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Abstrakt

Tato práce se zabývá implementaćı použitelného řešeńı pro extrakci struk-
turovaných dat z českých faktur. V prvńı řadě je prostudováńı veřejně do-
stupných (open-source) a komerčńıch řešeńı této problematiky a také prostu-
dováńı veřejně dostupných nástroj̊u a model̊u, které jdou potenciálně použ́ıt
při vytvářeńı vlastńıho řešeńı. Implementačńı část této práce je rozdělena do
dvou část́ı: nejdř́ıve je potřeba vytvořit nástroj pro označeńı kĺıčových hodnot
na českých fakturách a t́ımto nástrojem vytvořit trénovaćı data pro evalu-
aci a trénováńı model̊u našeho řešeńı. Druhou část́ı implementace je návrh
a konstrukce modelu, který dokáže extrahovat strukturovaná data z českých
faktur.

Kĺıčová slova OCR, Strojové učeńı, Automatizace faktur, Extrakce dat,
Extrakce kĺıčových informaćı, Rozpoznáńı textu, Detekce Textu

Abstract

The goal of this thesis is to implement a usable solution for extraction of
structured data from Czech invoices. The first part of this thesis is to study
open-source and commercial solutions addressing this problem and study pub-
licly available tools and models that could potentially be used for said solution.
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The implementation part of this thesis is split in two parts: firstly, implemen-
tation of a tool for labeling Czech invoices and using this tool to create a
training data set for evaluation and training of machine-learning models. Sec-
ondly, design and implementation of a solution that can extract structured
data from Czech invoices.

Keywords OCR, Machine Learning, Invoice Automation, Data Extraction,
Invoice Capture, Key Information Extraction, Text Recognition, Text Detec-
tion
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Chapter 1
Introduction

The field of Artificial Intelligence (AI) and machine-learning (ML) has seen
great success in recent years. New research and state-of-the-art models keep
being published at a rapid pace. Thankfully, a large number of these works
are being implemented into publicly available tools, especially for the fields
of Natural Language Processing (NLP) and Computer Vision, as seen on
paperswithcode.com[1], for example. With such resources, it is not surpris-
ing that we have seen a surge of new companies built around addressing the
extraction of structured data from invoices (further referred to as Invoice
Data Capture), such as rossum.ai, docsumo.com, nanonets.com, hypatos.ai
and many more, in the year of 2021.

Not to say that solutions for Invoice Data Capture were not here before,
but existing open-source and traditional applications commonly require a pre-
defined template for every invoice to be able to extract structured data. Such
solutions have been here quite some time, but were not widely adapted due to
the lack of usability. New commercial ML based solutions do not require any
template because they are able to learn from invoices processed beforehand.
With enough learning, the models could, in theory, extract any kind of an
invoice, opening the possibility of automating the invoice registration process.

1.1 Motivation and objectives

The cost of processing invoices is quite high for certain companies. An article[2]
by rossum.ai estimate template based commercial solutions at $1.03 per in-
voice and $38,333 annually for the implementation, while estimating their ML
based solution at $0.45 per invoice with the implementation annual cost at
$45,833. The cost per invoice might not seem high, but from the yearly costs
of the implementations, it is apparent that their main clientele are large cor-
porations, since smaller companies could never afford such prices, even if they
process a much smaller number of invoices.
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1. Introduction

The goal of the thesis is therefore to study the possibility, design and
implementation of a usable and freely accessible solution for template-less
and ML based Invoice Data Capture for Czech invoices, which even small
companies can afford to maintain.

It is evident that we need a good training data set of labeled invoices in
order to properly evaluate and train ML models. Unfortunately, we could not
find a good source of labeled Czech invoices, nor a good tool for labeling them,
therefore a crucial part of this work is the creation of our own labeling tool
and training data.
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Chapter 2
Analysis

In this chapter, we firstly analyze commercial solutions for the task of Invoice
Data Capture. Next, we split the main task into three sub-tasks, namely: Text
Detection, OCR / Text Recognition and Structured Data Extraction, which is
needed in order to find the right technologies and tools for our solution. Lastly,
we analyze technologies that can be used for the labeling tool mentioned in
section 1.1.

2.1 Commercial Invoice Data Capture solutions

As of 2021, the number of companies offering Invoice Data Capture solutions
is still growing. The website aimultiple.com[3] showcases comparisons between
21 most popular ones, of which, we picked 3 to talk about:

• rossum.ai

• docparser.com

• hypatos.ai

While rossum.ai was listed because it is a successful startup from the Czech
Republic, docparser.com and hypatos.ai were listed because of an impressive
record of customers from the Big 4 and other Fortune 500 companies. Because
these companies offer ML based solution, the performance of their products get
better over time and therefore are hard, or rather unfair to compare. There
are however, some studies[4] cross-comparing products in their pre-trained
form.

2.1.1 Testing commercial Invoice Data Capture solutions

Some of the commercial solutions now offer a free trial of their products. Due
to this fact, we registered for a free trial with hypatos.ai and rossum.ai. While
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2. Analysis

Figure 2.1: hypatos.ai demo

hypatos.ai offers a basic demo where we can upload only a single invoice at a
time with the need of a captcha check between each invoice, rossum.ai enables
us to upload a bigger number of invoices.

hypatos.ai
The solution offered by hypatos.ai (2.1) is able to identify a variety of values
on an invoice, such as City, Address, Postcode, E-mail, Phone number and
some more. Among all the extracted information, hypatos.ai also attempts to
extract all item values on an invoice, which help predict the Gross Amount,
however it seems to struggle with Gross Amounts where the value is 0 (in case
of invoices that confirm payment). The solution also struggles with extracting
Invoice ID and ICO (the solution does not attempt to identify ICO, but VAT
number, but since both values can be used to track down a specific company
in the Czech Republic, they are interchangeable and therefore deemed the
same in this work). Due Date is extracted perfectly on every invoice tried as
expected.

rossum.ai
The first impression of rossum.ai’s solution is the impressive user interface
(2.2). Although this solution does not offer extraction of Geo-location and
Contact information like hypatos.ai, it does a better job at identifying other
key values. Due Date, ICO (or VAT) and Invoice ID is extracted perfectly in
most cases. Rossum.ai also extract all item values on an invoice, but does a
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2.1. Commercial Invoice Data Capture solutions

Figure 2.2: rossum.ai demo

significantly better job, which also results in a better accuracy for the Gross
Amount. Just like hypatos.ai however, it struggles with Gross Amounts with
the value 0.

Both commercial solutions for Invoice Data Capture were impressive, but
rossum.ai’s solution was better overall.

2.1.2 Image Pre-processing

Before applying the Text Detection and Recognition models, it is usually
important to somehow pre-process the images we want to feed to those tools.
The effects of applying image pre-processing can vary, which we inspect in the
Experimentation chapter.

