(assisted), semi-automated, or even fully automated (as is the case for the NSX mentioned
in Section 5.1). Fig. 12.3 visualises the core of such an algorithm in a three-dimensional
space. One can see that each component can satisfy the specific purpose of a given user
to some extent (affordance). The degree of satisfaction is fuzzy. This means that it can
range from completely true (best fit) to completely false (worst fit), as indicated by shades
of grey in the figure. Here, we present the mapping algorithm on a theoretical level. This
allows us to generally consider possible automation. In practice, such an algorithm may
map appropriate components depending on the limitations of a user and the purpose he or
she has. Therefore, all the three – components, users, purposes, are bound to the domain
of SE, in particular to the typical use-cases we face in the GUI. For instance, while different
users may have the same purpose, i.e., to exchange cryptocurrency, everyone of them may
benefit from slightly different component satisfying this purpose. A good example might
be a health barrier such as color blindness, or mental challenge discussed in Section 14.4,
etc. These limitations may influence the choice of an appropriate GUI component.

Finally, when designing systems based on the TAO theory and BETA theory, we must
define the semantic meanings of objects on the axes of Fig. 12.3. It requires a description of
specific users and their purposes on one hand, and the components and their properties on
the other hand. We call a software design approach based on these descriptions affordance-
driven design and we investigate it deeper in the following section. This design approach is
consistent with numerous model-driven techniques in which software artefacts are generated
from abstract models to reduce development costs and shrink the error space [49].

12.3 ADA: The Way of Thinking

Before we jump into ADA, we again need to stress what Dietz concluded in Section 3.6
– an individual can identify an unlimited number of purposes for which a system can be
used. There is no way to simply map functional decomposition to a constructional one.
Thereby, the constructional designers must bridge the gap between them.

158

12.3. ADA: The Way of Thinking

Figure 12.3: CBS affordances in a three-dimensional space

Having said that, we argue that the hard-to-grasp mental bridge between function
and construction is one of the main reasons for difficult switches from old technology
to the new one. Although we fully agree with Dietz at the general level, we suggest
that if one is able to limit the scope of conditions to a certain degree, this gap can be
bridged in a manageable and systematic manner in a software design approach, where
subjective aspects can be minimised and the set of construction elements is limited and
clearly defined. This suggestion is based on the following simple reasoning. Let us assume
that the naturally infinite set of functions is (arbitrarily) limited. Then, by calculating
a Cartesian product with a (naturally) limited set of possible constructions and limited
design freedom (implied by SW development best practices), we can develop a bounded
relationship between functions and construction.

Therefore, to make F/C relationships manageable, we deliberately limit the number of
imaginable users, purposes, and components. We now formulate the following definition
based on the previous discussion [A.6]:

Definition 17. ADA is a software design approach for the development of CBSs following
Definition 7, where all of the following points hold:

1. There is a bounded set of ADA-users AU that we are able to describe formally.

2. There is a bounded set of ADA-purposes AP that we are able to describe formally.

3. There is a bounded set of ADA-components AC. Each component has its own con-
struction and properties and it manifests its possible ADA-purposes for all possible
ADA-users.

159

12. Building methodical framework: ADA

4. ADA-components are either atomic or they consist of other ADA- components rep-
resenting their constructional decomposition according to the TAO theory.

5. There is a relation called an ADA-relation defined as (AU ∗ AP) ∗ AC.

Definition 18. The union of ADA-users, ADA-purposes, and ADA-components forms
the set of ADA-elements AE, which can be captured by the following formula: AD =
AU ∪ AP ∪ AC.

Similar to an industrial assembly line, we use the term ‘assembling’ to express that
a product is merely assembled from ready-to-use components instead of requiring heavily
human-dependent design principles, as shown in Fig. 3.7.

To illustrate on the running example introduced in Section 12.1, ADA-users is a set
of traders. Each ADA-user may be characterised by their limitations such as health lim-
itations, and personal preferences influencing the environment where they want to trade.
ADA-purposes is a set of purposes they typically have during trading such as to buy & sell,
to filter latest bids, to show their crypto wallet, etc. ADA-Components is a set of com-
ponents in a specific technology and environment that may satisfy the trading purposes
of the traders. In this particular case, it may contain charts, widgets for viewing vari-
ous aspects of the crypto wallet, configurable forms to exchange cryptocurrency, etc. The
ADA-relation is the pairing up (mapping) relating traders with purposes to components
with properties. Thereby, this relation determines the extent to which the specific com-
ponent may satisfy a given trader having a specific purpose. Altogether, these elements
constitute ADA-elements. ADA-elements may be then implemented using various technical
approaches, for example a low-code solution later discussed in Section 5.2.

Next, we elaborate more on ADA-elements and ADA-relation.

12.3.1 Realising ADA-relation

The principles according to which a ‘process of organising knowledge regarding an applica-
tion domain into hierarchical rankings or orderings of abstractions’ are commonly referred
to as abstraction principles [204]. Because purposes (i.e., ADA-purposes) can be viewed as
a type of knowledge, the same principles can be applied to them. Therefore, purposes can
be logically grouped into a higher level of abstraction that is organised hierarchically [204]
‘to obtain a better understanding of the phenomena of concern’. The set of ADA-purposes
forms a tree structure, which is a functional decomposition according to the TAO theory.
This tree describes all possible ADA-purposes related to all possible users for which a
system within a specific domain can be used.

To realise ADA-relation, there are two possible approaches.

1. Developing a function (AU ∗ AP) → AC that assigns a set of ADA-components to
ADA-users and ADA-purposes. This scenario corresponds to Fig. 12.2 and can be
viewed as generating software from specifications, such as the press described in [137].

160

12.3. ADA: The Way of Thinking

2. Developing a function AC → (AU ∗AP) that returns possible ADA-users and ADA-
purposes for a given ADA-component. This function is a means of reusability. In
other words, it is a means of discovering existing components that are suitable for
a specific combination of ADA-users and ADA-purposes, thereby facilitating the
software design process.

12.3.2 Objectified ADA (O-ADA)

In the Unified Foundational Ontology of Social Entities [98], a purpose can be mapped
to a desire, which is an entity type that is existentially dependent on its bearer. This
means that in ADA, we must independently classify various types of users and purposes,
and relate them. However, we can simplify this process by considering only ‘standard’
users and their typical purposes. This means that the type of a common desire can be
‘extracted’ from its bearer to form an existentially independent object called an objectified
desire. According to the TAO theory, this is an intended affordance disconnected from the
purpose of a user. The theory refers to this concept using the term ‘function’. Therefore,
we can formulate the following simplified notion of ADA:

Definition 19. Objectified Affordance Driven Assembling (O-ADA) is a special type of
ADA with the following changes:

1. Instead of ADA-users and ADA-purposes, there is a bounded set of O-ADA-functions
OAF that we are able to describe formally.

2. We replace ADA-relation with the following O-ADA-relation: OAF ∗ AC.

Again, we must handle an unlimited number of purposes, as discussed by Dietz and
Hoogervorst [65]. However, we can assume that we can objectify the decomposition into
a form on which everyone can agree. Additionally, we can limit the decomposition to the
domain of a specific system.

Therefore, although the TAO theory considers an affordance as something that ‘subjects
perceive in their pursuit of satisfying needs’ [65], which can lead to an unlimited number of
purposes for using an object according to its properties, we do not consider such a broad
definition in ADA. We assume that the number of purposes is limited1.

O-ADA is strongly related to existing requirements engineering principles. In our pre-
vious work [A.6], we explained that ADA-users, ADA-purposes, and O-ADA-functions can
be mapped to use-cases that are traditionally captured by UML use-case diagrams. In the
waterfall model of the software development lifecycle, such a description corresponds to
the phase of analysing requirements. In contrast, in the agile model of software develop-
ment, O-ADA-functions can be translated from user stories written in the following format
canonised by Mike Cohn [37]: ‘As an [actor], I want [action] so that [achievement]’.

1We consider the fact that a situation in which certain software artefacts or technologies are used for
something they were not designed for is not impossible. For example, HTML was supposed to be a markup
language for displaying text in a web browser. However, it is often used for the purpose of constructing
complex interactive GUIs

161

12. Building methodical framework: ADA

Again, let us refer to the running example from Section 12.1. The O-ADA-function
might be the following: ‘as a [trader], I want [sell cryptocurrency] so that [I can quickly see
the exchange fee]’. Another one could be ‘as a [trader], I want to [view crypto wallet] so
that [I can filter it by balance and by name of the currency]’. O-ADA-relation determines
to which extent the available GUI components fulfil these functions.

S
ec

ti
o
n

T
a
ke

aw
ay

In this section, we presented the way of thinking about ADA. We explained that systems
built on top of TAO theory and BETA theory may support technology transitions. This
requires defining sets such as ADA-users, ADA-purposes, ADA-components, and capturing
the ADA-relation between them. We altogether call them ADA-elements. They help us to
realise the hard-to-grasp mental bridge between F/C that Dietz finds impossible to build.
Moreover, if we can afford objectifying ADA-users and their ADA-purposes into a form
on which everyone can agree, we can simplify ADA into O-ADA. This simplification limits
the degree of freedom to a set of O-ADA-functions that can be mapped into well-known
user stories.

12.4 ADA: The Way of Working

Previously, we demonstrated that when constructing a software system based on the no-
tions of EE theories, we must consider concepts captured by the affordances defined in
Definition 17. In such a system, we must be able to identify ADA-users, describe their
ADA-purposes, and construct a final solution consisting of ADA-components. This corres-
ponds to the function (AU ∗ AP)→ AC.

In this section, we first propose a potential software architecture in which ADA can be
realised. To exemplify our descriptions, we will again use the running example put forward
in Section 12.1.

12.4.1 Designing a Software Architecture

To develop a sample ADA system architecture, we employed a model-driven development
approach. Such an approach is consistent with our approach in terms of constructing a
platform-independent model. This is a model that typically consists of conceptual data,
models, use-case models, descriptions of functions, and processes. However, these are
‘defined in a general form abstracted from concrete technologies and platforms’. [172]. This
model can be realised using UML component and activity diagrams [25]. The component
diagram in Fig. 12.4 presents basic high-level components and their relationships in an
ADA-based CBS. Additionally, Fig. 12.5 depicts the flow between components.

The proposed architecture has been evolving over time in the form of a design artefact
from the applied DSRM. Its very original version emerged from our previous research on
projectional editor for Domain-Specific Language (DSL) [A.9]. In this stage, we aimed
at having a DSL to describe GUI. This preliminary version already contained the idea of

162

12.4. ADA: The Way of Working

Figure 12.4: A possible high-level architecture for a system applying ADA

generating SW components from descriptions. However, when we analysed the topic of
technology transitions conceptually, essential concepts such as users, their purposes, and
components defined in Definition 17 were formulated.

Let us walk through the architecture. First, we explain the components that directly
reflect ADA-elements from its definition, each of which must be described, e.g., in XML,
DSL, annotation, or other descriptive tools. In our running example, traders use trades for
the purpose of exchanging cryptocurrencies without using a mouse, or to view and filter
the latest bids. The Purpose Repository is the storage containing possible purposes
typical for cryptocurrency trading. Additionally, each trader may have certain restrictions
effecting him during cryptocurrency trading – physical disorders such as color blindness,
mental challenges such as a lack of focus. Moreover, they may be of different age. All these
characteristics might influence the final choice of GUI components dealing with trading.
Similarly, the User repository is the storage containing these user characteristics that
might be reflected in GUI of trading application. Finally, given a cryptocurrency trade, the
Mapper component is responsible for finding an appropriate GUI component with respect
to the trader’s purpose and their user characteristics. These components are provided by
the Component Repository. In our example, mappers may return JavaScript or WPF
controls for filtering data, grids for viewing them, widgets for bidding and selling, etc.
The Semantic Description Engine plays a different role. It does not correspond to any
ADA-element. It was only introduced to provide a technical infrastructure to work with
them. It is responsible to process ADA-elements regardless the form used to describe them.
For example, in our finance domain, this engine can process information about types of
objects such as trade. In this case, the system will likely represent it as a domain data
structure, e.g., a class in OOP [43]. This class is accompanied by the so-called semantic
description based on those available in the User Repository and Purpose Repository.

163

12. Building methodical framework: ADA

It covers all user characteristics and purposes for which trade objects are used by traders.
Respectively, the purpose or user characteristics are expressed as a combination of domain
data structures and operations on those structures. Additionally, the engine must be able to
store descriptions of domain data structures in a manner that can be efficiently searched
using a combination of a user and its purpose(s). Typically, some type of dictionary is
implemented.

The activity diagram in Fig. 12.5 illustrates the typical flow among components in
Fig. 12.4. It represents a situation in which the system needs to generate GUI to manipulate
instances of domain data structures in a given context, such as GUI to satisfy certain
purposes. In our situation, the system needs to generate GUI for traders to satisfy their
cryptocurrency trading purposes. An example of this GUI is in Fig. 12.1. The left side
shows a widget satisfying a purpose to buy or sell cryptocurrency (to create a new trade
object). The Fig. 12.1 illustrates that the ‘PLACE BUY ORDER’ button comes with a
shortcut. This is again due to the requirement of satisfying that purpose without using a
mouse. The right side contains a table satisfying a purpose to show recent bids (viewing
and filtering trade objects).

The entire process begins with a request to ‘get a collection of views in technology’. For
example, this could be a request to obtain a collection of JavaScript views to orchestrate
an editor, where a trader having the purpose to deal trades does not need to use a mouse.

The engine handles this request. It does two things. First, it parses the semantic
descriptions of the domain data structure on its inputs. Second, for every single attribute
of the domain data structure, it generates a list of how the property should behave for
certain type of users having a specific purpose dealing with that. Again, let us explain
it on building GUI dealing with trades. Two purposes enter the engine – purpose to buy
and sell cryptocurrency, purpose to show recent bids. The engine opens the domain data
structure representing the trade. For every single attribute (order type, quantity, bid price,
fee, total amount, data, ...), it assigns a matrix which tells how such an attribute satisfies
the purpose users could use it for. For instance, the attribute ‘fee’ must be clearly visible
when satisfying a purpose to buy or sell a cryptocurrency.

Next, the mapper proceeds. Based on the detailed parsing of the domain data struc-
tures, it searches the component repository to find the best GUI satisfying required pur-
poses. In our case, it generates a JavaScript view similar to Fig. 12.1.

S
ec

ti
on

T
ak

ea
w

ay

In this section, we covered a software architecture where ADA can be realised. We showed
that ADA concepts such as ADA-users, ADA-purposes, and ADA-components are to be
stored in certain SW repositories. Each repository may use own notation to describe
the ADA-elements, e.g., DSL, XML, annotations, etc. Therefore, the SW architecture
will likely contain a component standardising these specifics. We called this component
Semantic Description Engine. It outputs data to a Mapper generating the final GUI
from ADA-components. Thereby, it satisfies the ADA-purpose of given ADA-user(s).