2.1.2.1 Image representation

RGB
RGB is a color model in which red, green, and blue are added together in
various ways to produce other colors. In computer graphics, this color model
come in the form of 3 channels (red, green, blue) where each channel contains
8bit pixels. The final color range we can get with this design is therefore
2563. Nowdays, RGB is the most popular method of representing the color
spectrum.
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2. Analysis

Grayscale image
A grayscale image, unlike RGB, has only one color channel. Each channel
consists of 8bit pixel, can hold values from 0 to 255. The values of the pixel
in this case represent brightness, where the value 0 is pitch black and value
255 is bright white. One way of converting RGB into grayscale is through
weighted means of the color channels, such as

G(x, y) = 0.3 ·R+ 0.59 ·G+ 0.11 ·B.

Binary image
A binary image is an even simpler image representation than grayscale, where
each pixel can only hold the value of 0 or 1. RGB images are usually converted
to a binary image by converting to grayscale first, and then applying one of
the threshhold methods described further on.

2.1.2.2 Noise reduction

Image noise reduction is a process that attempts to remove noise from an
image, which usually occurs in low quality photos. The difficulty of this task
is to remove noise, but keep all details of the image, which is difficult to
distinguish.

Median filter
The idea of median filter[5] is to run through each pixel of an image and
replace the value of the pixel with the mean of all neighbouring values. The
number of neighbouring pixels is determined by a square ”window” with a
length that can be set, but has to be an odd number. Should an edge be
inside the window, instead of mean, the most dominating value is chosen for
the center pixel.

2.1.2.3 Morphological operations

Morphological operations[6] is a collection of non-linear operations related to
the shape or morphology of features in an image. Morphological operations
were firstly defined for binary images, later extended to grayscale images and
now support even color images. The operations work with two images - the
input image I and image S, which is used as a kernel, called the structural
element.

Dilation and Erosion
Dilation and Erosion are two fundamental operations of Morphological image
processing. In essence, dilation adds pixels around objects in an image, while
erosion removes pixels around objects. The number of added or removed pixels
depend on the size and shape of the structuring element S.
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2.2. Text Detection

2.1.2.4 Threshholding

Thresholding is a method of image segmentation and can be used to con-
vert grayscale images to binary images. The conversion starts by choosing a
threshhold value τ . Obtaining a binary image happens when for each pixel p
in a grayscale image, which has a value from 0 to 255, we set the value of p
to 0 if p < τ or to 1 when p ≥.

Otsu’s method
Real world images are often very different, which makes choosing a universal
threshhold very difficult. The Otsu’s method[7] approaches the problem differ-
ently, where for each image, we calculate an optimal binarization threshhold
separably.

2.1.2.5 Image resizing

Image resizing is a method to convert an image from one pixel grid to another.
It is essential when we need to increase or decrease the total number of pixels
(change the size of an image). Often referred to as interpolation, it works by
using known data to estimate values at unknown points.

Bicubic interpolation
This work uses the bicubic interpolation, where it considers a cube of 4x4
pixels. After converting an image to a bigger (or smaller) grid of pixels, the
missing pixels around the original ones are calculated using the neighbouring
pixels in the 4x4 cube, where apart from the value of the pixels, we also take
the distance between pixels in the cube into consideration.

2.2 Text Detection

Text detection is a Computer Vision task that attempts to mark the regions of
text on a given image by surrounding the regions with rectangular bounding
boxes. The text in images vary in font, color, shape, position or even orien-
tation. Additionally, when it comes to images captured by a camera, we also
need to take quality, size and shadows into consideration, which make Text
Detection a challenging problem.

To improve Text Detection, the International Conference on Document
Analysis and Recognition (ICDAR[8]) holds a competition once every two
years and release data sets used in those competitions, which newer works
use to benchmark against older models. Although not the latest, the most
relevant data sets for Text Detection released by ICDAR are ICDAR2013,
ICDAR2015 and ICDAR2017.

Although most of the OCR tools mentioned in the next section already
have a Text Detection method, the methods are quite outdated and do not
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2. Analysis

focus on images captured by a camera (which becomes quite apparent in the
Experimentation chapter). For the stated reasons, we introduce EAST[9] and
CRAFT[10], which are newer Text Detection models that focus on photos.

2.2.1 Tools and models for Text Detection

Python
Python programming language is one of the most popular programming lan-
guages. It is mainly being used in Data-Science, ML and AI research, therefore
it is the perfect match for this work. It also has a rich community with many
third-party libraries and frameworks that this work utilizes, such as FastAPI
for the back-end of the labeling tool, packaged Text Detection models, OCR
tools and ML models.

CRAFT
Character Region Awareness for Text Detection or CRAFT[10] is a neural
network based model for Scene Text Detection published by Youngmin Baek,
Bado Lee, Dongyoon Han, Sangdoo Yun and Hwalsuk Lee in 2019. Although
the proper use-case for this model are scene images and not scanned docu-
ments, the addition of this model to this work provided great improvements,
as described later in the Experimentation chapter.

The CRAFT model is ranked 16th on ICDAR2013, 15th on ICDAR2015
and 8th on ICDAR2017 as seen on paperswithcode.com[1]. Although the
model does not rank best on the ICDAR data sets, it is used in this work due
to the fact that this model also exists in the form of a Python package called
craft-text-detector[11].

OpenCV
OpenCV is a huge open-source library for computer vision tasks, published
under the Apache 2 Licence. As a very popular library, it contains all the
necessary and up-to-date tools for image-processing that this work needs.
OpenCV is supporting Python as a pre-build package, which is called opencv-
python[12].

EAST
Efficient and Accurate Scene Text Detector or EAST[13] is a neural network
based model for Scene Text Detection published by Youngmin Baek, Bado
Lee, Dongyoon Han, Sangdoo Yun, Hwalsuk Lee in 2017. EAST is therefore
a predecessor of the CRAFT model and was considered in this work due to
the fact that it has been integrated into the OpenCV library for Python. One
of EAST model’s advantages is also the ability to detect text in real-time
through camera.
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2.3. OCR / Text Recognition

As the CRAFT model’s predecessor, it is obvious it ranked worse on the
ICDAR data sets. Nevertheless, just like CRAFT, this model was introduced
due to being integrated into a tool and therefore easy to access.

2.3 OCR / Text Recognition

Optical Character Recognition (OCR[14]) is, as the name implies, a task to
recognize characters or text in a given image. Some of the most popular OCR
engines[15] are OCRopus, Kraken, Calamari and Tesseract.

2.3.1 OCR output formats

Standard output formats of OCR engines are usually hOCR[16] and ALTO[17].

ALTO
Analyzed Layout and Text Object (ALTO) is an open XML Schema standard
developed by METAe project with the focus on describing the layout and
content of physical text resources, such as pages of a book or a newspaper.
The standard is hosted by the Library of Congress since 2010. The structure
of the ALTO file is as follows:

<alto>
<Description>

<MeasurementUnit/>
<sourceImageInformation/>
<Processing/>

</Description>
<Styles>

<TextStyle/>
<ParagraphStyle/>

</Styles>
<Layout>

<Page>
<TopMargin/>
<LeftMargin/>
<RightMargin/>
<BottomMargin/>
<PrintSpace/>

</Page>
</Layout>

</alto>
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2. Analysis

hOCR
hOCR is an HTML formatting standard of data representation for data ob-
tained from OCR. The hOCR format is much more popular than ALTO and
is supported across many OCR engines. Bellow is an example output of an
OCR engine in hOCR format:

...
<p class='ocr_par' lang='cz' title="bbox930">

<span class='ocr_line' title="bbox 348 797 1482 838;
baseline -0.009 -6">↪→

<span class='ocrx_word' title='bbox 348 805 402 832;
x_wconf 93'>Faktura</span>↪→

<span class='ocrx_word' title='bbox 421 804 697 832;
x_wconf 90'>1234</span>↪→

<span class='ocrx_word' title='bbox 717 803 755 831;
x_wconf 96'>Praha</span>↪→

<span class='ocrx_word' title='bbox 773 803 802 831;
x_wconf 96'>4</span>↪→

...
</span>
...

2.3.2 Technologies used in OCR engines

PyTorch
PyTorch[18] is an open source machine learning library used for mainly in the
fields of Computer Vision and NLP. PyTorch is mainly developed by Face-
book’s AI Research lab as a free and open-source software, released under the
Modified BSD license and supports Python, CUDA, and C++ programming
languages.

TensorFlow
TensorFlow[19] is an open-source software library for machine learning. It can
be used across a range of tasks but has a particular focus on deep learning.
TensorFlow is being developed by the Google Brain Team and also supports
Python, C++, CUDA and JavaScript.

RNN
Recurrent neural networks (RNN[20]) are a class of neural networks[21] that
process sequential or time series data. The word ”recurrent” is used due to
it’s dynamic behavior, since the architecture (2.3) allows previous outputs to
be used as inputs between the layers of the network.
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2.3. OCR / Text Recognition

Figure 2.3: Architecture of a traditional RNN

Formally, for each timestep t, the activation a<t> and the output y<t> are
expressed as follows:

a<t> = g1(Waaa
<t−1> +Waxx

<t> + ba)

and

y<t> = g2(Wyaa
<t> + by)

where Wax,Waa,Wya, ba, by are coefficients that are shared temporally and
g1, g2 are activation functions.

LSTM
Long Short-Term Memory (LSTM[22]) networks fall under RNN, but have a
slightly different architecture. The idea behind the LSTM architecture is, as
the name could suggest, to utilize long-term memory, which is created from
processed short-term memory, where short-term memory refers to how RNN
works. Simply put, LSTM networks can remember context longer, making
them suitable for NLP, Speech Recognition and time series classification and
prediction tasks.

2.3.3 OCR Engines

OCRopus
OCRopus is a collection of document analysis programs, not a complete solu-
tion for OCR. The big disadvantage is that it requires Python 2.7 and older
versions of other Python packages, which is mainly due to the fact that one
of the main developers of OCRopus was hired by NVidia to rebuild the tool
with deep learning capabilities. The new version of OCRopus was released by
NVidia under the name OCRopus3, but is now being replaced by OCRopus4,
which is a rewrite of OCRopus3 using PyTorch 1.7.
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2. Analysis

Kraken
Kraken is a complete OCR system just like Tesseract, which was created by
forking OCRopus and finalizing it into a turnkey system. Performance-wise,
it is on par with OCRopus, but apart from hOCR ouput, it also supports
ALTO output format.

Calamari
Calamari is a relatively new OCR engine based on OCRopus and Kraken using
Python3 with TensorFlow. It would seem that Calamari is another iteration
of Kraken, with the addition of deep learning capabilities, designed with ease
of use and customizability in mind. Unfortunately, Calamari does not have
many pre-trained models that could be used for this work.

Tesseract
Tesseract (Tesseract OCR[23]) is an open-sourced OCR engine with a long
and rich history. Development for Tesseract started already in the 1980s by
HP. The engine was then open-sourced in 2005 and Google started backing
this project starting 2006.

Today, Tesseract is arguably the most popular open-source OCR engine,
with continuous updates, such as the addition of LSTM to the engine, new
comprehensive and up to date documentation and an active community, di-
rectly supported by Google. Thought the biggest advantage is the amount of
available pre-trained models for various languages, especially Czech, which is
the requirement for this thesis. Tesseract is written in C/C++ and supports
plain text, hOCR and PDF output formats.

As a universal purpose OCR engine, Tesseract has many modes in which
it can operate. The following list are all the page segmentation modes offered
by Tesseract, which was taken from it’s manpage.

0 Orientation and script detection (OSD) only.
1 Automatic page segmentation with OSD.
2 Automatic page segmentation, but no OSD, or OCR.
3 Fully automatic page segmentation, but no OSD. (Default)
4 Assume a single column of text of variable sizes.
5 Assume a single uniform block of vertically aligned

text.↪→

6 Assume a single uniform block of text.
7 Treat the image as a single text line.
8 Treat the image as a single word.
9 Treat the image as a single word in a circle.
10 Treat the image as a single character.
11 Sparse text. Find as much text as possible in no

particular order.↪→

12 Sparse text with OSD.
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13 Raw line. Treat the image as a single text line,
bypassing hacks that are Tesseract-specific.

This work uses Tesseract along with a Python package[24] that wraps
Tesseract. The mainly used page segmentation modes are mode 12, which
conducts both Text Detection and Recognition, and mode 7, which only at-
tempts Text Recognition.

2.3.4 Commercial OCR engines

Commercial solutions for OCR, such as Google Cloud Vision, Microsoft Azure
Computer Vision and Amazon’s Rekognition API come in the form of an API
service, not a downloadable application. Although the performance of these
engines are slightly better, relying on commercially available resources would
defeat this work’s purpose.

2.4 Structured Data Extraction

In this work, Structured Data Extraction is a task that ingests the unstruc-
tured output from the previous two tasks and attempts to transform them into
a structured format. Specifically, the inputs for this tasks are the texts from
an OCR engine and their locations or rather, bounding-boxes, from the Text
Detection model. The following snippet is an example input (note that the
input is in the JSON[25] format as it was converted from the hOCR format):

[
{

"bounding_box": {"x": 416.5892974853, "y":
44.422203327, "width": 41.9310344828, "height":
9.9310344828},

↪→

↪→

"text": "Faktura",
},
{

"bounding_box": {"x": 461.8306767957, "y":
49.9394447064, "width": 4.4137931034, "height":
1.1034482759},

↪→

↪→

"text": "-",
},
{

"bounding_box": {"x": 470.6582630026, "y":
44.422203327, "width": 43.0344827586, "height":
13.2413793103},

↪→

↪→

"text": "daňový",
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},
...