164

12.5. Chapter Summary

Figure 12.5: ADA process

12.5 Chapter Summary

In this chapter, we synthesised all findings addressing particular research objectives of
RO 2. In Section 12.3, we introduced a methodical framework ADA. ADA is created with
a notion of purpose of a user in mind. It allows for constructing GUI based on mapping
these purposes to a limited set of SW components. Next, in Section 12.4, we proposed a
SW architecture where ADA may be realised in practice.

In the next chapter, we demonstrate its application in an industry-scale Corima applic-
ation.

165

Chapter 13

Demonstrating ADA in Corima

Throughout our research, we already examined Corima framework multiple times. Now,
we will present how it implements and widely uses ADA. Corima is a multi-user client-
server application and an application platform at once. Its applications cover the needs
of the whole treasury department of banking/corporate customers of COPS. Most of the
applications are data-centric, focused on displaying data in standardised components, e.g.,
pivot tables, grids, charts, edit forms, etc. They typically cover use-cases in which several
users communicate their demands to a server that cooperates with a risk management
banking system contending with the processing of various operations carrying essential
information (e.g., deals, FX, and balances).

Corima traditionally offered WPF. Lately, we started porting it to a new web techno-
logy (Angular). This is where we realised that expressing ADA-purposes in a descriptive
language (or a DSL) is a great help. The future technological switches will not require
rewriting it (possibly just syntactically), just the code of high-cohesive, low-coupled ADA-
components must be adjusted.

In the following sections, we relate the traditional requirements analysis performed in
SE to the concepts formulated by ADA. For simplicity, let us work with O-ADA1. First,
in Section 13.1, we extend our running example. We analyse it using the traditional UML
Use-Case Diagram, and demonstrate a sample wireframe of the demanded system. Next,
in Section 13.2, we map the corresponding user requirements into O-ADA-functions. In
Section 13.3, we show how we describe them in Corima. Finally, in Section 13.4, we outline
the Corima architecture enabling O-ADA.

13.1 Running Example (part 2)

Let us now extend the running example put forward in Section 12.1. We zoom into the
area of a cryptocurrency trading where traders may filter for the latest bids. These bids are

1This will be probably the most common situation in practice, as we need to work with ADA just in
case we need to distinguish special types of users, such as users with various inabilities.

167

13. Demonstrating ADA in Corima

Figure 13.1: Use-case diagram of a tabular data viewer

stored in a relational database and the users manipulate them with the tabular data viewer.

Running Example (part 2): Tabular data viewer is a component for viewing, filter-
ing, and exporting historical data about cryptocurrency bids. The system must implement
use-cases depicted in Fig. 13.1. The wireframe of its possible construction can look like
in Fig. 13.2. We can see that UC1 and UC2 can be performed by using the header of
each column, one can sort data ascending or descending using a little black arrow. UC3

is covered by using the left / right arrows directly in the header – they switch the order of
columns. The exporting functionality demanded by UC3 and UC4 is triggered by HTML /
PDF buttons. The number of displayed items demanded by UC6 can be set in the footer
using a page size selector. The back and forward browsing in UC7 can be performed using
a scroll bar, and the filter condition in UC8 can be set in a filter.

Additionally, we declare that tabular data viewer should ignore the name of cryptocur-
rency while filtering, i.e., it must handle the notion of ignoring things. Per default, the
cryptocurrencies should be sorted in ascending order by price.

13.2 Mapping User Requirements to O-ADA-Functions

Now, we need to map the aforementioned use-cases onto O-ADA-functions that determine
the scope in which the application operates. In a general situation, this would result in
a mapping onto several O-ADA-function decomposition trees (called a forest in computer
science). However, in our simple case, all the use-cases map onto a single O-ADA-function
decomposition of the tabular data viewer. The result is depicted in Fig. 13.3. The black
nodes mark O-ADA-functions of the tabular data viewer in the running example. The
grey nodes mark O-ADA-functions that are not needed, yet generally, they belong to the
same domain of viewing tabular data. Clearly, the involved O-ADA-functions result in a
subtree. Again, in a common situation, we end up with a forest of O-ADA-function trees.

168

13.2. Mapping User Requirements to O-ADA-Functions

Figure 13.2: Wireframe of a tabular data viewer

Figure 13.3: O-ADA-Functions decomposition of the tabular data viewer used in the
cryptocurrency trading application

In Fig. 13.4, the constructional decomposition is displayed using a traditional UML
Component Diagram. Generally, the relation between a node from the functional decom-
position and the nodes in the constructional decomposition is M:N, as one function may
be (and it typically is) realised by several constructional nodes and vice versa, one con-
structional node may realise several functions (reusability). In this particular case, the
constructional decomposition is very similar to the functional one. However, the nodes
represent constructional elements, and as such they may be reused in different systems.

Similar mapping to O-ADA-functions could be done for use-cases emerging from the
Section 12.1 of the first part of our running example. However, in this chapter, we describe
our reasoning on these extended use-cases to mainpulate tabular data of cryptocurrency
historical bids.

169

13. Demonstrating ADA in Corima

Figure 13.4: UML Component diagram representing a constructional decomposition

S
ec

ti
on

T
ak

ea
w

ay

In this section, we showed that O-ADA-functions correspond to the functional decom-
position of a system. The functional decomposition is based on the use-cases the system
should cover. The construction decomposition in O-ADA-system must support a mapping
to O-ADA-functions for the O-ADA-system to be realised.

13.3 Semantic Descriptions

Now, having an O-ADA-functions defined, the next question is how to describe them. In
Section 12.4.1, we said that domain data structure such as cryptocurrency ‘trade’ must be
described semantically, e.g., using XML, DSL, annotation, etc. This description enriches
the domain data structure with information necessary for O-ADA-based system. When
ADA-components deal with instances of these structures, the description helps them to
understand how to use them for a certain O-ADA-function.

Let us move back to general ADA. For instance, ADA-component satisfying ADA-
purpose of filtering trades would use the trade description to understand the sorting pref-
erences of a certain ADA-user. An ADA-component supporting ADA-user to buy and sell
cryptocurrency would benefit from a description of a required number of decimal places,
highlights, limit options, etc. In Corima, we call these descriptions Semantic Descriptions
(SDs). We define them as follows:

Definition 20. A Semantic Description (SD) in ADA is a formal description of an
ADA-element that specifies its essence in such a way that the ADA-relation can be realised.

170

13.4. ADA Architecture

Then, similarly:

Definition 21. A Semantic Description (SD) in O-ADA is a formal description of
an O-ADA-element that specifies its essence in such a way that the O-ADA-relation can
be realised.

For machine processing, we need to encode the SDs into a formal language: General-
Purpose Language (GPL), a descriptive language (like XML), or DSL.

Expressing SD in DSL (or in a descriptive language) instead of a GPL, brings additional
effort of implementing a parser/processor. However, for a certain number of SDs, this pays
off, because once a switch to a new programming language occurs, the SD does not have
to be re-coded as it will be apparent from the Chapter 14. For typical large enterprise
systems like the one described below, the savings of costs and decrease of risks of bugs can
be considerable. Moreover, as we described in our previous work [A.9], due to the simplicity
of DSL, several visual and textual forms can be used for its presentation. These are known
as DSL projections [220] that could be maintained in so-called projectional editor. Hence
some of the projections do not require any deeper technical programming knowledge and
can be easily understood by a non-developer, the projections can improve a cooperation
between tech people and domain experts. However, in a scope of ADA implementation, we
decided not build an independent DSL for SD and maintain it with a projectional editor.
Rather, we sticked on SD in C# that is more common in Corima.

13.4 ADA Architecture

Corima implements ADA architecture similarly to the one described in Section 12.4.1.
Therefore, we will now shift away from the simplified O-ADA we referred to above. In
Fig. 12.4, we introduced the components required to implement ADA. The UML class
diagram in Fig. 13.5 illustrates our design decisions in Corima. Below, we detail these
decisions and present specific examples of ADA-purposes. A more detailed summary of
the various ADA-purposes available in Corima is beyond the scope of this study. We
solely focus on a general architecture for ADA implementation, rather than on various
ADA-purposes in different contexts.

Semantic Description Engine. In Corima, there are two types of SDs enabling us to
describe the domain data structure semantically: using class descriptions or using class
annotations. Without elaboration, these descriptions can be simply represented by objects.
We refer to such an object as a DomainClassDescription.

DescriptionController is a crucial class in the Semantic Description Engine. Cor-
ima uses it to register all available types of ADA-users from the user repository combined
with all possible ADA-purposes they may have. In our running example, the user repos-
itory includes the types of trading users with all their aforementioned characteristics, the
purpose repository contains types of purposes to satisfy traders. For instance, specific buy

171

13. Demonstrating ADA in Corima

Figure 13.5: ADA process in Corima

172

13.4. ADA Architecture

and sell cryptocurrency purpose, and generic purpose to filter and view data regardless the
type of data it manipulates.

Upon request, DescriptionController will be initialised with a specific instance of a
DomainClassDescription. The controller will parse this description using a specialised
parser such as ClassDescriptionParser or ClassAnnotationParser and then store it in
the form of an IntermediateDescription. Similarly, if COPS architects would decide to
store these descriptions in XML or DSL, obviously XmlParser or DSLParser would need
to be introduced. However, the description would always need to be transformed into
an independent IntermediateDescription. It is optimised for further searching by the
IntermediateDescriptionBrowser. Finally, the DescriptionController is responsible
for finding semantic information that corresponds to a given user with a specific purpose.
This information is stored in an instance of the interface IPropertySemanticInfo for each
property of the described domain data structure. For example, let us reffer to our running
example Section 13.1. If we consider a purpose of filtering data, then the semantic inform-
ation contains an indication of whether one can filter by a specific field (property). If we
consider the purpose of exchanging trades, the semantic information contains a constraint
regarding the ability to exchange cryptocurrency without using a mouse, disable filter-
ing by ‘fee’ when viewing trades in a filter table, etc. Similarly, the preference on visible
decimal numbers shown to the trader would also be covered by the semantic information.

User Repository. As explained previously, CBS constructed according to the notion of
affordances must select components that are well suited a specific user with a given purpose.
Therefore, CBS utilising ADA must contain a repository defining ADA-users, such as a
trader, controller, front, back, or middle office employee, risk officer, accountant, etc. In
Corima, a specific class for each user can be created and stored in a repository. Again,
each class representing ADA-user may come with characteristics that must be considered in
Corima such as age, health restrictions, or preferences influencing the appearance (shape,
color, contrast, GUI patterns, etc.). It may include clues that indicate not obvious functions
that are not displayed until the action is being taken. These may influence a drop-down
menu or other clickable feature that only appears when the user is hovering over it.

Purpose Repository. ADA-Purposes are expressed as a combination of domain data
structures and operations. Each purpose is represented by a class. These classes constitute
the purpose repository. Additionally, each purpose is linked to a special (technical) class
representing the semantic information, such as ExchangeCryptocurrencySemanticInfo,
FilteringSemanticInfo, ViewingSemanticInfo, etc. The instances of these classes are
by no means the objects that semantically enrich the instance of domain data objects.
When performing the Find operation, the DescriptionController returns their instances
with help from its browser. For example, the implementation of the aforementioned ex-
change cryptocurrency purpose is shown below.

class ExchangeCryptocurrencyPurpose <T, SI> : IPurpose

where T : object // Data type representing the data structure

173

13. Demonstrating ADA in Corima

where SI : IExchangeCryptocurrencySemanticInfo {

// Dictionary mapping properties of their SemanticInfo classes

Dictionary <Prop , SI> SIDictionary { get; }

void Highlighted(T obj , Prop prop) {

SIDictionary[prop]. Highlighted = true;

}

...

}

class ExchangeCryptocurrencySemanticInfo :

IExchangeCryptocurrencySemanticInfo {

bool CanUseMouse { get; }

string Label { get; }

bool Highlighted { get; }

...

}

Listing 13.1: Sample implementation of purpose and semantic info class.

The ExchangeCryptocurrencyPurpose is instantiated in a DescriptionController

and parsed by a parser having a type ClassDescriptionParser. This instance is evalu-
ated within a browser generating concrete semantic information for the given user. The se-
mantic information is created per each attribute and type of the purpose satisfied by trades.
The specific trade description may look as on the draft realised using ClassDescriptions

and ClassAnnotations. They heavily utilise the language features such as lambda expres-
sions or annotations in C#. Referring to the Section 13.1, it shows how the requirement
to disable filtering by cryptocurrency name, and the default sorting by price is fulfilled.

class TradeDescription : IClassDescription <Trade > {

public void Describe(IClassDescription <Trade > d) {

...

d.Purpose <IExchangeCryptocurrencyPurpose >()

.DoNotUserMouse ();

d.Purpose <IExchangeCryptocurrencyPurpose >()

.Field(x => x.Fee).Highlighted ();

d.Purpose <IFilteringPurpose >()

.Field(x => x.Cryptocurrency).DisableSorting ();

.Field(x => x.BidPrice).SortPerDefault ();

...

}

}

[DoNotUseMouse] // Annotation of ExchangingCryptocurrencyPurpose

class Trade {

...

174

13.4. ADA Architecture

[Highlighted] // Annotation of ExchangingCryptocurrencyPurpose

[SortPerDefault] // Annotation of FilteringPurpose

decimal Fee { get; set; }

decimal Quantity { get; set; }

decimal BidPrice { get; set; }

...

}

Listing 13.2: Sample implementation of trade descriptions using ClassDescriptions and
ClassAnnotations

In the same way, the majority of domain data structures in Corima are described with
respect to the purposes they satisfy throughout components in JavaScript, WPF, Angular,
AngularJS, etc. A more detailed summary of the various ADA purposes available in Corima
is beyond the scope of this study.

Component Repository. Components are specific to the technology used and are col-
lected in a repository. For example, in Corima, there are repositories of web and desktop
components for JavaScript (web) and WPF (desktop), respectively. These components
cover typical atomic GUI controls for data inputs, such as drop-down menus, text boxes,
and list views, buttons, radio buttons, etc. Additionally, it contains generic compon-
ents for filtering and editing data, viewing data in charts, pivots, etc., and it provides
specialised components to view cashflows, liquidity, and risk figures, or to support typ-
ical operations of front office, back office, middle office, risk, accounting, and other de-
partments using Corima. These specialised components are ready to work with classes
representing the corresponding semantic information. For instance, components for filter-
ing data require FilteringSemanticInfo for its operation, those dealing with cashflows
would require CashflowSemanticInfo, and components for liquidity planning would rely
on LiquiditySemanticInfo. In our running example illustrated in Fig. 12.1, the applica-
tion for cryptocurrency trading is orchestrated from one generic component used to filter
trades, and one specialised component for exchanging cryptocurrencies. Both of them se-
lects the atomic components to work with trades, e.g., atomic components for displaying
quantity, bid price, and fee while exchanging cryptocurrency, or components to display
date, currency, etc. when filering trades.