]

The output of this task are identified and extracted values, which are
the most important for invoice registration, namely: Invoice ID (ID), Due
Date (Datum k uhrade), Amount (Celkem k uhrade) and Person Identification
Number (ICO). An example output we would like to get looks as follows:

[
{

"type": "Datum splatnosti",
"bounding_box": {"height": 18.2731628418, "width":

62.0893554688, "x": 517.4844970704, "y":
200.1935195923},

↪→

↪→

"text": "05.04.2018",
},
{

"type": "Invoice ID",
"bounding_box": {"height": 22, "width": 60, "x":

456.3251953125, "y": 64.1928710938},↪→

"text": "2018134",
},
...

]

As we can see, the task of Structured Data Extraction is in this case to
correctly classify the bounding boxes and their texts, which we obtained from
the Text Detection and Recognition tasks.

Traditionally, solving this problem would require a template as seen in the
project invoice2data[26], where the template comes in the form of a YAML
document and contains regular expressions[27] to successfully match the im-
portant data. One example of a template for the invoice2data project looks
as follows:

issuer: Amazon Web Services, Inc.
keywords:
- Amazon Web Services
exclude_keywords:
- San Jose
fields:

amount: TOTAL AMOUNT DUE ON.*\$(\d+\.\d+)
amount_untaxed: TOTAL AMOUNT DUE ON.*\$(\d+\.\d+)
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date: Invoice Date:\s+([a-zA-Z]+ \d+ , \d+)
invoice_number: Invoice Number:\s+(\d+)
partner_name: (Amazon Web Services, Inc\.)

options:
remove_whitespace: false
currency: HKD
date_formats:
- '%d/%m/%Y'

lines:
start: Detail
end: \* May include estimated US sales tax
first_line: ˆ(?P<description>\w+.*)
line: (.*)\$(\d+\.\d+)
last_line: VAT \*\*

Template based solutions are not practical and become quite expensive
in the long run as mentioned before (1.1). This work aims to implement a
template-less solution with the utilization of ML models similar to the com-
mercial applications introduced in the section 2.1. From our example input
and output, we determined that we essentially deal with a classification prob-
lem and since we plan to train our model on labeled data, the more formal
definition for this task is supervised machine learning classification[28].

2.4.1 Supervised machine learning classification models

There is a big selection of supervised learning classification models to choose
from. In this work, we focus on the most popular ones: Logistic Regression,
K-Nearest Neighbours, Support Vector Machine, Naive Bayes, Random For-
est and Gradient Boosting classifiers. Most of these models can perform both
classification and regression, however in this work, we focus on the classifica-
tion form of these models. All of the mentioned ML classification models are
implemented in Scikit-learn[29], which is a Python ML library.

Since we are dealing with supervised learning, let us assume we have a
training data set of predictor (or independent) variables X ∈ RN,p (infor-
mation we use to predict) with the known predicted (dependent) variables
Y ∈ RN (depended variables are the labeled data).

Logistic Regression
Logistic regression[30] is a statistical model which is similar to linear regres-
sion. It is used when the dependent variable is not a number, but a category
(e.g., a ”yes/no” in case of binary classification). It could be intercepted as a
linear regression for classification (which is the reason why it is called ”regres-
sion” although it performs classification). Although Logistic regression can
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be adjusted to predict more than two categories, for simplicity reasons, we
describe the Binary Logistic regression:

Firstly, the model performs linear regression, which is essentially a method
that attempts to find a linear combination of predictor variables X that can
properly estimate the predicted variable Y

Y ≈ w0 + w1x1 + ...+ wpxp,

where xi are exact values of predictor Xi and wi are unknown coefficients.
Next, a logistic function is applied to obtain the predicted classifications.

The function needs to transform the value of w0 + w1x1 + ...+ wpxp to stay
in the range of [0, 1]. The usual choice for the logistic function is the sigmoid
function:

f(x) = ex

1 + ex
= 1

1 + e−x

where the value of f(x) is the probability of Y = 1 and 1− f(x) for Y = 0.

K-Nearest Neighbours
The k-nearest neighbors algorithm (K-NN[31]) is a non-parametric classifica-
tion method first developed by Evelyn Fix and Joseph Hodges in 1951. The
simple idea behind the K-NN classifier is for a predictor not in the training
data set x0 /∈X, find k closest neighbours to x0 where x1, ...,xk ∈X. Next,
combine the y values of the k neighbours and output the y value that is most
common among them. To find the nearest neighbours, a distance metric has
to be defined for the predictors x ∈ X. The most common metric is the
Euclidean distance, also called L2 distance:

||x− y||2 = d2(x,y) =

√√√√p−1∑
i=0

(xi − yi)2,

for two points x = (x0, x1, ..., xp−1) and y = (y0, y1, ..., yp−1) where x,y ∈ Rp.

Support Vector Machine
A support-vector machine (SVM) attempts the classification problem by sep-
arating data points using hyperplanes in a high- or infinite-dimensional space.
The training of the SVM model is to find the hyperplane with the largest
distance from the training data of any class.

When the data is not linearly separable (cannot separate using a hyper-
plane), the SVM model performs something called as a ”Kernel Trick”. It
is essentially a method that maps the training data on a higher dimension,
where a separation is possible.
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Naive Bayes
The naive Bayes classifier[32] is based on Baye’s theorem and in it’s core, relies
on the assumption that all features are independent (unrelated to each other).
The assumption is often wrong, hence the name ”naive”, but despite that, it
is one of the best classification methods.

The prediction problem can be written in a probabilistic form:

Ŷ = arg max
y∈Y

P (Y = y|X = x),

Naive Bayes model however, approaches the problem differently, by assum-
ing the possible estimation of P (X = x|Y = y). Using the Baye’s Theorem,
we get

P (Y = y|X = x) = P (X = x|Y = y)P (Y = y)
P (X = x) .

After removing P (X = x) since we are interested only in the maximum value
of the predicted value Ŷ , we get the prediction formula

Ŷ = arg max
y∈Y

P (X = x|Y = y)P (Y = y).

Finally, to estimate P (X = x|Y = y), we utilize the ”naive” assumption,
which can be described as

P (X = x|Y = y) = P (X1 = x1|Y = y) · ... · P (Xn = xn|Y = y)

which gives us the final form of the Naive Bayes classifier

Ŷ = arg max
y∈Y

p∏
i=1

P (Xi = xi|Y = y)P (Y = y).

2.4.1.1 Ensemble models

In statistics and machine learning, ensemble methods use numerous learning
algorithms together to obtain better predictive model than could be obtained
from any of the previous learning algorithms alone.

Random Forest
Random forests or random decision forests classifiers[33] are an ensemble
method, which typically utilizes decision trees[34], thus the name ”forest”.
Decision trees is a simple learning algorithm that works on a basis of creating
a tree of decisions based on the training data. The decisions are constructed
using entropy, which is the measure of impurity

Entropy(D) = −
k−1∑
i=0

pi log pi
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where D is usually the depended variable. For each new decision in the Deci-
sion tree, we want to choose such a feature Xi ∈ X that maximally reduces
the entropy, by calculating the information gain

IG(D,Xi) = Entropy(D)− t0Entropy(D0)− t1Entropy(D1)

where D0 is a subsample of D for which Xi = 0, D1 is a subsample of D for
which Xi = 1 and ti is the proportion of D’s elements in Di, ie. ti = #Di

#D .
The random forest classifier is then constructed by creating n random

subsets of the training data and training n decision trees on those subsets.
The classification is then decided by the majority vote of all decision trees.

Gradient Boosting
Gradient boosting classifiers work on the same principle as Random Forest,
utilizing weaker prediction algorithms together to construct a better predictive
model. Unlike Random Forest however, the Decision Trees (or other predictive
algorithm) are not constructed in parallel, but in sequence, meaning every
Decision Tree is influenced by the previous one (except for the first one). The
influence is the previous models come in the form of ”hidden” instance weights,
where it stores the information of which instances were classified incorrectly
so the next model in line can try harder to do a better job.

2.4.2 Exploratory analysis

To successfully classify the tracked values, we examine the characteristics of
each value on invoice images in our data set to find features (predictors) that
could help in the identification of said values, which are: ID, ICO, Due Date
and Amount.

Format
ID is usually a combination of numbers and letters in upper case. ICOs
standard format is a set of numbers with exact width. Due Date format is
a date, here we have to be careful about being able to detect various date
formats (czech date format, english date format, full year vs last two digits of
year, etc). Amount format is usually a floating point number, but sometimes
just an integer as well. All of the important values are also often in bold, or
bigger font sizes.

Position
Other semantic information comes from the position of the data points. While
ID is on the top, ICO and Due Date are usually in the middle part of the
document and Amount is often at the bottom.
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Text
Additional information that could help identify key values in the document
are the texts around them. For example, ICO almost always has ”ICO” or
”IC” in front of the number. Amount usually has ”Celkem” or fully ”Celkem
k uhrade” on the left of the number, with currency (Kc) on the right. Due
Date also almost always has ”Datum” or ”Datum splatnosti” on the left of the
value. More information can also be obtained by applying natural language
processing on text data.

2.4.3 Natural Language Processing

Natural Language Processing (NLP) combines modeling of human language
with statistical, machine learning, and deep learning models. Together, these
technologies enable computers to process human language in the form of text
or voice data in order to ”understand” the meaning.

This work deals with text on invoice images, therefore the NLP methods
used are Lemmatisation and Named Entity Recognition.

Lemmatisation
In many languages, words appear in several inflected forms. For example, in
Czech, the verb ’bežet’ may appear as ’bež’, ’běhal’, ’běž́ı’, ’běhali’ and many
more. The base form, ’běžet’, that can be looked up in a dictionary, is called
the lemma for the word.

Lemmatisation[35] is similar to stemming. The difference is that a stem-
mer works on a single word without knowledge of the context, and therefore
cannot discern between words which have different meanings depending on the
context. Stemmers are typically easier to implement and run faster, making
them appropriate for applications that do not mind the reduction in accuracy.

For example: The word ”běžet” is the base form for the word ”běž́ı”, and
hence this is matched in both stemming and lemmatisation, however the word
”topit” can be either ”to burn” or ”to drown” depending on the context; e.g.,
”topit v kamnech uhĺım” vs. ”topit se ve vodě”. Unlike stemming, lemmati-
sation attempts to select the correct lemma depending on the context.

Named Entity Recognition (NER)
Named entity recognition (NER) — sometimes referred to as entity chunking,
extraction, or identification is a task that attempts to recognize named entities
from text. The task can be split into two sub-tasks:

1. Detect a named entity

2. Categorize the entity

For example, for sentence ”My friend was in Prague in 2019” should rec-
ognize ”Prague” and ”2019” as named entities. Next, the named entities are
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categorized. Most common categories for NER are: Person, Organization,
Time, Location and Work of art. In our example, ”Prague” should be catego-
rized under Location and ”2019” should fall under the Time category.

2.4.3.1 Tools for NER and Lemmatisation

Since this work focuses on Czech invoices, the tools for Lemmatisation and
NER need to have pre-trained models for the Czech language. For that reason,
NameTag 2[36] for NER and MorphoDiTa[37] for Lemmatisation are used to
generate text specific features for our model.

Both NameTag 2 and MorphoDiTa are publitized by Institute of Formal
and Applied Linguistics, Charles University under Mozilla Public License 2.0
and authors of both works are Jana Strakova and Jan Straka.

2.4.4 Metrics for evaluation and comparison

The following metrics have been defined (apart from the Levenshtein distance,
which is referenced) to properly evaluate tools and parameters of tools in the
Experimentation chapter. These metrics also help to understand the relation-
ship between the labeled data generated by the labeling tool and the raw data
generated by Text Detection and Recognition models.

Invoice and Coordinates
Let invoice image I have a width w(I) and height h(I). A pair (x, y) is then a
coordinate on the invoice image I, where x ∈ [0, w(I)] and y ∈ [0, h(I)]. Then,

C(I) = [0, h(I)]× [0, w(I)]

is the set of all coordinates for the invoice I.

Box Intersection
Let a bounding box of invoice image I be defined as a pair of 2 coordinates
(c1, c2) ∈ C(I) × C(I) where for x1, y1 ∈ c1 ∧ x2, y2 ∈ c2 : x1 ≤ x2 ∧ y1 ≤ y2.
Let a, b ∈ C(I) × C(I) be two different bounding boxes on invoice I. An
intersection a ∩ b exists when for xa1, ya1 ∈ ca1 ∧ xa2, ya2 ∈ ca2 ∧ xb1, yb1 ∈
cb1 ∧ xb2, yb2 ∈ cb2 :

min(xa2, xb2)−max(xa1, xb1) ≥ 0

and

min(ya2, yb2)−max(ya1, yb1) ≥ 0.
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Box Match metric
For invoice image I, let A ∈ C(I) × C(I) be a set of bounding boxes gener-
ated by a Text Detection method. Let B ∈ C(I) × C(I) be a set of bound-
ing boxes that have been generated by a human through the labeling tool.
Each b ∈ B also belongs to a specific type T (b) = c, where c ∈ C and
C = {ID, ICO,DueDate,Amount}. For ∀b ∈ B and ∀a ∈ A, if ∃(b ∩ a),
it means an intersecting box for that the type of b was found, therefore for
c = T (b) we set the value intersected(c) = 1, otherwise intersected(c) = 0 is
set. The Box Match metric BoxMatch(I) is then calculated as:

BoxMatch(I) =
∑C

c intersected(c)
|C|

where |C| is the number of types tracked.