Mapper. Corima uses a mapper to generate final views for a specific technology. Its main
responsibility is to pick suitable implementations of an interface called IEditorFactory

(e.g., WebEditorFactory or DesktopEditorFactory) and trigger them to generate final
views using components from the corresponding component repository. Any new future
technology would need to come with the similar factory for Corima to switch to it. As
we outlined in Section 12.2, this mapping could be in principle manual (assisted), semi-
automated, or even fully automated. In Corima, it happens semi-automatically. Special-
ised complex components like filter tables, pivot tables are explicitly assigned, however the

175

13. Demonstrating ADA in Corima

atomic components are selected automatically based on the global mapping in Corima.

S
ec

ti
on

T
a
ke

aw
ay

In this section, we outlined ADA architecture in Corima. We explained that in Corima,
SD can be created using two different approaches. However, both of them results in a
standardised SD format recognised by Corima. Finally, all the components described here
can be mapped to the general architecture presented in Section 12.4.1. We explained them
on the running example put forward in Section 12.1, and continued in Section 13.1.

13.5 Chapter Summary

In this chapter, we tackled the first part of RO 4. We demonstrated the methodical
framework ADA in practice. Within an industrial-scale system Corima, we implemented
a subsystem based on ADA. First, in Section 13.1, we extended a running example. In
Section 13.2, we demonstrated, how such an example would be approached in terms of
ADA. We explained the nature of user requirements in the area of finance, in particular
the requirements for viewing and manipulating relational data. These requirements were
mapped onto O-ADA-functions. Next, in Section 13.3, we exemplified semantic descrip-
tions as a mean to express ADA-elements. In the scope of this thesis, we simplified them
and we concentrated on the essential principle, rather than diving into the detailed imple-
mentation in Corima. Finally, in Section 13.4, we presented a convenient architecture of a
system where ADA can be realised. We also described how we tackled certain architecture
components in Corima.

176

Chapter 14

Evaluating ADA

In Chapter 12, we described the foundations of systems based on EE theories and ADA.
In the same chapter, we elaborated on a potential high-level architecture for their imple-
mentation. A sample technical realisation was demonstrated on a Corima case study in
Chapter 13. We now evaluate ADA-based systems in terms of their industrial scale, and in
terms of evolvability. Specifically, we elaborate on the impact of technological changes on
entire systems. To evaluate this impact, we performed measurements on the code base of
Corima. We used NST to evaluate our approach from the perspective of improved evolvab-
ility, which is the main goal of this work. Therefore, we did not ground ADA in NST. We
only used its principles to minimise CEs when transiting systems from one technology to
another.

14.1 Embedding in Practice

Corima has been actively developed for more than a decade. Its Corima.cfs package con-
tains around 20 web and 40 desktop applications [41]. These applications are used by
numerous customers across DACH1 region and Czech Republic. The DerTreasurer and
HSBC [55] conducted a survey among companies with a turnover of up to five billion
euros. They listed COPS among 10 market leaders in Germany with a market cap equal
to 3.1%. The Corima applications are focused on the following aspects.

◦ Cash management – to administer, transfer, and optimise payment transactions,
including the definition of derivation rules, pooling structures, configuration of the
arrangement process, and parametrisation of payment transaction functionalities.

◦ Front-office and Back-office – to obtain an overview of the current status of treasury
positions, process financial transactions, and control the treasury business workflow.
This includes definitions of FX derivatives, money market trading, linking to external
trading systems, and matching business information to corresponding platforms.

1DACH is an acronym used to describe Germany (D), Austria (A), and Switzerland (CH)

177

14. Evaluating ADA

◦ Liquidity planning – to facilitate the efficient display and planning of liquidity posi-
tions. It helps the treasury department to ensure that the company remains solvent
at all times for the foreseeable future.

◦ Risk management – to analyse and control financial risks. This includes market risk,
credit risk, VaR, Interest Rate Risk in the Banking Book (IRRBB), and other types
of risks.

◦ Accounting – to implement booking concepts on the basis of national and interna-
tional requirements in parallel and integrate them into the overall treasury process.
This includes the entry of derivatives such as FX, IR, and commodities, and the
setup of loan accounting concepts.

Many applications are accommodated by modules designed to assemble components
based on the ADA approach, such as the data editor, data filter, and data viewer. Cur-
rently, across approximately 40 desktop applications, the following numbers of modules
are based on ADA: data editor (630 usages), data filter (513 usages), and data viewer (564
usages). In contrast to these modules, only approximately 262 modules are fully custom.
Therefore, 86% of all modules are driven by ADA and their possible migration to other
technologies will be accompanied with the benefits and limitations evaluated in the sections
below.

14.2 Evaluating ADA in Terms of NST

Now, we want to evaluate ADA with respect to its goal – to construct software systems
enabling controlled technology transitions. NST does not directly speak about technology
transitions. However, it investigates so-called change drivers. In our case, the target change
driver is a transition from one technology to another, such as a move from one framework
or library to another, or a change from one programming language to another. Therefore,
we decided to use NST as a benchmark to evaluate ADA. We want to show that if the
system is designed according to ADA, the CEs driven by the technology change is bounded.

We now evaluate the impact of changes in an ADA-based system. We present it on the
component diagram depicted in Fig. 12.4. First, we define some symbols that will help us
discuss changes.

◦ Sn is a system using technology Tn.

◦ SD is a semantic description of a domain data structure.

◦ L is a language used for expressing SD.

◦ Rn is a component repository in technology Tn.

◦ Mn is a mapper fetching SD and creating a component using Rn.

178

14.3. Evaluating ADA in Terms of Impact measurements

◦ Pn is a purpose repository.

◦ Un is a user repository.

Let us explain the symbols on our running example from Section 12.1. We also schem-
atically included the symbols to Fig. 13.5. S1 is a cryptocurrency trading application
developed in a former desktop technology T1 such as WPF. S2 should be moved to a new
web technology T2 such as JavaScript. The application is dealing with a trade object to
satisfy two purposes – P1 to create a trade while exchanging cryptocurrency, and P2 to fil-
ter historical trades or wallet history. The trading application behaves the same regardless
the user. Thus, it expects to work with a trader user U1 having specific characteristics,
visual preferences, etc. In Corima, COPS developed a language L of ClassDescriptions
to enrich the trade object with certain semantic meaning. The source code in this language
may describe the trade with respect to certain purposes, e.g., P1 and P2 of the user U1.
The compiler of this code will produce a semantic description SD of the trade domain
structure. These semantic descriptions will be used by components in a repository R1 that
contains all WPF components available in Corima, thus those using a technology T1. On
the other hand, R2 is a repository of components in JavaScript that are available in Cor-
ima, thus they use technology T2. M1, respectively M2 maps the SD to WPF, respectively
to JavaScript components.

When realising a transition S1 → S2, we must also realise the transition M1 → M2 to
keep the system consistent and running smoothly. Instead of T1, the S2 mapper must find
components in R2 for the new technology T2 and organise them properly (e.g., by creating a
view when working with GUI components). This could also potentially require a transition
R1 → R2 in the case where the new technology T2 requires updates of components in the
repository.

Based on the application of the Separation of Concerns theorem, the required changes
for replacing a technology T1 with a technology T2 only touch the mapper and (potentially)
the repository modules. Therefore, the impact of a change is bounded by the effort of
transitioning M1 to M2, which maps SD into components in technology T2 instead of T1.
However, if the change driver is in the same domain, only the purpose repository (Pn) and
user repository (Un) are affected, and the effects on the system are bounded by the effort
of transitioning M1 to map the new user and purpose repositories to R1 components.

14.3 Evaluating ADA in Terms of Impact measurements

To demonstrate the impact of the technology transitions previously evaluated using NST,
we now investigate the statistics of the real code base of a representative subset of applic-
ations in Corima. AD1 denotes the source code of all desktop applications in Corima. AW1

denotes the source code of all the applications in Corima.
The Corima system was originally implemented using WPF. Additionally, it was por-

ted to the web using JavaScript and AngularJS2. Such a transformation is typically very
2AngularJS is a JavaScript-based open-source frontend web framework.

179

14. Evaluating ADA

Figure 14.1: Corima transitions

challenging both technologically and economically. Let us demonstrate this transition in
an ADA-based Corima. We list code base statistics for both web and desktop applications.
Corima is a client-server platform. Because the focus of this research is on GUI frame-
works, only the client side is relevant for our calculations. Therefore, we omit the size of
the server-side code base and only list code base statistics for the client side.

We detail the calculations for the code base statistics of the desktop client. The same
reasoning can be applied equally to the web client. We present that code base schematically
in Fig. 14.1 with respect to the ADA definition in Definition 17 as well as the symbolic
put forward above. One can see that the GUI code base of all desktop applications (AD1)
is ∼618K LoC, which account for approximately 92% of the entire desktop code base.
The repository of desktop-specific components (RD1) is covered by ∼11K LoC, accounting
for less than 2% of the code base. The mapper (MD1) for fetching semantic descriptions
(SDD1) for desktop applications and creating components using RD1 only requires ∼1K
LoC, accounting for a marginal 0.2% of the entire code base. Finally, the sizes of the
purpose repository (PD1) and user repository (UD1) are ∼500 and ∼600 LoC, respectively.

Now, let us assume that we must re-implement Corima using components in a new
GUI technology (TD2). The impact of this change is bounded. We only have to update
the mapper MD1 → MD2 and create a new repository of components RD2 using the new
technology (TD2). Therefore, only ∼2.2% of the desktop code base is touched while 98%
remains the same. Despite these relatively small changes, the most important NST aspect
is that the number of changes is bounded with respect to the application size. As long as
new applications in AD1 use the components from RD1 , their transition to TD2 does not

180

14.4. Limitations of ADA

Desktop (TD1) Web (TW1)
Symbol Code Lines Rate Symbol Code Lines Rate

GUI of all Applications AD1 618,230 92.34 % AW1 38,250 77.41 %
All Semantic Descriptions SDD1 37,529 5.61 % SDW1 3,354 6.79 %
Mapper MD1 1235 0.18 % MW1 330 0.67 %
Repository RD1 11,398 1.70 % RW1 6,320 12.79 %
Purpose Repository PD1 544 0.08 % PW1 544 1.10 %
User Repository UD1 613 0.09 % UW1 613 1.24 %
TOTAL 669,549 100 % 49,411 100 %

Table 14.1: Code base for a subset of Corima treasury applications

influence the number of changes needed to transition MD1 →MD2 and RD1 → RD2 .
However, when the change driver is within the same domain, the adjustment of the

purpose and user repositories is bounded to ∼1.7% of the entire code base and does not
change with an increasing number of new Corima applications.

Similar calculations can be performed for web applications in Corima that use JavaS-
cript and AngularJS. Here, the percentages are slightly different (∼13.4% when re-implementing
Corima using another web technology and ∼2.3% when the domain changes). This dis-
crepancy in calculations between the desktop and web clients is irrelevant to our point
because it simply represents differences between the technologies used (WPF and C# as
TD1 versus JavaScript and AngularJS as TW1). Overall, the change impact is similar.

14.4 Limitations of ADA

ADA limitations result from its ability to describe the dimensions presented in Fig. 12.3.
The first dimension is the dimension of users. In this dimension, ADA is limited by

the ability to describe ADA-users so that the resulting GUI reflects their constraints. This
is not required in Corima, the GUI is the same regardless of their constraints. However,
together with Rašovský, we developed a prototype of an affordance-based system reflecting
the needs of people with mental challenges. By explicitly capturing the disorders of poten-
tial users, suitable GUI components to serve their purposes were identified. We grounded
the work in the research on computer therapy, which was introduced by Fiala [77]. We
learned that the GUI for mentally challenged people respects the specific construction of
elements, for example, colours, shapes, and distances between elements are required to
have specific relations. This approach may be extremely beneficial for information systems
provided by governments. Typically, by law, these systems must be accessible to all cit-
izens, including those with certain limitations. Examples include ISO 17049, which focuses
on the use of braille in accessible design, ISO 23599, which focuses on assistive products
for blind and vision-impaired persons, and the ISO 21902 focused on accessible tourism.

The second dimension is the dimension of purposes. Here, ADA is limited by its ability
to describe ADA-purposes so that the resulting GUI can satisfy them. We are often

181

14. Evaluating ADA

unable to capture all the purposes for which GUI may be hypothetically used. However,
in many cases, it is sufficient to describe only the purposes that are common in a given
context. For instance, in Corima, we covered all required purposes dealing with Create,
Read, Update, and Delete (CRUD) operations of tabular data in the context of filtering,
displaying charts, presenting a master-detail view, etc. Considering the scale in which
we used this approach in practice (see Section 14.1), we can cautiously argue that for an
enterprise-wide application similar to Corima (i.e., dealing with large sets of tabular-data),
we can describe all the necessary purposes. Therefore, if the purposes are tangible and well-
described, ADA may help to ‘bridge the mental gap between function and construction’.

The third dimension is the dimension of components. It relates to the implementation
of the GUI itself. Therefore, we can better address its limitations using well-known SW
development practices. With Mareš, in Chapter 11, we researched the state-of-the-art of
GUI development. We realised that most GUI technologies and frameworks are based on a
common architectural or design pattern. However, similar to Verelst and Mannaert [137],
we concluded that these patterns do not themselves provide rigorous guidelines to ensure
evolvability, and they are typically not consistent with respect to principles and ideas. In
the same line of thought, there are multiple possible variations when implementing specific
architectural patterns, each with different trade-offs. Therefore, in ADA research, we
introduced a general architectural pattern designed for technology transition. Obviously,
its implementation is limited by the technology, framework, language expressiveness, and
experiences of the COPS. For example, Corima implemented the ADA with the .NET
technology stack. It combines a declarative and imperative style of programming using
C# and Language INtegrated Query (LINQ)3. Thus, the corresponding trade-offs must be
considered when migrating Corima from one technology to another.

Finally, we can observe the overall limitations of ADA. It is a general design approach.
Although it aids in the construction of SW designed for a technology transition, its imple-
mentation may vary significantly. Therefore, we cannot argue that an ADA-based system
is completely free of CEs, and its evolvability depends on how it implements the NS the-
orems, which are not explicitly address. However, because technological evolvability is
the main goal of this research, we demonstrated that an ADA-based system exhibits the
characteristics of a bounded impact of the transition T1 → T2 discussed in Section 14.2.

14.5 Chapter Summary

In this chapter, we evaluated the final ADA artefact emerging from our research. First,
in Section 14.1, we tackled our research objectives RO 4.1 by presenting how ADA-based
system Corima is embedded in practice. Next, we addressed the research objective RO 4.2
by a theoretical evaluation of ADA in terms of NST presented in Section 14.2, and in terms
of Corima code-base measurement in Section 14.3. We closed this chapter by discussing
the limitations of ADA in Section 14.4.