Levenshtein distance
Levenshtein distance[38] is a string metric for measuring the difference be-
tween two sequences. Informally, the Levenshtein distance between two words
is the minimum number of single-character edits (insertions, deletions or sub-
stitutions) required to change one word into the other. It is named after the
mathematician Vladimir Levenshtein.

The recursive definition of Levenshtein distance between two strings a, b
is given by lev(a, b) where

lev(a, b) =



|a| if |b| = 0,
|b| if |a| = 0,
lev(tail(a), tail(b)) if a[0] = b[0]

1 + min


lev(tail(a), b)
lev(a, tail(b))
lev(tail(a), tail(b))

otherwise.

where |x| is the length of string x, the tail of some string x is a string of all but
the first character of x, and x[n] is the nth character of the string x, starting
with character 0.

Accuracy of Value metric
Consider the type set C = {ID, ICO,DueDate,Amount} and the bounding
box sets A ∈ C(I) × C(I) and B ∈ C(I) × C(I) from Box Match metric
definition. Let text(a) be the reference string generated by a human through
the labeling tool contained in bounding box a ∈ A. Let text(b) be the string of
the bounding box b ∈ B generated by the application (bounding box generated
by Text Detection model and text generated by OCR engine) and ∃(b∩a). The
Accuracy of value for a specific type c = T (b), where c ∈ C is then calculated
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as:
Accuracy(c) = |text(a)| − lev(text(a), text(b))

|text(a)|
where |x| is the length of string x and lev(x, y) is the Levenshtein distance
between strings x and y.

2.5 Labeling tool technologies

The following tools and technologies have been chosen for the labeling tool.

JavaScript
JavaScript is one of few core technologies for the World Wide Web, used in 97%
of web applications[39], making it the most popular programming language in
the world. Due to it’s popularity, there is a wide range of third-party libraries
to choose from, which makes creating web applications much easier.

React.js
React.js is a open-sourced front-end JavaScript library backed by Facebook,
which focuses on building user interfaces or components. Just like JavaScript,
React.js has a strong community and there is no shortage of third-party li-
braries to use, making it an obvious pick for developing the front-end of the
labeling tool.

FastAPI
FastAPI is a relatively new Python web framework mainly used to build APIs,
distinguishing itself as a very high performance and easy to use framework
(supposedly just as fast as NodeJS or GO). It was a though pick, as there are
more popular predecessors such as Django and Flask, but the performance
and ease of use were the deciding factors.

AWS RDS
AWS RDS is a distributed relational database service offered by Amazon Web
Services. In this work we use AWS RDS to host a PostgreSQL databse for our
data. Using a commercial service for our database is only due to convenience
reasons and can easily be replaced by a open-sourced solution running on a
local machine. Furthermore, this work does not focus on the use of database,
therefore it does not defeat the purpose of this work.

AWS S3
AWS S3 is a storage service offered by Amazon Web Services. This work uses
the AWS S3 bucket to store invoice images. Just like AWS RDS, it is mainly
used due to convenience purposes and can easily be replaced by storing invoice
images on a local machine where the labeling tool would run on.
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Design

In order to reach the final model for Structured Data Extraction, the first
thing we need are training data. To obtain training data, which in this work
are identified and localized important values for invoice images, we first need
to create a tool that can help us generate a larger number of this data. As
such, we start with the labeling tool.

3.1 Functional Requirements of the Labeling tool

The following requirements are the fundamental ones for the labeling tool in
order to produce training data.

• FR1: The user should be able to add or remove invoice images to the
labeling tool.

• FR2: The user should be able to input correct data he can read from an
invoice.

• FR3: The user should be able to mark the area around an important
value on an invoice image.

• FR4: The user should be able to edit the data.

More functional requirements are then added when finishing the solution for
Invoice Data Capture.

• FR 5: The application should be able to extract key data from uploaded
invoice images (Invoice Data Capture task).

• FR 6: The user should be able to re-train the model after labeling more
invoices.
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3.2 Non-functional Requirements of the Labeling
tool

• NFR1: Inputting correct data for an invoice should be easy, fast and
intuitive, eg. by drawing on an invoice image, color distinctions and
auto-reading capabilities.

• NFR2: The data created by the user should be saved persistently so
other users can join in on the labeling work.

• NFR3: The Invoice Data Capture model should have a reasonable ac-
curacy to make it usable.

3.3 Implementation steps

Bellow we can see the planned implementation steps for this work. There is
also the diagram 3.1 of the designed application for reference.

1. Create labeling tool and obtain labeled data

2. Evaluate and compare Text Detection and Text Recognition models and
methods, pick the best method

3. Using the best Text Detection and Recognition methods, extract data
from invoice images

4. Combine extracted data with the labeled data to obtain training data

5. Evaluate and compare different ML classification models on training
data, pick the best performing model

6. Train a ML based model for Structured Data Extraction

7. The combination of Text Detection, Text Recognition and Structured
Data Extraction is the solution for the Invoice Data Capture task

8. Integrate the solution into the labeling tool
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Figure 3.1: Design diagram of the application
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Chapter 4
Labeling tool implementation

The labeling tool is critical for this work moving forward, as we require a
good sample of labeled data for evaluating and comparing tools that could
be used for Text Extraction and Recognition as well as evaluating and com-
paring machine-learning based models for Structured Data Extraction, since
supervised machine-learning requires training data by default.

The labeling tool’s main functionality is to help the user locate and label
key values on an invoice. Apart from that, the tool also handles storing and
uploading of the invoices for convenience purposes. Finally, the machine-
learning based solution for extraction of structured data from invoices, which
is the main product of this work, will also be integrated into the labeling tool
to assist with further tagging.

4.1 Front-end

4.1.1 Home page/Invoices page

The homepage of the labeling tool shows all invoice images that have been
uploaded to the tool (4.1). Each invoice on the homepage is viewed as a small
clickable card with a preview image of a invoice, name of that invoice and
special tags, each representing a state for an invoice:

• No tag: Invoice cards without a tag represent invoices that have been
freshly uploaded.

• Generated: Generated tag represents invoices that were scanned by the
application and are waiting for review.

• Reviewed: Reviewed tag represents invoices that have been reviewed by
a human.

Each invoice cards also contain two basic operation buttons: Edit Invoice
and Delete. Edit Invoice has the same functionality just like simply clicking
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Figure 4.1: Front-end homepage

on the invoice card, which brings us to an editing environment described later
on. Delete removes that specific invoice from the application.