3LINQ is a Microsoft .NET Framework component that adds native data querying capabilities to .NET
languages. [1]

182

Part V

Conclusion

183

Chapter 15

Discussion

In this chapter, we summarise the achievements of our research and we reflect on the
conclusions. In addition, we demonstrate that the main goal presented in Section 1.5 and
objectives of the research have been achieved and the research problem put forward in
Section 1.4 got addressed. We also highlight the main contributions to the SE and EE
body of knowledge. Furthermore, we propose and discuss the areas of improvements as
well as possible future research directions.

15.1 Addressing the Research Goal and Objectives

The main goal of this research specified in Section 1.5 was set out to:

‘Design and develop a new methodical framework that aids in the construction
of software solutions enabling controlled technology transition.’

As presented in Chapter 12, this aim was achieved and a framework ADA for the con-
struction of software solutions enabling controlled technology transition was designed. This
framework represents a main artefact developed by employing DSRM from Hevner [103,
102] and DSRP from Peffers [170].

The proposed framework builds on findings of EE, and it defines the concepts that
need to be present in the SW architecture that supports controlled technology changes.
In this way, not only the SW concepts can be determined but also the mapping to new
technologies can be derived.

The framework was evaluated and its applicability to a real-life problem was further
tested on an industry-scale application Corima. The framework can be effectively used by
SW developers and architects for a development of GUI solutions that allow for controlled
technology transition.

While we designed the framework by following the DSRP, we took a number of steps
in few research phases put forward in Section 1.5.3. We discussed these steps in Chapter 6
in detail. They included (a) conceptualising our research, formulating the problem in our

185

15. Discussion

research scope, populating the knowledge base of the research, and the identification of
possible solutions, (b) design and development of the methodical framework, (c) demon-
stration and evaluating its real-life applicability, and finally (d) communication using suit-
able channels. The last step (d) was addressed by various publications and presentations.
The other steps were translated into the major research objectives (and sub-objectives) of
this research. In the next section, we will revisit how we achieved them.

15.1.1 Research Objective RO 1

The first objective of this research comprised four parts. It intended to investigate and
understand the state-of-the-art of:

◦ RO 1.1: research on SW evolvability;

◦ RO 1.2: EE theories from which SE may potentially benefit;

◦ RO 1.3: technological practices aiming at better technology transition;

◦ RO 1.4: related research aiming at better technology transition.

In the text below, we will answer these research objectives and thereby answer the
research question RQ 1.

The first research objective RO 1.1 was tackled in Chapter 2 by inspecting the evolvab-
ility from two perspectives – NST and EAs. NST helped us to understand the solid theor-
etical foundation, the notion of CEs, and practices focused on building evolvable SW. EAs
revealed the emphasis on building DevOps and CI/CD infrastructure instead of dwelling
on static architecture diagrams.

The second research objective RO 1.2 was addressed by Chapter 3. We reviewed differ-
ent EE theories and we realised the importance of affordance, function, construction, and
their separation.

The research objective RO 1.3 was met in Chapter 4. In Section 4.1, we started with
a thorough and exhaustive narrative review of literature focused on CBSs development
what unveiled the historical development in our research domain. This gave us a better
inside into a topic of modularity and reusability. Next, in Section 4.2, we undertook a
comprehensive elaboration of various architecture and design patterns commonly used to
build GUI. Some of the frameworks we refer to in this dissertation thesis were also briefly
analysed in Section 4.3. These two section helped us to understand the challenges con-
cerning patterns and related technologies. We realised the complexity grows with each
new pattern what might be the reason for their imprecise implementation and dissensus
in their definition. Finally, we wanted to meet the research objective RO 1.3 from slightly
different angle. In Section 4.5, we wondered how the current RPA and BPM technology
may support technology transitions. Again, we undertook a comprehensive review of cor-
responding tools, practices, and challenges they tackle. It was clarified that BPM can

186

15.1. Addressing the Research Goal and Objectives

help organisations to increase their maturity to the level when their business processes are
known and correctly managed. This by itself does not solve the problem of technology
transitions, however, it builds a great basis for further technological innovations. RPA
saves the labour time by automating routine activities that can be later bridged to BPM.

Finally, the RO 1.4 was met in Chapter 5. Here we briefly presented the linkage of our
research with the approach of other researchers.

15.1.2 Research Objective RO 2

Our second objective was formulated as follows:

‘To design a methodical framework aiming at controlled technology transition.’

In Chapter 12, we completed the framework ADA based on the careful integration
of various concepts from EE. However, to come up with it, as the core of this research,
multiple sub-objectives were defined and addressed. These include:

◦ RO 2.1: To investigate how user-interactions can be captured in SW development.

◦ RO 2.2: To describe trade-off between flexibility and usability of SW components
when having their function and construction devised.

◦ RO 2.3: To show how RPA technologies can bridge the gap between legacy SW and
SW built with technology transition.

◦ RO 2.4: To demonstrate how to measure the evolvability of systems.

◦ RO 2.5: To describe architecture concepts that limit GUI transitions.

By responding the research objectives above, we also answer the research question RQ 2.
For achieving the sub-objective RO 2.1, in Chapter 7, we presented our article focused on
adapting PSI theory to support a confirmation principle in Corima. This was our first
attempt to map EE theory into SW. It further highlighted the value of a business process
in an environment where people interact, in this particular case a confirmation process
where people interact to confirm certain financial instruments in Corima. Whenever the
user input was required in this process, the GUI was generated for a specific employee to
fulfil this input. It was realised that this may help to move the GUI from one technology
to another. Regardless the changing technology, the process remains the same. These
were the first observations that made us curious of how to apply the same principle in SW
development systematically. According to the findings, a number of knowledge gaps and
problems in this research were unveiled. It was unclear how to describe GUI independently
from the technology, so that it may get orchestrated from various components of frameworks
that we do not know yet.

187

15. Discussion

Therefore, we formulated a second research sub-objective RO 2.2. It was obvious that
the flexibility of the GUI components used in the generator plays a significant role. How-
ever, we noticed that their complexity increases with their flexibility. Furthermore, the
more flexible the components are, the more difficult it is to use them. This trade-off
should be kept in mind while designing reusable GUI components.

In parallel to tackling the first two sub-objectives, we started a separate stream of our
research. While we were moving forward designing a methodical framework, we identified
a gap in terms of how the industry may move the legacy SW to a SW designed for better
technology transitions. We defined our next research sub-objective RO 2.3. We investig-
ated RPA and BPM technology that are trending on the market. A thorough systematic
review of the existing body of knowledge was already undertaken in Section 4.5.3 to un-
derstand their state-of-the-art. We implemented a solution bridging the work with legacy
SW into BPM having the GUI generated based on the similar principle as we used for the
aforementioned confirmation process.

Since our focus is on technology transitions, we had to understand how to measure
them. Therefore, we defined our next research sub-objective RO 2.4. We measured CEs in
a complex financial risk management field. In conjunction with the University of Antwerp,
we established a domain model of a certain area of risk management. We published a joined
paper discussing its changeability and CEs. This gave us the first practical experience with
NST and measurements of CEs.

Next, we put forward our last research sub-objective RO 2.5. In Section 4.2, a sys-
tematic literature review was employed to identify GUI patterns. The output of this
investigation underlined many design and architecture patterns used across variety of GUI
frameworks. It revealed their gradual complexity, dissensus in their definition, and impreci-
sion in their implementation. To meet this research sub-objective, we outlined a transition
of a simple application from one technology to another. On that example, we pointed out
the difficult parts of the process of transitioning between two technologies. We evaluated
that with the help of NST and EA, and we provided an overview of all aspects that play
a role in a GUI transition.

15.1.3 Research Objective RO 3

The third objective of this research included the development of a prototype system using
ADA. It was formulated as follows:

‘To design & develop a prototype of the designed framework in an industrial-
scale system.’

To achieve this objective, we took an industrial-scale financial application Corima. We
implemented its infrastructure according to the ADA concepts. It included the implement-
ation of components serving as ADA-users, ADA-purposes, ADA-components, and ADA-
relation that are present in the ADA Definition 17. While this ADA infrastructure enabled
Corima to transit between desktop and web technologies, the particular ADA-elements

188

15.2. Responding to Research Problem

supported filtering and editing data, viewing charts, and performing treasury operations
such as managing risk, cash, cashflow, etc. The prototype facilitated the achievement of
the research objective RO 2 of this research and was presented in detail in Chapter 13.

15.1.4 Research Objective RO 4

The last objective in this research was to evaluate the framework in a two-step evaluation
process including

◦ the demonstration of the designed framework in a real-life industrial-scale environ-
ment; and

◦ the validation of the framework from a theoretical point of view.

These steps were further used to respond to research question RQ 2. For the first
step of the evaluation, the application of the framework ADA was tested in a case study of
Corima. The results were presented in Chapter 13 and showcased the strength of ADA and
the developed prototype in Corima. The initial feedback from the industry in Section 14.1
illustrated the benefits of this framework for improving the technology transitions.

For achieving the verification aspect of the second component of the framework evalu-
ation, its processes as well as its implementation were verified by two-step analysis (refer
to Section 14.2 and Section 14.3). We calculated CEs in a proposed architecture of ADA-
based system, and we provided measurements in a code-base of Corima.

The outcomes of the validation highlighted a number of limitations of ADA. Section 14.4
details them, and presents future directions where ADA can be further improved.

The presented accomplishments in each objective of this research led to achieving the
goal of this research, and subsequently addressing the formulated research problem.

15.2 Responding to Research Problem

The research problem defined in Section 1.4 recognised that despite the benefits of existing
GUI frameworks, organisations of different sizes are often lacking the capacity to adapt to,
create, and leverage changes to use these latest technologies for their customer’s benefit.
Specifically, we formulated the research problem as follows:

‘Despite the potential in modern technologies, SE do not offer guidance and
architectural pattern on adapting software artefacts into the latest technologies
in a more efficient and manageable manner.’

To address the highlighted problem and underlined need for a more rigorous and de-
tailed analysis of technology transitions, various technologies, methods, and methodologies
were identified and a methodical framework ADA was designed. This framework could
address the fundamental building blocks of the defined problem, namely:

189

15. Discussion

◦ concepts that need to be present in the construction of a software solutions enabling
controlled technology transition;

◦ the notion of affordance in such a software solution;

◦ the understanding of how to build a software architecture optimised for technology
transitions.

The development and the evaluation of ADA advocated its feasibility of and effective-
ness for the discussed GUI applications. It is a complement to the current SW development
approaches (e.g., common best practices while using some of the GUI frameworks that are
not directly optimised for technology transitions) where their capabilities fall short in
providing desired outcomes. With consideration of their benefits, ADA could guide SW
developers to see these frameworks as an intermediate technology that may be replaced in
time. Therefore, ADA may facilitate more controlled transitions between them.

15.3 Main Outcomes and Contributions to Knowledge

This research led to a number of outcomes which are also considered as contributions to
the knowledge. These contributions were made to different disciplines and include:

◦ Development of a new methodical framework that aids in the construction of software
solutions enabling controlled technology transition.

◦ Development of a prototype system confirming the feasibility of the implementation
of the framework.

◦ Clarifying the value of RPA and BPM when tackling challenges concerning technology
transitions.

◦ Identification of a trade-off between flexibility and usability when designing SW solu-
tions.

◦ Evaluating the evolvability of financial models.

◦ Understanding architectural concepts limiting transitions between GUI frameworks.

◦ Determining the role of technology transitions in a context of business agility.

Additionally, although this research primarily focused on software evolvability, the res-
ults of our analysis indicate that ADA can contribute to overcoming various challenges in
SE. We discuss some of these challenges below.

190

15.3. Main Outcomes and Contributions to Knowledge

15.3.1 Supporting an Agile Way of Working

As indicated in Chapter 2, to thrive in the presence of uncertainty, organisations of any
size are encouraged to ‘align their business strategy with their IT strategy’ [140]. On
one hand, they are ‘advised to be agile across all levels’ [161]. On the other hand, as
organisations grow, they begin to limit the customisation opportunities in their software
solutions significantly because they cannot accommodate the whims of every user individu-
ally. This leads to a situation where ‘the justification for existence is the responsiveness to
the individual needs of customers who cannot have their needs satisfied by mass-produced
products’[203]. However, modern organisations can satisfy many customers through ‘mass
customisation’, which is a term coined by Zipkin [234] addressing the capability to offer in-
dividually tailored products or services on a large scale. We argue that ADA can contribute
to this area because it maps the purposes of users to user stories that change continuously,
implying that it is well aligned with the agile way of working. Simultaneously, it maps
user purposes to components that can be individualised according to user needs, meaning
it also supports mass customisation.

15.3.2 Supporting Technological Transitions

As stated in the research overview in Chapter 1, there are many frameworks, technologies,
and systems for creating GUI, and new systems are introduced almost daily. As indicated
in the work by Mareš [A.13], systems are often developed based on specific architectural
patterns, for such as MVC or the MVVM pattern, which are broadly identified as patterns
contributing to the construction of evolvable software [150, 83, 137]. However, there is no
clear consensus regarding their implementation or definition.

Therefore, together with Verelst et al. [137], we argue that design patterns themselves
do not guarantee evolvable software. A more rigorous split between the technologies and
functions of software must be achieved. In the case study presented in Chapter 13, we
demonstrated how ADA can tackle this challenge by reflecting on the concepts of afford-
ances in EE theories. However, as evaluated in Section 14.2, an ADA-based system is not
completely CE free unless the three remaining NS theorems are addressed in its imple-
mentation.

15.3.3 Enhancing Model-Driven Engineering

Modern model-driven engineering efforts are mostly framed by the concept of Model-Driven
Architectures (MDAs). Kleppe et al. [125] clarified that within MDAs, the SW development
process is driven by the activities of modelling SW. SW development methods based on
MDAs are collectively referred to as Model-Driven Development (MDD) [6].

ADA is aligned with this concept. However, ADA goes a step further because it proposes
the assembly of software from components fitting given user purposes. To realise this goal,
software components must be aware of the extent to which they suit specific combinations
of ADA-users and ADA-purposes.

191

15. Discussion

Although this direction has not been elaborated thoroughly, the potential of ADA
is clear. When a developer wishes to identify relevant components in large open-source
repositories of components, such as NPM, they must search for tags such as ‘database
persistence’ and ‘mongo’. Suppose that the components in a repository were semantic-
ally annotated with ADA-users and ADA-purposes. In this scenario, components could
be automatically or semi-automatically matched to development needs in a more precise
manner. This would be a step toward the ideal of assembling software from components
that match the required purposes of a given user. From this perspective, we do not consider
ADA to be a clear MDD because its main concept is that only models are ever manipulated
and the code is always fully generated [122]. ADA is essentially a method supporting soft-
ware evolvability by providing technologically independent descriptions of user purposes
that can be mapped to components in different technologies.

15.4 Future Work

While conducting this research, a number of future research opportunities were identified.
However, they could not be addressed within the scope of this research. Although some of
them would contribute to addressing the limitations of ADA, others underline the areas to
which this work can be extended. Below, we summarise some of those.

◦ In Section 14.4, we said that a prototype of an affordance-based system reflecting
the needs of people with mental challenges was developed. Future extension of ADA
would benefit from more detailed elaboration and concrete examples of these chal-
lenges in terms of ADA-users. This could be further extended with other, but mental
challenges, thereby bringing cross-disciplinary contributions to build ADA-based sys-
tems directly reflecting various needs of users.

◦ This research limited the scope and accordingly only a justified subset of technolo-
gies, methodologies, etc., were researched. However, other technologies should be
reviewed, and prototypes in different technology stacks should be implemented to
prove the applicability of ADA.

◦ In Section 15.3.1, we explained a tight connection between ADA and agile way of
working. This direction should also be inspected and a more tight connection between
user stories and ADA should be proposed and exemplified.

◦ The future work may also focus on elaborating on the change drivers in ADA from
additional perspectives. We could consider different drivers such as languages and
technologies in different GUI stacks (web, desktop), which would enable the afore-
mentioned potential for reasoning and automation.

◦ Finally, the unification of NSX expander principles with ADA could be an interesting
endeavour in future studies on software evolvability.

192

Chapter 16

Thesis Summary

In this research, we began by observing that the pace of introducing new technologies
is exponentially accelerating, which poses a serious challenge for the software industry,
where systems are becoming obsolete increasingly rapidly. We addressed this challenge by
developing and demonstrating how ADA can make technological transitions more efficient
and manageable.

We formulated a possible high-level architecture for software systems following ADA
and discussed it in the context of a case study on a real system. We introduced NST
with a focus on improving software evolvability and used it to evaluate ADA theoretic-
ally. According to NST, we concluded that ADA improves the evolvability of software
during technological transitions by defining clear boundaries for the impact of changes.
Additionally, this architecture provides new ways of reasoning about and automating such
transitions.

Similar to NST and its applications, the approach used in ADA is not entirely novel.
It follows well-established SE best practices, but in a managed, guaranteed, and semi-
automated, or even automated manner that eliminates opportunities for poor discipline
and/or incompetence on the part of programmers.

193

Part VI

Publications

195

Bibliography

[1] Wikipedia, 2020. URL https://wikipedia.com.

[2] N. Abbasi, I. Wajid, Z. Iqbal, and F. Zafar. Project failure case studies and sugges-
tion. International Journal of Computer Applications, 86(6), 2014.

[3] N. Alija. Justification of software maintenance costs. International Journal, 7:15–23,
march 2017. doi: 10.23956/ijarcsse/V7I2/01207.

[4] S. Amirebrahimi. A framework for micro level assessment and 3D visualisation of
flood damage to a building. PhD thesis, The University of Melbourne, Victoria,
Australia, 2016.

[5] L. Antovski and F. Imeri. Review of software reuse processes. International Journal
of Computer Science Issues (IJCSI), 10(6):83, 2013.

[6] C. Atkinson and T. Kuhne. Model-driven development: a metamodeling foundation.
IEEE software, 20(5):36–41, 2003.

[7] C. Atkinson, D. Stoll, and P. Bostan. Orthographic software modeling: a practical
approach to view-based development. In Evaluation of Novel Approaches to Software
Engineering, pages 206–219. Springer, 2009.

[8] K. I. Awa. Functional structure and operational issues: An examination of core
challenges and remedies. IOSR Journal of Business and Management, 18(1):1–4,
2016.

[9] F. J. Ayala. Evolution, explanation, ethics and aesthetics: towards a philosophy of
biology. Academic Press, 2016. ISBN 9780128037317.

[10] BAI Editorial Team, editor. Journal of Business Agility Emergence, volume 01. Sntio
Press, 2020. ISSN 2694-5320.

197

https://wikipedia.com

Bibliography

[11] BAI Editorial Team, editor. Journal of Business Agility Emergence, volume 02. Sntio
Press, 2021. ISSN 2694-5320.

[12] C. Baldwin and K. Clark. Managing in an age of modularity. Harvard Business
Review, 75(5):84–93, September 1997.

[13] M. Barash. Specifying software languages: Grammars, projectional editors, and
unconventional approaches. In Norsk IKT-konferanse for forskning og utdanning,
number 1 in 1, 2020.

[14] F. Barbier, B. Henderson-Sellers, A. Le Parc-Lacayrelle, and J.-M. Bruel. Form-
alization of the whole-part relationship in the unified modeling language. IEEE
Transactions on software engineering, 29(5):459–470, 2003.

[15] Basel Committee on Banking Supervision, (BIS). International convergence of capital
measurement and capital standards. Standard, Bank for International Settlements,
June 2006. URL http://www.bis.org/publ/bcbs128.pdf.

[16] Basel Committee on Banking Supervision, (BIS). Fundamental review of the trading
book. Standard, Bank for International Settlements, May 2012. URL http://

www.bis.org/publ/bcbs219.pdf.

[17] Basel Committee on Banking Supervision, (BIS). Minimum capital requirements
for market risk. Standard, Bank for International Settlements, Jan. 2016. URL
http://www.bis.org/bcbs/publ/d352.pdf.

[18] K. Beck. Extreme Programming Explained: Embrace Change, 2nd Edition (The XP
Series). Addison-Wesley, Nov. 2004. ISBN 9780321278654.

[19] M. Beer, M. Finnström, and D. Schrader. Why leadership training fails—and what
to do about it. Harvard Business Review, 94(10):50–57, 2016.

[20] W. N. Behutiye, P. Rodŕıguez, M. Oivo, and A. Tosun. Analyzing the concept of
technical debt in the context of agile software development: A systematic literature
review. Information and Software Technology, 82:139 – 158, 2017. ISSN 0950-5849.
doi: http://dx.doi.org/10.1016/j.infsof.2016.10.004.

[21] B. Bemer. The software factory principle. http://www.bobbemer.com/, 2001.

[22] K. Bennett. Legacy systems: Coping with success. IEEE software, 12(1):19–23, 1995.

[23] J. Bisbal, D. Lawless, B. Wu, and J. Grimson. Legacy information systems: Issues
and directions. IEEE software, 16(5):103–111, 1999.

[24] B. W. Boehm. Software Cost Estimation with CoCoMo II. Prentice Hall, August
2000. ISBN 9780130266927.

198

http://www.bis.org/publ/bcbs128.pdf
http://www.bis.org/publ/bcbs219.pdf
http://www.bis.org/publ/bcbs219.pdf
http://www.bis.org/bcbs/publ/d352.pdf
http://www.bobbemer.com/

Bibliography

[25] G. Booch. The unified modeling language user guide. Pearson Education India, 2005.
ISBN 0321267974.

[26] M. Bunge. Treatise on basic philosophy: Ontology II: A world of systems, volume 4.
Springer Science & Business Media, 2012. ISBN 978-94-009-9392-1.

[27] D. Campagnolo and A. Camuffo. The concept of modularity in management studies:
A literature review. International Journal of Management Reviews, pages 259–283,
2010. ISSN 1468-2370. doi: 10.1111/j.1468-2370.2009.00260.x.

[28] Camunda. Camunda BPM products [online], 2020. URL https://camunda.com/
products/. [Cited 2020-04-20].

[29] S. A. Carlsson, S. Henningsson, S. Hrastinski, and C. Keller. Socio-technical is
design science research: developing design theory for is integration management.
Information Systems and e-Business Management, 9(1):109–131, 2011.

[30] A. Cater-Steel, M. Toleman, and M. M. Rajaeian. Design science research in doctoral
projects: An analysis of australian theses. Journal of the Association for Information
Systems, 20(12):3, 2019.

[31] O. Chongsombut, J. Verelst, P. De Bruyn, H. Mannaert, and H. Philip. Towards
applying normalized systems theory to create evolvable enterprise resource planning
software: a case study. In The Eleventh International Conference on Software En-
gineering Advances : ICSEA, Rome, Italy, pages 172–177, August 2016.

[32] S. Ciraci and P. V. D. Broek. Evolvability as a quality attribute of software archi-
tectures. Journal of Physics Conference Series, pages 29–31, 2006.

[33] C. L. Clair, G. O’Donnell, A. Lipson, and D. Lynch. The Forrester Wave: Robotic
Process Automation, the 15 providers that matter most and how they stack up.
Technical report, Forrester, 2019.

[34] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming,
2nd edition. Addison-Wesley, 2002. ISBN 978-0321753021.

[35] CMMI Institute. What is CMMI [online], 2020. URL https://cmmiinstitute.com/
cmmi/intro. [Cited 2020-05-15].

[36] E. F. Codd. Relational database: a practical foundation for productivity. Commu-
nications of the ACM, 25(2):109–117, 1982.

[37] M. Cohn. User stories applied: For agile software development. Addison-Wesley
Professional, 2004. ISBN 0321205685.

[38] M. E. Conway. How do committees invent? Datamation, pages 28–31, Apr. 1968.
URL http://www.melconway.com/Home/pdf/committees.pdf.

199

https://camunda.com/products/
https://camunda.com/products/
https://cmmiinstitute.com/cmmi/intro
https://cmmiinstitute.com/cmmi/intro
http://www.melconway.com/Home/pdf/committees.pdf

Bibliography

[39] S. Cook, H. Ji, and R. Harrison. Software evolution and software evolvability. Uni-
versity of Reading, UK, pages 1–12, 2000.

[40] COPS Financial Systems s.r.o., 2020. https://cops.solutions.

[41] COPS GmbH. Corima: Treasury Management System, 2020. https://

corima.solutions.

[42] J. Cordeiro. Analysing enterprise ontology and its suitability for model-based soft-
ware development. In International Symposium on Business Modeling and Software
Design, pages 257–269. Springer, 2019.

[43] B. J. Cox. Object-Oriented Programming: an evolutionary approach. Addison-Wesley,
1986. ISBN 0201548348.

[44] J. Crotty and I. Horrocks. Managing legacy system costs: A case study of a meta-
assessment model to identify solutions in a large financial services company. Applied
computing and informatics, 13(2):175–183, 2017.

[45] R. M. Curtice, R. Donabue, and J. C. Weiss. Enterprise systems: A report from the
field. PRISM-CAMBRIDGE MASSACHUSETTS, pages 39–54, 1997.

[46] Cycle.JS. Model-view-intent, [online], 2019. URL https://cycle.js.org/model-
view-intent.html. [cit. 2019-03-19].

[47] O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured programming. Academic
Press Ltd., 1972. ISBN 0122005503.

[48] David Garmus. Function Point Analysis: Measurement Practices for Successful Soft-
ware Projects., 1th edition. Addison-Wesley Professional, 2000. ISBN 0201699443.

[49] J. Davies, D. Milward, C.-W. Wang, and J. Welch. Formal model-driven engineering
of critical information systems. Science of Computer Programming, 103:88–113, 2015.

[50] T. de Bruin and G. Doebeli. Transitioning from functional silos to process centric-
learnings from australian organizations. BPTrends, 2008.

[51] P. De Bruyn. Generalizing normalized systems theory: towards a foundational Theory
for enterprise engineering. PhD thesis, University of Antwerp - Faculty of Business
and Economics, 2014.

[52] P. De Bruyn, D. Van Nuffel, J. Verelst, and H. Mannaert. Towards apply-
ing normalized systems theory implications to enterprise process reference mod-
els. Lecture Notes in Business Information Processing, pages 31–45, 2012. doi:
10.1007/978-3-642-29903-2 3.

200

https://cops.solutions
https://corima.solutions
https://corima.solutions
https://cycle.js.org/model-view-intent.html
https://cycle.js.org/model-view-intent.html

Bibliography

[53] P. De Bruyn, H. Mannaert, J. Verelst, and P. Huysmans. Enabling normalized
systems in practice–exploring a modeling approach. Business & Information Systems
Engineering, 60(1):55–67, 2018.

[54] C. Décosse, W. A. Molnar, and H. A. Proper. What does demo do? a qualitative
analysis about demo in practice: founders, modellers and beneficiaries. In Enterprise
Engineering Working Conference, pages 16–30. Springer, 2014.

[55] Der Tresurer. The 2020 TMS market leaders. Der Treasurer, 12, 2020.

[56] DevExpress, 2019. URL https://www.devexpress.com/#ui. [cit. 2019-03-29].

[57] S. di Paola, E. Cohen, and I. Farrar. Global treasury benchmarking survey, digital
treasury - it takes two to tango. Technical report, PwC ILP, 2019.

[58] J. Dietz. Enterprise Ontology: Theory and Methodology. Springer, May 2006. ISBN
3540291695.

[59] J. Dietz. Red garden gnomes don’t exist. The Netherlands: Sapio Enterprise Engin-
eering, 2012. ISBN 9081544926. URL www.sapio.nl.

[60] J. Dietz. The FI theory - understanding information and factual knowledge. Technical
report, Delft University of Technology, October 2017.

[61] J. Dietz. The PSI theory - understanding human collaboration. Technical report,
Delft University of Technology, October 2017.

[62] J. Dietz and J. Hoogervorst. BETA theory: Theories in Enterprise Engineering
Memorandum. Technical report, CIAO! Enterprise Engineering Network (CEEN),
2014.

[63] J. Dietz and J. Hoogervorst. TAO theory: Theories in Enterprise Engineering Memor-
andum. Technical report, CIAO! Enterprise Engineering Network (CEEN), 2014.

[64] J. Dietz and J. Hoogervorst. Technical report TR-FIT-15-01. Technical report,
CIAO! Enterprise Engineering Network (CEEN), 2015.

[65] J. Dietz and H. Mulder. The DEMO Methodology, pages 261–299. Springer Inter-
national Publishing, Cham, 2020. ISBN 978-3-030-38854-6. doi: 10.1007/978-3-030-
38854-6 12. URL https://doi.org/10.1007/978-3-030-38854-6 12.

[66] J. Dietz and H. B. Mulder. Introduction to Enterprise Ontology. In Enterprise
Ontology, pages 13–19. Springer, 2020. ISBN 978-3-030-38853-9.

[67] J. Dietz and H. B. Mulder. The PSI theory: Understanding the operation of organ-
isations. In Enterprise Ontology, pages 119–157. Springer, 2020.

201

https://www.devexpress.com/#ui
www.sapio.nl
https://doi.org/10.1007/978-3-030-38854-6_12

Bibliography

[68] Doughlas McIlroy. Mass produced software components. NATO Conference on Soft-
ware Engineering, Garmish, Germany, 1968.

[69] N. B. Duncan. Capturing flexibility of information technology infrastructure: A study
of resource characteristics and their measure. Journal of management information
systems, 12(2):37–57, 1995.

[70] E. Eesaar. On applying normalized systems theory to the business architectures of
information systems. Baltic J. Modern Computing, 2(3):132–149, 2014.