Apart from the invoice cards, the labeling tool also contains two buttons
on the upper part of the home page. Re-train model button takes all the data
from reviewed invoices and uses them to train a new model. Button Generate
Model Output generates predicted values for all invoices without a tag (new
invoices). Once done, the invoices with newly generated predicted values are
tagged as Generated. Both of these operations take quite some time, which is
why loading animations were implemented for them.
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Figure 4.2: Front-end editing page

4.1.2 Upload page

The navigation part on the home page contains only one button called Add
Invoices, which is located on the right. Clicking that button gets us to the
Upload page, where the user can add Invoice images to the application by
simply dragging the images into the rectangle, or click on the rectangle to
search for the invoice images on his/hers local machine.

4.1.3 Editing page

Upon clicking an invoice card and moving into the editing environment (4.2).
In order to keep the task of labeling invoices as easy and quick as possible,
the tool views the selected invoice on a canvas, which is located on the right
side of the page. The user can draw bounding boxes on the invoice image by
clicking and dragging, preferably around a location of a key value. Creating
a bounding box automatically creates a corresponding card on the left of the
page, which shows the data of the bounding box.

The data cards corresponding to the bounding boxes on the invoice image
contain coordinates and size of the bounding box, which are not editable
by the user other than by dragging or resizing the bounding box. Upon
creation of a new bounding box, the text and select input fields are set to
default values, while the color of the bounding box and data card are set to
black. Clicking the select input field shows a drop-down menu, where the
user can choose which of the 4 types (ID, ICO, Due Date and Amount) the
located value represents. Choosing a type changes the color of the data card
and corresponding bounding box accordingly to help distinguish between each
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connected pair:

• ID: Blue

• ICO: Purple

• Due Date: Orange

• Amount: Green

The text input field is empty on creation and is supposed to contain the
text value, which is marked on the invoice image by the corresponding bound-
ing box. The user can either write the correct value into the input field, or
leverage the Read Boxes button on the top left corner, which attempts to read
the text inside all the defined bounding boxes.

The user also has the ability to skip the previous steps altogether, by using
the button Read Invoice, which lets the application attempt to locate and read
all the key values itself. However, the output is not always correct, therefore it
is expected for the user to review the data and in some cases fix them, before
proceeding.

After making sure that everything is correct for the specific invoice, the
user can save the data by clicking on the Save button. The application then
saves all the data inputted by the user and tags the invoice as Reviewed.

4.2 Back-end

The labeling tool’s back-end is written in Python utilizing the FastAPI frame-
work and communicates with the front-end through REST requests. For com-
munication with the PostgreSQL database on AWS RDS, psycopg2 was used,
which is the most popular PostgreSQL database adpater for Python. For
communication with AWS S3, this work uses boto3, which is an AWS SDK
for Python.

4.2.1 Endpoints

All the defined tables and their attributes in the PostgreSQL database can be
seen in figure 4.3 and should serve as a reference while reading the endpoint
definitions. The following endpoints are split into Simple Endpoints and Com-
plex Endpoints. Simple Endpoints were created first and were the base of the
labeling tool. Complex Endpoints were added at a later date, after finalizing
the Invoice Data Capture model for which the training data from the base
labeling tool were used.
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4.2. Back-end

Figure 4.3: Database schema

4.2.1.1 Simple Endpoints

POST /upload-invoice
Endpoint for uploading invoices. Saves the image of the uploaded invoice
in the S3 Bucket and inserts a new row into the invoices table. The newly
added row contains id, imageUrl (URL of the image in S3 bucket) and name.
Attributes data, generated and reviewed are empty for newly added invoices.

POST /read-boxes
This endpoint is called after the user finishes drawing bounding boxes on an
invoice image and clicking Read Boxes button. The endpoint receives the data
of bounding boxes and uses it to crop the invoice image. Each cropped image
is then attempted to be read by Tesseract OCR. The text outputs of the OCR
engine are then returned.

POST /update-data
This endpoint is supposed to be called after the user finishes reviewing the
text of each key value of a specific invoice and then clicking on Save button.
When called, it converts the correct texts and bounding boxes into json format
and stores the data in the invoice table under attribute data.

DELETE /delete-invoice/[id]
This endpoint attempts to delete an invoice when given an invoice id. When
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invoice id is found in the database, it deletes the invoice image in S3 bucket
and drops the row of that specific invoice from the invoice table.

4.2.1.2 Complex Endpoints

GET /train-classification-model
This endpoint is called when the button Re-train Model on the home-page
is clicked. It takes the raw OCR output stored in the ocr outputs table as
well as the labeled data from the invoices table for all invoices that have been
reviewed and transforms them into training data. A new Data Extraction
model is then trained on this data and then uploaded to the S3 bucket. The
models table also gets a new row, consisting of the id, modelUrl, vocabulary
and name of the model. A more detailed explanation of model training can
be found later in chapter Extraction of Structured Data.

POST /generate-predictions
This endpoint is called when the Generate Model Output button on the home-
page is clicked. Firstly, it generates the raw OCR output of Tesseract OCR
with CRAFT Text Detection model for invoices that did not have the raw OCR
output generated before. Next, it downloads the latest model by looking at
the bottom row of the models table. Lastly, it applies the model on all invoices
that do not have the reviewed tag, saves the prediction into the data attribute
of the invoice in the invoice table, and sets the generated tag to True.

POST /classify-invoice-data
This endpoint works similarly to the /generate-predictions endpoint. It is
called by clicking the Read Invoice button in the Editing page of a specific
invoice. Apart from the fact that this endpoint works for a single invoice, the
other difference is that this endpoint does not use the CRAFT model for Text
Detection like the /generate-predictions endpoint. Instead, it uses only the
Tesseract OCR for both Text Detection and Recognition before applying the
Data Extraction model, which greatly improves the speed at the expense of
a slight accuracy drop, making this method much more appropriate for real-
time data extraction. Note that this method is only relevant to newly added
invoices without the Generated tag.
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Chapter 5
Invoice Data Capture model

implementation

Once we finish the labeling tool and generate labeled data, we can then use the
data to evaluate all the models and tools for Text Detection and Recognition
mentioned in sections 2.2 and 2.3. The best technologies and configurations of
Text Detection, Recognition and Image processing techniques (which we will
examine in the Evaluation and Comparison chapter 6 later on) should then
be used to extract raw data from invoices. An example of how this data looks
was seen in 2.4 section.

The missing piece to achieve the solution for the task Invoice Data Capture
model is solving the Structured Data Extraction task. As mentioned in 2.4
section, this task can be interpreted as a classification problem, for which we
have picked the most popular machine learning models (listed in subsection
2.4.1). To train the models however, we first need to obtain training data
from the labeled data and extracted raw data.

5.1 Feature engineering

Feature engineering is a process of using expert knowledge to extract features
(characteristics) from raw data. In our case, raw data is the output of Text
Detection and Recognition tasks. From our findings and observations in the
Exploratory analysis section (2.4.2), we transform the information hidden in
the raw data into a form that our model can understand.

Firstly, as our key values that we want to identify are mostly consisting of
numbers, we split all text from the invoice into two groups: values that are
mostly numbers and values that are mostly text.