[71] E. Eesaar. The database normalization theory and the theory of normalized systems:
finding a common ground. Baltic J. modern computing, 4(1):5–33, 2016.

[72] H. A. ElMaraghy. Flexible and reconfigurable manufacturing systems paradigms.
International journal of flexible manufacturing systems, 17(4):261–276, 2005.

[73] P. Ensor. The functional silo syndrome. AmE Target, 16(Spring Issue):16, 1988.

[74] T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, USA, 2005. ISBN 0131858580.

[75] E. Evans and E. J. Evans. Domain-driven design: tackling complexity in the heart
of software. Addison-Wesley Professional, 2004. ISBN 0321125215.

[76] X. Ferré, N. Juristo, H. Windl, and L. Constantine. Usability basics for software
developers. IEEE software, 18(1):22, 2001. doi: 10.1109/52.903160.

[77] J. Fiala and R. Koč́ı. Computer as Therapy in role of alternative and augmentat-
ive communication. In Proceedings of 4th International Conference on Advanced in
Computing and Emerging E-Learning Technology, pages 34–42, 2015.

[78] R. T. Fielding. Chapter 5: Representational state transfer (rest). In Architectural
Styles and Design of Network-based Software Architecture, pages 76–106. University
of California, Irvine, 200.

[79] G. Figueiredo, A. Duchardt, M. M. Hedblom, and G. Guizzardi. Breaking into pieces:
An ontological approach to conceptual model complexity management. In 2018 12th
International Conference on Research Challenges in Information Science (RCIS),
pages 1–10. IEEE, 2018.

[80] L. Fischer. Delivering BPM Excellence: Business Process Management in Prac-
tice. Excellence in practice series. Future Strategies Incorporated, 2011. ISBN
9780981987095.

[81] D. M. Fisher. Getting started on the path to process-driven enterprise optimization.
BP Trends, 2005, 2005.

202

Bibliography

[82] B. Foote and J. Yoder. Big ball of mud. In Pattern Languages of Program Design,
pages 653–692. Addison-Wesley, 1999.

[83] N. Ford, R. Parsons, and P. Kua. Building Evolutionary Architectures: Support
Constant Change. O’Reilly Media, Inc., 2017. ISBN 1491986360.

[84] M. Fowler. GUI architectures, [online], 2019. URL https://www.martinfowler.com/
eaaDev/uiArchs.html. [cit. 2019-02-28].

[85] M. Fowler. Presentation Model, [online], 2019. URL https://

www.martinfowler.com/eaaDev/PresentationModel.html. [cit. 2019-03-01].

[86] M. Fowler. Strangler Application, [online], 2019. URL https://martinfowler.com/
bliki/StranglerApplication.html. [cit. 2019-11-04].

[87] C. Fuchs. Internet and society. Social theory in the information age. Routledge,
2008. ISBN 0415961327.

[88] P. Gajender, K. Manish, and B. Kuldeep. A review paper on Cocomo model. Inter-
national Journal of Research & Development Organisation, 1(Issue 4.):83–87, 2014.

[89] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc.,
75 Arlington Street, Suite 300, Boston, 1995. ISBN 0201633612.

[90] E. Gamma, J. Vlissides, R. Johnson, and R. Helm. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc,
1998. ISBN 0201455633.

[91] Gartner. Robotic Process Automation (RPA) [online], 2020. URL
https://www.gartner.com/en/information-technology/glossary/robotic-
process-automation-rpa. [Cited 2020-02-05].

[92] G. L. Geerts. A design science research methodology and its application to account-
ing information systems research. International Journal of Accounting Information
Systems, 12(2):142–151, 2011.

[93] A. Gemino and D. Parker. Use case diagrams in support of use case modeling:
Deriving understanding from the picture. Journal of Database Management, 20(1):
1–24, Jan. 2009. doi: 10.4018/jdm.2009010101. URL https://doi.org/10.4018/
jdm.2009010101.

[94] J. K. Gershenson, G. J. Prasad, and Y. Zhang. Product modularity: Definitions
and benefits. Journal of Engineering Design, 14(3):295–313, 2003. doi: 10.1080/
0954482031000091068. URL http://dx.doi.org/10.1080/0954482031000091068.

[95] R. E. Giachetti. Design of enterprise systems: Theory, architecture, and methods.
CRC Press, 2011. ISBN 9781032099439.

203

https://www.martinfowler.com/eaaDev/uiArchs.html
https://www.martinfowler.com/eaaDev/uiArchs.html
https://www.martinfowler.com/eaaDev/PresentationModel.html
https://www.martinfowler.com/eaaDev/PresentationModel.html
https://martinfowler.com/bliki/StranglerApplication.html
https://martinfowler.com/bliki/StranglerApplication.html
https://www.gartner.com/en/information-technology/glossary/robotic-process-automation-rpa
https://www.gartner.com/en/information-technology/glossary/robotic-process-automation-rpa
https://doi.org/10.4018/jdm.2009010101
https://doi.org/10.4018/jdm.2009010101
http://dx.doi.org/10.1080/0954482031000091068

Bibliography

[96] Google. Google trends - wpf, winforms, [online], 2019. URL https://

trends.google.com/. [cit. 2019-03-29].

[97] S. Guerreiro, S. J. van Kervel, A. Vasconcelos, and J. Tribolet. Executing enterprise
dynamic systems control with the demo processor: the business transactions trans-
ition space validation. In Mediterranean Conference on Information Systems, pages
97–112. Springer, 2012.

[98] G. Guizzardi, R. de Almeida Falbo, and R. S. Guizzardi. Grounding Software Do-
main Ontologies in the Unified Foundational Ontology (UFO): The case of the ODE
Software Process Ontology. In CIbSE, pages 127–140, 2008.

[99] J. Habermas. The Theory of Communicative Action: Lifeworld and Systems, a
Critique of Functionalist Reason, Volume 2, volume 2. John wiley & sons, 2015.

[100] P. Harmon. The State of Business Process Management. Technical report, Red Hat,
2018.

[101] G. T. Haugan. Effective work breakdown structures. Berrett-Koehler Publishers,
October 2001. ISBN 1567261353.

[102] A. R. Hevner. A three cycle view of design science research. Scandinavian journal
of information systems, 19(2):4, 2007.

[103] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design science in information
systems research. MIS quarterly, pages 75–105, 2004.

[104] M. Hilbert and P. López. The world’s technological capacity to store, communicate,
and compute information. Science, 332(6025):60–65, 2011. ISSN 0036-8075. doi:
10.1126/science.1200970.

[105] J. Hintzen, S. J. Van Kervel, T. Van Meeuwen, J. Vermolen, and B. Zijlstra. A
professional case management system in production, modeled and implemented using
demo. In Proceedings of 16th IEEE Conference on Business Informatics, volume
1182, pages 1613–0073, 2014.

[106] House of Commons Treasury Committee. IT failures in the financial services sector,
second report of session 2019–20. Technical report, 2019.

[107] Huysmans. On the feasibility of Normalized Enterprises: applying Normalized Sys-
tems Theory to the high-level design of enterprises. PhD thesis, University of Ant-
werp, 2011.

[108] P. Huysmans, K. Ven, and J. Verelst. Modularity in enterprise architecture projects:
An exploratory case study. In Enterprise Engineering Working Conference, pages
106–120. Springer, 2011.

204

https://trends.google.com/
https://trends.google.com/

Bibliography

[109] P. Huysmans, J. Verelst, and H. M. A. Oost. Integrating information systems
using normalized systems theory : four case studies. In 17th IEEE Conference
on Business Informatics, JUL 13-16, 2015, Lisbon, Portugal. IEEE, 2015. doi:
10.1109/CBI.2015.43.

[110] J. Iivari. A paradigmatic analysis of information systems as a design science. Scand-
inavian Journal of Information Systems, 19:5, 2007.

[111] ISO. Ergonomic requirements for office work with visual display terminals. Standard,
International Organization for Standardization, Geneva, CH, 1998.

[112] ISO. Quality Management Systems — Fundamentals and vocabulary. Standard,
International Organization for Standardization, Geneva, CH, 2005.

[113] L. James. A watershed moment for payments. Technical report, The Record, 2020.

[114] James W. Hooper, Rowena O. Chester. Software Reuse: Guidelines and Methods
(Software Science and Engineering). Springer, 1991.

[115] G. J.J. The Theory of Affordances. In Perceiving, Acting and Knowing. Towards an
Ecological Psychology. Hoboken, NJ: John Wiley & Sons Inc., 1977.

[116] J. Johnson and H. Mulder. Endless modernization. Technical report, The Standish
Group International, Incorporated, 2020.

[117] T. Joseph. What Makes a Business Process Apt for Automation [online],
2019. URL https://www.fingent.com/blog/what-makes-a-business-process-
apt-for-automation/. [Cited 2020-05-01].

[118] A. Josey, M. Lankhorst, I. Band, H. Jonkers, and D. Quartel. An introduction to
the archimate R© 3.0 specification. White Paper from The Open Group, 2016.

[119] S. H. Kaisler. Software Paradigms. Wiley-Interscience, April 2008. ISBN 0471483478.

[120] C. Kapil, P. Frank, and S. Ishaan. Memo to the CFO: Get in front of digital fin-
ance—or get left back. Technical Report 67, McKinsey, July 2018.

[121] D. Karagiannis. Bpms: Business Process Management Systems. ACM SIGOIS
Bulletin, 16(1):10–13, 1995.

[122] S. Kelly and J.-P. Tolvanen. Visual domain-specific modelling: Benefits and experi-
ences of using metacase tools. In International Workshop on Model Engineering, at
ECOOP, volume 2000, pages 1–9. Citeseer, 2000.

[123] M. Kirchmer and P. Franz. Value-driven robotic process automation (RPA). In
B. Shishkov, editor, Business Modeling and Software Design, pages 31–46, Cham,
2019. Springer International Publishing. ISBN 978-3-030-24854-3.

205

https://www.fingent.com/blog/what-makes-a-business-process-apt-for-automation/
https://www.fingent.com/blog/what-makes-a-business-process-apt-for-automation/

Bibliography

[124] H. K. Klein and M. D. Myers. A set of principles for conducting and evaluating
interpretive field studies in information systems. MIS quarterly, pages 67–93, 1999.

[125] A. G. Kleppe, J. Warmer, J. B. Warmer, and W. Bast. MDA explained: the model
driven architecture: practice and promise. Addison-Wesley Professional, 2003.

[126] KPMG. Robotic Process Automation (RPA): On Entering an Age of Automation of
White-collar Work Through Advances in AI and Robotics. Technical report, KPMG
Consulting Co., Ltd, 2018.

[127] G. E. Krasner. A cookbook for using model-view-controller user interface paradigmin
smalltalk-80. J. Object Oriented Programming, 1(3):26–49, 1988.

[128] R. Kurzweil. The law of accelerating returns. In Alan Turing: Life and legacy of a
great thinker, pages 381–416. Springer, 2004.

[129] R. Kurzweil. The singularity is near. Penguin Books, 2006. ISBN 0143037889.

[130] Laiye. How AI is redefining RPA, 2021. URL https://laiye.com/en/blog/how-
ai-is-redefining-rpa.html. [Cited 2021-08-01].

[131] M. Lehman. Programs, life cycles, and laws of software evolution. Proceed-
ings of the IEEE, 68(9):1060–1076, Sept. 1980. ISSN 0018-9219. doi: 10.1109/
PROC.1980.11805.

[132] W. Lidwell, K. Holden, and J. Butler. Universal principles of design, revised and
updated: 125 ways to enhance usability, influence perception, increase appeal, make
better design decisions, and teach through design. Rockport Pub, 2010.

[133] M. A. Linton, J. M. Vlissides, and P. R. Calder. Composing user interfaces with
interviews. Computer, 22(2):8–22, 1989.

[134] H. Mannaert and J. Verelst. Normalized Systems: re-creating information technology
based on laws for software evolvability. Koppa, 2009. ISBN 978-90-77160-008.

[135] H. Mannaert, J. Verelst, and K. Ven. The transformation of requirements into soft-
ware primitives: Studying evolvability based on systems theoretic stability. Sci.
Comput. Program., 76(12):1210–1222, Dec. 2011. ISSN 0167-6423. doi: 10.1016/
j.scico.2010.11.009. URL http://dx.doi.org/10.1016/j.scico.2010.11.009.

[136] H. Mannaert, J. Verelst, and K. Ven. Towards evolvable software architectures based
on systems theoretic stability. Software: Practice and Experience, 42(1):89–116, 2012.
doi: 10.1002/spe.1051.

[137] H. Mannaert, J. Verelst, and P. De Bruyn. Normalized Systems Theory, From Found-
ations for Evolvable Software Towards a General Theory for Evolvable Design. Nor-
malized Systems Institute, 2016.

206

https://laiye.com/en/blog/how-ai-is-redefining-rpa.html
https://laiye.com/en/blog/how-ai-is-redefining-rpa.html
http://dx.doi.org/10.1016/j.scico.2010.11.009

Bibliography

[138] S. T. March and G. F. Smith. Design and natural science research on information
technology. Decision support systems, 15(4):251–266, 1995.

[139] o. Marketline. Mobile apps in the United States, Feb. 2016. URL
www.marketline.com.

[140] L. Mathiassen and J. Pries-Heje. Business agility and diffusion of information
technology. European Journal of Information Systems, 2006. doi: 10.1057/
palgrave.ejis.3000610.

[141] Merriam Webster, [online], 2021. URL https://www.merriam-webster.com/.

[142] Michael A. Cusumano. An Entry for the Encyclopedia in Software Engineering.
Massachusetts Institute of Technology, Sloan school, 1991.

[143] B. M. Michelson. Event-driven architecture overview. Patricia Seybold Group, 2(12):
10–1571, 2006.

[144] Microsoft. Windows Forms, [online], 2019. [cit. 2019-03-29].

[145] Microsoft. Windows presentation foundation, [online], 2019. URL https://

docs.microsoft.com/en-us/dotnet/framework/wpf. [cit. 2019-03-29].

[146] Microsoft. Introduction to model/view/viewmodel pattern for building wpf apps,
[online], 2019. URL https://blogs.msdn.microsoft.com/johngossman/2005/10/
08/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps/.
[cit. 2019-03-02].

[147] Microsoft. Partial classes and methods (c# programming guide), 2021.
URL https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/
classes-and-structs/partial-classes-and-methods. [Cited 2021-06-19].

[148] P. Mike. MVP: Model-view-presenter the taligent programming model for c++ and
java, [online], 2019. URL http://www.wildcrest.com/Potel/Portfolio/mvp.pdf.
[cit. 2019-03-01].

[149] R. Miller. Camunda hauls in $28m investment as workflow automation remains hot
[online], 2018. URL https://techcrunch.com/2018/12/05/camunda-hauls-in-
28m-investment-as-workflow-automation-remains-hot/. [Cited 2020-04-20].

[150] T. Mitsa. An evolvable software framework for an internet-based telediagnostic sys-
tem. In 4th International IEEE EMBS Special Topic Conference on Information
Technology Applications in Biomedicine, pages 203–206. IEEE, 2003.

[151] A. Multiple. RPA market size and popular vendors in 2021, 2021. URL https:

//research.aimultiple.com/rpa-market/. [Cited 2021-07-27].

207

www.marketline.com
https://www.merriam-webster.com/
https://docs.microsoft.com/en-us/dotnet/framework/wpf
https://docs.microsoft.com/en-us/dotnet/framework/wpf
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps/
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/partial-classes-and-methods
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/partial-classes-and-methods
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
https://techcrunch.com/2018/12/05/camunda-hauls-in-28m-investment-as-workflow-automation-remains-hot/
https://techcrunch.com/2018/12/05/camunda-hauls-in-28m-investment-as-workflow-automation-remains-hot/
https://research.aimultiple.com/rpa-market/
https://research.aimultiple.com/rpa-market/

Bibliography

[152] M. Naab and J. Stammel. Architectural flexibility in a software-system’s life-cycle:
systematic construction and exploitation of flexibility. In Proceedings of the 8th
international ACM SIGSOFT conference on Quality of Software Architectures, pages
13–22. ACM, 2012.

[153] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen. Microservice architec-
ture: aligning principles, practices, and culture. O’Reilly Media, Inc., 2016. ISBN
1491956259.

[154] M. Narumoto, D. Lee, E. Price, A. Buck, and N. Peterson. Anti-corruption
layer pattern, [online], 2017. URL https://docs.microsoft.com/en-us/azure/
architecture/patterns/anti-corruption-layer. [cit. 2019-11-04].

[155] NSX. NSX: Normalized Systems, 2020 (accessed November 21, 2020). https://

normalizedsystems.org.

[156] OASIS. OData version 4.0. part 1: Protocol plus errata 03 [online], 2020. URL
http://docs.oasis-open.org/odata/odata/v4.0/errata03/os/complete/part1-
protocol/odata-v4.0-errata03-os-part1-protocol-complete.html. [cit.
2020-05-18].

[157] H. Olfat. Automatic spatial metadata updating and enrichment. PhD thesis, The
University of Melbourne, 2013.

[158] OMG. Business model process and notation (BPMN), 2011. URL https://

www.omg.org/spec/BPMN/2.0/PDF. [Cited 2020-04-28].

[159] OMG. Semantics of business vocabulary and business rules. Technical report, Object
Management Group, 2015.

[160] S. [online], 2019. URL https://www.syncfusion.com/. [cit. 2019-03-29].

[161] G. Oorts, P. Huysmans, P. De Bruyn, H. Mannaert, J. Verelst, and A. Oost. Building
evolvable software using normalized systems theory: A case study. In 2014 47th
Hawaii International Conference on System Sciences, pages 4760–4769. IEEE, 2014.

[162] G. Oorts, H. Mannaert, P. De Bruyn, and I. Franquet. On the Evolvable and Traceable
Design of (Under)graduate Education Programs, pages 86–100. Springer International
Publishing, Cham, 2016. ISBN 978-3-319-39567-8. doi: 10.1007/978-3-319-39567-
8 6.

[163] M. Op’t Land and J. Dietz. Benefits of enterprise ontology in governing complex
enterprise transformations. In Enterprise Engineering Working Conference, pages
77–92. Springer, 2012.

[164] M. Op’t Land, M. R. Krouwel, E. van Dipten, and J. Verelst. Exploring normalized
systems potential for dutch mod’s agility. In Working Conference on Practice-Driven
Research on Enterprise Transformation, pages 110–121. Springer, 2011.

208

https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
https://docs.microsoft.com/en-us/azure/architecture/patterns/anti-corruption-layer
https://normalizedsystems.org
https://normalizedsystems.org
http://docs.oasis-open.org/odata/odata/v4.0/errata03/os/complete/part1-protocol/odata-v4.0-errata03-os-part1-protocol-complete.html
http://docs.oasis-open.org/odata/odata/v4.0/errata03/os/complete/part1-protocol/odata-v4.0-errata03-os-part1-protocol-complete.html
https://www.omg.org/spec/BPMN/2.0/PDF
https://www.omg.org/spec/BPMN/2.0/PDF
https://www.syncfusion.com/

Bibliography

[165] M. Op’t Land, M. R. Krouwel, E. van Dipten, and J. Verelst. Exploring normalized
systems potential for dutch mod’s agility. In Working Conference on Practice-Driven
Research on Enterprise Transformation, pages 110–121. Springer, 2011.

[166] OrangeScape Technologies. Business Process Management Software (BPMS) –
everything you need to know [online], 2019. URL https://kissflow.com/bpm/what-
is-bpms/. [Cited 2020-05-02].

[167] S. Ossowski. Agreement technologies, volume 8. Springer Science & Business Media,
2012.

[168] N. Palmer. What is BPM? [online], March 26, 2014. URL https://bpm.com/what-
is-bpm. [cit. 2020-04-20].

[169] H. Paul. Strangler applications, [online], 2019. URL https://paulhammant.com/
2013/07/14/legacy-application-strangulation-case-studies/. [cit. 2019-15-
04].

[170] K. Peffers, T. Tuunanen, C. E. Gengler, M. Rossi, W. Hui, V. Virtanen, and
J. Bragge. The design science research process: A model for producing and presenting
information systems research. In First International Conference on Design Science
Research in Information Systems and Technology, pages 83–16, 2006.

[171] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee. A design science
research methodology for information systems research. Journal of management
information systems, 24(3):45–77, 2007.

[172] R. Pergl. Conceptualisation: Chapters from Harmonising Enterprise and Software
Engineering. PhD thesis, Habilitation thesis, Faculty of Information Technology,
Czech Technical University, april 2019.

[173] K. Preiss, S. Goldman, and R. Nagel. Agile competitors and virtual organizations.
Strategies for enriching the customer, 1, 1995.

[174] PwC. Digital masters. Technical report, PwC ILP, November 2019.

[175] o. Quantitative Software Management. Function point languages table, 2021. URL
http://www.qsm.com/resources/function-point-languages-table. [cit. 2021-
07-27].

[176] S. Ray, C. Tornbohm, D. Miers, and M. Kerremans. Magic Quadrant for Robotic
Process Automation Software. Technical report, Gartner Research, 2019.

[177] M. Rayner, B. A. Hockey, N. Chatzichrisafis, and K. Farrell. OMG unified modeling
language specification. In Version 1.3, c© 1999 Object Management Group, Inc, page
710. Citeseer, 2005.

209

https://kissflow.com/bpm/what-is-bpms/
https://kissflow.com/bpm/what-is-bpms/
https://bpm.com/what-is-bpm
https://bpm.com/what-is-bpm
https://paulhammant.com/2013/07/14/legacy-application-strangulation-case-studies/
https://paulhammant.com/2013/07/14/legacy-application-strangulation-case-studies/
http://www.qsm.com/resources/function-point-languages-table

Bibliography

[178] S. Reynard. Flowcharts: Plain and Simple. Oriel Incorporated, 1995. ISBN
1884731031.

[179] M. Richards. Software architecture patterns, volume 4. O’Reilly Media, Inc., 2015.
ISBN 9781491924242.

[180] Rober William Bemer. The economics of program production. Proc. IFIP Congress
68, Booklet I, 13-14, 1968.

[181] Rossum.ai. Data extraction from business documents [online], 2020. URL https:

//rossum.ai/. [cit. 2020-04-26].

[182] Rubén Prieto Dı́az. Status Report: Software Reusability. IEEE Software, 10(3):61-66,
May, 1993.

[183] M. Sako. The Business of Systems Integration, chapter Modularity and Outsourcing,
pages 229–253. Oxford University Press, 2003.

[184] R. Sanchez and J. T. Mahoney. Modularity, flexibility, and knowledge management
in product and organization design. Strategic Management Journal, pages 63–76,
1996. ISSN 1097-0266. doi: 10.1002/smj.4250171107.

[185] A. Saunders and M. Cornett. Financial institutions management. A risk management
approach. McGraw-Hill, 7th ed. edition, 2011.

[186] I. Schlueter, L. Voss, and R. Boothby. Npm. https://www.npmjs.com, 2016.

[187] R. C. Seacord, D. Plakosh, and G. A. Lewis. Modernizing legacy systems: software
technologies, engineering processes, and business practices. Addison-Wesley Profes-
sional, 2003.

[188] Self. Self programming language, 2021. URL http://www.selflanguage.org/.

[189] M. Shahin, M. A. Babar, and L. Zhu. Continuous integration, delivery and deploy-
ment: a systematic review on approaches, tools, challenges and practices. IEEE
Access, 5:3909–3943, 2017.

[190] S. Sharma. Ovum decision matrix: Selecting a Robotic Process Automation (RPA)
platform, 2018–19. Technical report, Ovum TMT Intelligence, 2018-2019.

[191] B. Silver. BPMN method and style. Cody-Cassidy Press, 2009.

[192] H. Simon. The architecture of complexity. Proceedings of the American Philosophical
Society, 106, 1962.

[193] H. Simon. The Sciences of Artificial, Cambridge MA and London. The MIT Press,
1996.

210

https://rossum.ai/
https://rossum.ai/
https://www.npmjs.com
http://www.selflanguage.org/

Bibliography

[194] I. Simple. Invoicing software [online], 2020. URL https://www.invoicesimple.com/.
[cit. 2020-04-26].

[195] B. Smith. Object-Oriented Programming. In Advanced ActionScript 3, pages 1–23.
Springer, 2015.

[196] M. Sobers and Y. Petras. Staying relevant 2020 hot topics for it internal audit
in financial services. Technical report, Deloitte LLP, London EC4A 3HQ, United
Kingdom, 2019.

[197] Software Robotic. The difference between front office and back office ro-
bots – and why this is important to understand [online], 2020. URL
https://softwarerobotics.blog/the-difference-between-front-office-
and-back-office-robots-and-why-this-is-important-to-understand/.
[Cited 2020-05-01].

[198] J. Spolsky. Things you should never do, part one. In Joel on Software, pages 183–187.
Springer, 2004.

[199] M. Srinivas, G. Ramakrishna, K. R. Rao, and E. S. Babu. Analysis of legacy system
in software application development: A comparative survey. International Journal of
Electrical and Computer Engineering (IJECE), 6(1):292, Feb. 2016. doi: 10.11591/
ijece.v6i1.8367.

[200] I. C. Station. Robotic Process Automation (RPA), buyer’s guide and reviews. Tech-
nical report, IT Central Station, January 2020.

[201] P. Steve Burbeck. Applications programming in smalltalk-80 (TM):
How to use model-view-controller (MVC), [online], 2019. URL https:

//web.archive.org/web/20120729161926/http://st-www.cs.illinois.edu/
users/smarch/st-docs/mvc.html. [cit. 2019-03-01].

[202] C. Stevenson and A. Pols. An agile approach to a legacy system. In XP 2004:
Extreme Programming and Agile Processes in Software Engineering (EDS), pages
123–129. Springer, 2004. URL http://cdn.pols.co.uk/papers/agile-approach-
to-legacy-systems.pdf.

[203] C. Svensson and A. Barfod. Limits and opportunities in mass customization for
“build to order” SMEs. Computers in industry, 49(1):77–89, 2002.

[204] A. Taivalsaari. On the notion of inheritance. ACM Computing Surveys (CSUR), 28
(3):438–479, 1996.

[205] Telerik, 2019. URL https://www.telerik.com/. [cit. 2019-03-29].

[206] W. Tracz. Software reuse myths. ACM SIGSOFT Software Engineering Notes, 13
(1):17–21, 1988.

211

https://www.invoicesimple.com/
https://softwarerobotics.blog/the-difference-between-front-office-and-back-office-robots-and-why-this-is-important-to-understand/
https://softwarerobotics.blog/the-difference-between-front-office-and-back-office-robots-and-why-this-is-important-to-understand/
https://web.archive.org/web/20120729161926/http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
https://web.archive.org/web/20120729161926/http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
https://web.archive.org/web/20120729161926/http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
http://cdn.pols.co.uk/papers/agile-approach-to-legacy-systems.pdf
http://cdn.pols.co.uk/papers/agile-approach-to-legacy-systems.pdf
https://www.telerik.com/

Bibliography

[207] T. T. Tun, T. Trew, M. Jackson, R. Laney, and B. Nuseibeh. Specifying features of
an evolving software system. Software: Practice and Experience, 39(11):973–1002,
2009.

[208] UiPath. What is Robotic Process Automation [online], 2020. URL https://

www.uipath.com/rpa/robotic-process-automation. [Cited 2020-05-01].

[209] UiPath. Robotic Process Automation [online], 2020. URL https://www.uipath.com/
company/about-us. [Cited 2020-03-20].

[210] UiPath. UiPath RPA technologies [online], 2020. URL https://www.uipath.com/
solutions/technology. [Cited 2020-03-20].

[211] United States Government Accountability Office. Information technology: Agencies
need to develop modernization plans for critical legacy systems. Technical Report
GAO-19-471, 1998. URL https://www.gao.gov/assets/gao-19-471.pdf.

[212] G. Valiente. Algorithms on trees and graphs. Springer Science & Business Media,
2013.

[213] J. E. Van Aken. Management research as a design science: Articulating the re-
search products of mode 2 knowledge production in management. British journal of
management, 16(1):19–36, 2005.

[214] D. Van Nuffel. Towards desdesign modular and evolvable business processes. PhD
thesis, University of Antwerp, 2011.

[215] M. Van Oosterhout, E. Waarts, and J. van Hillegersberg. Change factors requiring
agility and implications for it. European Journal of Information Systems, 15(2):
132–145, 2006.

[216] E. Vanhoof. Evolvable accounting information systems: applying design science meth-
odology and Normalized Systems theory to tackle combinatorial effects of multiple
GAAP. Universiteit Antwerpen, 2016.

[217] P. H. Vervest, E. Van Heck, K. Preiss, and L.-F. Pau. Smart business networks.
Springer Science & Business Media, 2005.

[218] P. Vincent, V. Baker, Y. Natis, K. Iijima, M. Driver, R. Dunie, J. Wong, and
A. Gupta. Magic Quadrant for Enterprise high-productivity application platform
as a service. Technical report, Technical report, Gartner, 2018.

[219] S. Vinoski. Chain of Responsibility. IEEE Internet Computing, 6(6):80–83, 2002.
doi: 10.1109/MIC.2002.1067742.

[220] M. Voelter and K. Solomatov. Language modularization and composition with pro-
jectional language workbenches illustrated with MPS. Software Language Engineer-
ing, SLE, 16(3), 2010.

212

https://www.uipath.com/rpa/robotic-process-automation
https://www.uipath.com/rpa/robotic-process-automation
https://www.uipath.com/company/about-us
https://www.uipath.com/company/about-us
https://www.uipath.com/solutions/technology
https://www.uipath.com/solutions/technology
https://www.gao.gov/assets/gao-19-471.pdf

Bibliography

[221] E. von Glaswersfeld. Teleology and the Concepts of Causation. Philosophica, 46 (2),
17–43, 1990.

[222] J. G. Walls, G. R. Widmeyer, and O. A. El Sawy. Building an information system
design theory for vigilant EIS. Information systems research, 3(1):36–59, 1992.

[223] M. Ward, R. Nicholson, and C. Stephenson. 2019 CFO Survey report: All systems
go: CFOs lead the way to digital world”. Technical report, Grand Thornton LLP,
2019.

[224] R. Waszkowski. Low-code platform for automating business processes in manufac-
turing. IFAC-PapersOnLine, 52(10):376–381, 2019.

[225] G. Webber-Cross. Learning Microsoft Azure. Packt Publishing Ltd, 2014.

[226] A. Weinand, E. Gamma, and R. Marty. ET++ an object oriented application frame-
work in C++. ACM Sigplan Notices, 23(11):46–57, 1988. doi: 10.1145/62084.62089.

[227] M. Wilkes. The edsac computer. In Papers and discussions presented at the Dec.
10-12, 1951, joint AIEE-IRE computer conference: Review of electronic digital com-
puters, pages 79–83. ACM, 1951.

[228] M. Wilkes and D. Wheeler. The Preparation of Programs for an Electronic Digital
Computer. Addison–Wesley, Edition 1, 1951. ASIN B0007DWTT0.

[229] WinForms. Github - topic: WinForms, [online], 2019. URL https://github.com/
topics/winforms. [cit. 2019-03-29].

[230] M. Winters. End-to-end workflow automation with RPA and Camunda BPM [on-
line], 2018. URL https://blog.camunda.com/post/2018/05/combining-bpm-rpa-
workflow-automation/. [Cited 2020-04-26].

[231] WPF. Github - topic: WPF, [online], 2019. URL https://github.com/topics/wpf.
[cit. 2019-03-29].

[232] WPF. Walkthrough: My first WPF desktop application, [online], 2019. [cit. 2019-
04-04].

[233] L. Yu and S. Ramaswamy. Software and biological evolvability: a comparison using
key properties. In 2006 Second International IEEE Workshop on Software Evolvab-
ility (SE’06), pages 82–88. IEEE, 2006.

[234] P. Zipkin. The limits of mass customization. MIT Sloan management review, 42(3):
81, 2001.

[235] Zkoss. ZK, [online], 2019. URL https://www.zkoss.org/. [cit. 2019-03-01].

213

https://github.com/topics/winforms
https://github.com/topics/winforms
https://blog.camunda.com/post/2018/05/combining-bpm-rpa-workflow-automation/
https://blog.camunda.com/post/2018/05/combining-bpm-rpa-workflow-automation/
https://github.com/topics/wpf
https://www.zkoss.org/

Reviewed Publications of the Author
Relevant to the Thesis

[A.1] Ondřej Dvořák, Robert Pergl, and Petr Kroha. Confirmation engine design based
on PSI theory. In: 17th IEEE Conference on Business Informatics, Workshop on
Cross-Organizational and Crosscompany BPM (XOC-BPM). Lisbon, Portugal, 2015.

The paper has been cited in:

◦ Duarte Gouveia and David Aveiro. Towards an Executable Artefact for Organ-
izations based on DEMO Paradigm. In: EEWC Doctoral Consortium. Antwerp,
Belgium, 2017.

◦ [42] José Cordeiro. Analysing Enterprise Ontology and Its Suitability for Model-
Based Software Development. In: International Symposium on Business Mod-
eling and Software Design. Springer, Lisbon, Portugal, 2019.

[A.2] Ondřej Dvořák, Applying EE Theories to Component-Based Software Design and
Development. In: Doctoral Consortium, Enterprise Engineering Working Confer-
ence. Prague, Czech Republic, 2015.

[A.3] Marjolein Deryck, Ondřej Dvořák, Peter De Bruyn, and Jan Verelst Investigating
the evolvability of financial domain models. In: Enterprise Engineering Working
Conference. Springer, Antwerp, Belgium, 2017.

The paper has been cited in:

◦ [79] Guylerme Figueiredo, Amelie Duchardt, Maria Hedblom, and Giancarlo
Guizzardi. Breaking into pieces: An ontological approach to conceptual model
complexity management. In: 12th International Conference on Research Chal-
lenges in Information Science (RCIS), IEEE, Nantes, France, 2018.

215

Reviewed Publications of the Author Relevant to the Thesis

[A.4] Ondřej Dvořák, Towards Semantic Descriptions of Component-Based Systems. In:
Doctoral Consortium, Enterprise Engineering Working Conference. Antwerp, Bel-
gium, 2017.

[A.5] Ondřej Dvořák, Robert Pergl, and Petr Kroha. Tackling the flexibility-usability
trade-off in component-based software development. In: World Conference on In-
formation Systems and Technologies. Springer, Porto Santo, Madeira, 2017.

The paper has been cited in:

◦ Anders Klingberg, Lee Alan Wallis, Marie Hasselberg, Po-Yin Yen, and Sara
Fritzell. Teleconsultation using mobile phones for diagnosis and acute care of
burn injuries among emergency physicians: Mixed-methods study. In: JMIR
mHealth and uHealth Journal. JMIR Publications Inc., Toronto, Canada, 2018.

[A.6] Ondřej Dvořák, Robert Pergl, and Petr Kroha. Affordance-driven software assem-
bling. In: Enterprise Engineering Working Conference. Springer, Luxembourg, 2018.

The paper has been cited in:

◦ Siamak Farshidi, Slinger Jansen, and Sven Fortuin. Model-driven development
platform selection: four industry case studies. In: Software and Systems Mod-
eling Journal, Springer, 2021.

◦ Siamak Farshidi, Slinger Jansen, and Mahdi Deldar. A decision model for pro-
gramming language ecosystem selection: Seven industry case studies. In: In-
formation and Software Technology Journal. Springer, 2021.

◦ Elena Baninemeh, Slinger Jansen, and Siamak Farshidi. A Decision Model for
Decentralized Autonomous Organization Platform Selection: Three Industry
Case Studies. In: arXiv preprint arXiv:2107.14093. 2021.

◦ Siamak Farshidi. Multi-Criteria Decision-Making in Software Production. In:
PhD Thesis. Utrecht University, 2020.

[A.7] Ondřej Dvořák, Robert Pergl, and Petr Kroha. ADA: Embracing technology change
acceleration. In: CIAO! Doctoral Consortium and EEWC Forum and EEWC Posters
2019. CEUR, Lisbon, Portugal, 2019.

[A.8] Ondřej Dvořák and Robert Pergl Tackling Rapid Technology Changes by Applying
Enterprise Engineering Theories. In: Submitted to Journal of Science of Computer
Programming. Elsevier, Expected Acceptance in 2021.

216

Remaining Publications of the Author
Relevant to the Thesis

[A.9] Ondřej Dvořák Projectional editor for domain-specific languages, Charles University,
Faculty of Mathematics and Physics, Prague, 2013.

The master thesis has been cited in:

◦ Mikhail Barash. Specifying Software Languages: Grammars, Projectional Ed-
itors, and Unconventional Approaches. In: Norsk IKT-konferanse for forskning
og utdanning, 2020.

[A.10] Ondřej Dvořák Component-based framework for software development and design.
Ph.D Minimum Thesis, Czech Technical University in Prague, Faculty of Information
Technology, Prague, Czech Republic, 2016.

217

Selected Relevant Supervised Theses

[A.11] Christián Golian Migration of relational databases using CodiScent’s Projective
Technologies. BSc Thesis. Czech Technical University in Prague, Faculty of Inform-
ation Technology, Prague, Czech Republic, 2015.

[A.12] Martin Rašovský Language for high-level description of user interface requirements.
MSc Thesis. Brno University of Technology, Faculty of Information Technology, Brno,
Czech Republic, 2018.

[A.13] Václav Mareš Evolvability of UI technologies. MSc Thesis. Czech Technical Univer-
sity in Prague, Faculty of Information Technology, Prague, Czech Republic, 2019.

The master thesis has been awarded:

◦ Dean’s award for the best master thesis of summer semester in the school year
2018/2019 on Czech Technical University in Prague, Faculty of Information
Technology

[A.14] Ivana Nacevska The evolvability of technologies with the help of Robotic Process
Automation. MSc Thesis. Czech Technical University in Prague, Faculty of Inform-
ation Technology, Prague, Czech Republic, 2020.

[A.15] Tomáš Vahalik Robotic Process Automation in practice. MSc Thesis. Czech Tech-
nical University in Prague, Faculty of Information Technology, Prague, Czech Re-
public, 2021.

[A.16] Manasa Woolla RPA and OCR integration. MSc Thesis. Czech Technical University
in Prague, Faculty of Information Technology, Prague, Czech Republic, 2021.

219

Selected Relevant Reviewed Theses

[A.17] Jakub Červenka Utilising projective technologies for object-oriented development of
WEB UI. BSc Thesis. Czech Technical University in Prague, Faculty of Information
Technology, Prague, Czech Republic, 2015.

[A.18] Richard Strnad Editor XML konfiguraćı modulárńıch systému. BSc Thesis. Brno
University of Technology, Faculty of Information Technology, Brno, Czech Republic,
2017.

221

	Introduction
	Research Overview
	Loosing Pace with Modern Technology
	Loosing Pace with Modern Management
	Motivation
	Problem Statement
	Goals of the Dissertation Thesis
	Research Scope
	Research Questions and Objectives
	Research Approach

	Thesis Roadmap
	Chapter Summary

	Background and State-of-the-Art
	Evolvability
	The Linkage between Agility and Evolvability
	Normalised Systems Theory
	Combinatorial Effects
	Theorems of Normalised Systems Theory

	Evolutionary Architectures
	Concepts of Evolutionary Architectures
	Principles of Evolutionary Architectures
	Architectural Styles

	Chapter Summary

	Enterprise Engineering Theories
	FI theory
	TAO Theory and Affordances
	Affordances
	Function
	Construction
	BETA Theory and F/C Relationship
	PSI Theory and Interactions
	DEMO Methodology
	Chapter Summary

	Technological Developments
	Evolution of Component-based systems
	McIlroy's Dream of Component Library
	Bemer's Call for Software Factory
	Reusability

	GUI Architectural and Design Patterns
	Architectural Versus Design Patterns
	Design Patterns
	Architectural Patterns

	GUI Frameworks
	ASP.NET MVC
	Windows Forms (WinForms)
	Windows Presentation Foundation (WPF)

	GUI Component Libraries
	NPM – NodeJS
	Syncfusion

	Robotic/Business Process Automation
	RPA and Technology Innovation
	Challenges of RPA in Finance
	Robots in RPA
	RPA Vendors
	Business Process Management
	BPMS Vendors

	Chapter Summary

	Previous Results and Related Work
	Normalised Systems (NSX)
	Low-code Platforms
	Feature-Rich Descriptions based on Event Calculus

	 Our Approach
	Research Methodology
	Research Design
	Conjunction with COPS on the Research
	Treasury Management System – Corima

	Design Science Research
	Employing Design Science Research Methodology
	Environment and Relevance Cycle
	Knowledge Base and Rigour Cycle
	Design Science Research and Design Cycle

	Applying Design Science Research Process
	Conceptualisation Phase
	Design & Development Phase
	Demonstration & Evaluation Phase
	Communication Phase.

	Chapter Summary

	 Main Results
	Interactions Between People and Technology
	Corima and the Confirmation Principle
	DEMO and the Confirmation Principle
	Requester, Confirmator, Confirmation Pattern, Confirmation, and Affirmation
	Confirmation Kind and Affirmation Kind
	Revocations
	The Confirmation Principle Summary

	The Confirmation Engine
	The Overall Architecture (The Confirmation Clients and the Confirmation Service)
	The Confirmation pattern in the Confirmation Service
	The Role of a Confirmation Kind and an Affirmation Kind
	Revocations in the Confirmation Service
	Confirmation Engine Summary

	An Illustrative Example
	Rules of the Deal Confirmation Case Study
	Deal Confirmation Process

	Related Work
	Chapter Summary

	Flexibility-Usability Trade-off
	Introduction
	Overview of Flexibility and Usability
	Flexibility-Usability Trade-off

	The Core of the Problem
	Two Architectures

	Proposed Measures
	Assessing Effectiveness and Efficiency in Usability
	Discussion

	Revisiting the Flexibility-Usability Trade-off
	Related Work
	Chapter Summary

	RPA Bridge to New Technologies
	Combining RPA with BPM
	The Case Study
	Automating the Invoice Processing with UiPath
	Automating the Invoice Processing with UiPath and Corima BPM

	Chapter Summary

	Evolvability of Financial Models
	Introduction
	Evolvability
	Finance Domain Model
	Establishment of the Domain Model
	Overview of the Domain Model
	Business Process Introduction

	Revisiting Evolvability of Domain Models
	Revealing Combinatorial Effects
	Insights in Exploring the Domain Model

	Related Work
	Chapter Summary

	Architectural Concepts Limiting GUI Transitions
	Analysing GUI Frameworks
	Modifying WinForms GUI
	WinForms in NST and EA Lens
	WinForms Resume

	Modifying WPF
	WPF in NST and EA Lens
	WPF Resume

	Transition Approaches
	Rewrite from Scratch
	Change Incrementally

	Transition in Practice
	The Case Study

	Conclusion

	Building methodical framework: ADA
	Running Example (part 1)
	SW Based on the TAO Theory and BETA Theory
	ADA: The Way of Thinking
	Realising ADA-relation
	Objectified ADA (O-ADA)

	ADA: The Way of Working
	Designing a Software Architecture

	Chapter Summary

	Demonstrating ADA in Corima
	Running Example (part 2)
	Mapping User Requirements to O-ADA-Functions
	Semantic Descriptions
	ADA Architecture
	Chapter Summary

	Evaluating ADA
	Embedding in Practice
	Evaluating ADA in Terms of NST
	Evaluating ADA in Terms of Impact measurements
	Limitations of ADA
	Chapter Summary

	Conclusion
	Discussion
	Addressing the Research Goal and Objectives
	Research Objective RO 1
	Research Objective RO 2
	Research Objective RO 3
	Research Objective RO 4

	Responding to Research Problem
	Main Outcomes and Contributions to Knowledge
	Supporting an Agile Way of Working
	Supporting Technological Transitions
	Enhancing Model-Driven Engineering

	Future Work

	Thesis Summary

	 Publications
	Bibliography
	Reviewed Publications of the Author Relevant to the Thesis
	Remaining Publications of the Author Relevant to the Thesis
	Selected Relevant Supervised Theses
	Selected Relevant Reviewed Theses