Number dominant values
For each number dominant value, we determine whether they match defined
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regex expressions for each key value (ID, ICO, Due Date and Amount). Po-
sition of value is described by splitting the invoice into segments, which is
achieved by grouping the coordinates of the value. Font size of value is de-
scribed by the value’s height of the bounding box, which is split into groups.
For the groups of heights in an invoice document, we also calculate their num-
ber of occurrence.

Character dominant values
Character dominant values are grouped together by distance to number dom-
inant values, with priority for the same line. This way, we capture relevant
text that help in identifying a key value (eg. ”IC/ICO” for ICO, ”Celkem
k uhrade” for Amount, ”Datum splatnosti” for Due Date). Further feature
engineering for character dominant values are in the next section.

5.1.1 Applying Natural Language Processing

To properly convert the character dominant values into features, we need to
apply Natural Language Processing methods. As such, we use the Named En-
tity Recognizer NameTag2 to identify named entities in the groups of character
dominant values. The categories of identified named entities are then features
for the number dominant value. Next, we use the Lemmatizer MorphoDita to
convert all words of character dominant values into their Lemmatized form.
This way, we ensure that words such as ”Celkem” and ”Celkově” do not create
two separate features after converting every word in all character dominant
values into features.

5.2 Building data extraction model

All the steps in previous sections led to building the model for extraction of
structured data. In detail, the model’s task is to pick the best candidate for
each value type (ID, ICO, Due Date and Amount) for a given invoice, which
is a classification problem. The model is to learn solve this task using the
data labeled by a human through the labeling tool, as well as the extracted
information from the Feature engineering section. The core of this model
is the best performing ML classifier, which is described in the next chapter
Evaluation and Comparison (6).

For usability reasons, the model is integrated back into the labeling tool,
where it can help with the labeling process, which in turn, would create more
training data for the model and eventually result in a better performing model
after re-training. These functions are implemented as the Complex endpoints
(4.2.1.2) of the labeling tool’s back-end.
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Chapter 6
Evaluation and Comparison

The following experiments were conducted on a local machine with AMD
Ryzen 5 2600X Six-Core Processor and Radeon R7 260X Graphics card, using
60 labeled invoices.

6.1 Text Detection and Image Pre-processing

Tesseract OCR is the used solution for the Text Recognition task, which was
already mentioned in the Analysis chapter (2). In this section, we focus on
the effects of different Text Detection methods as well as various image pre-
processing techniques[40] on the reading accuracy for Tesseract. The tested
Text Detection models are CRAFT and EAST along with Tesseract’s own
Text Detection method.

For evaluation and comparison between all the methods, we utilize the Box
Match and Accuracy of Value metrics defined in the Metrics for evaluation and
comparison section (2.4.4).

6.1.1 Tesseract Text Detection method

The table 6.1 shows the effects of mentioned image pre-processing techniques
on the accuracy of Tesseract OCR engine output for our invoice data. Each
value represents the mean Accuracy of Value for ID, ICO, Due Date and
Amount for all invoice images. Tesseract OCR engine was used for both
Text Detection and Recognition, which is done by utilizing Tesseract’s page
segmentation mode 12.

Simply re-scaling and applying gray-scale on the images of invoices in our
dataset yielded the best results. Although combining all of the image pre-
processing effects resulted in a better ”Due Date” accuracy, it came at the
cost of worse ”Amount” accuracy. The average time for Text Extraction with
Tesseract on an invoice documents is 8 seconds.
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Box match ID ICO Due Date Amount
No Pre-
processing

95% 98.1% 87.8% 81.8% 79.5%

Re-scaling and
Grayscale

97.5% 98.5% 89.7% 86.8% 87%

Binarization 94.5% 97.9% 88% 84.5% 76.7%
Noise reduction 91.5% 94.8% 89% 82.4% 76.7%
Dilation and Ero-
sion

94.5% 98.36% 88.9% 83.4% 84.4%

All of the above
combined

95% 98.45% 87.7% 87.8% 83.2%

Table 6.1: Tesseract OCR accuracy by image pre-processing techniques with
Tesseract’s native Text Detection

6.1.2 CRAFT

The table 6.2 shows the effects of applying CRAFT for Text Detection. The
output of the CRAFT model is used to crop the invoice image, which is
then read by Tesseract OCR engine in page segmentation mode 7. (Page
segmentation 13 was used as well, but resulted in worse results, which is not
shown in this table).

Box match ID ICO Due Date Amount
No Pre-
processing

100% 86% 84% 94.5% 94.4%

Re-scaling and
Grayscale

100% 86% 84.2% 92.8% 94.4%

Binarization 100% 86% 83.5% 96% 95%
Noise reduction 98% 83.5% 80% 93% 93.3%
Dilation and Ero-
sion

100% 86% 84.2% 93.6% 94.4%

All of the above
combined

98% 83.9% 79.7% 94.4% 94.5%

Table 6.2: Tesseract OCR accuracy by image pre-processing techniques with
CRAFT Text Detection

The most notable improvement by applying the CRAFT text detection is
in Box match, achieving a perfect score of 100%. There is also a consider-
able improvement in accuracies for Amount and Due Date, both around 95%
. However, the accuracy for ID has been reduced by more than 10% across
the board, while accuracy for ICO has also sadly detoriated. As for the ef-
fects of Image pre-processing techniques, no image pre-processing seems to
already have good results, where by adding image pre-processing only results
in marginal improvements.

The results clearly indicate that CRAFT performs it’s job of Text Detec-
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tion perfectly, however, following up with OCR on the cropped images yields
mixed results. There is also a drawback in computational speed. Text extrac-
tion with CRAFT took 40 seconds for an invoice image on average, compared
to 8 seconds in the previous section.

6.1.3 EAST

Box match ID ICO Due Date Amount
No Pre-
processing

93.8% 48% 46.4% 45.6% 50%

Table 6.3: Tesseract OCR accuracy by image pre-processing techniques with
EAST Text Detection

Compared to CRAFT, EAST Text Detection is a little faster (32 seconds
on average), but at the expense of accuracy as seen in table 6.3. Although
the Box match metric is pretty high, it is not higher than Tesseract’s native
Text Detection method. Furthermore, the position of the bounding boxes
are not perfect, resulting in a significant drop of Accuracy of Value metric
across the board. Due to the fact that EAST performed worse on our dataset
than Tesseract’s native Text Detection and was much slower, we skip applying
Image pre-processing for this Text Detection method.

6.1.4 Best Text Detection

The findings clearly show the dominating performance of the CRAFT model.
Although the Accuracy of Value dropped for ID and ICO, the improvement
of Accuracy of Value for Due Date and Amount make up for it. A major
drawback for CRAFT is computational speed, where its 5 times slower than
using Tesseract by itself. In conclusion, we can split these models into two
different use-cases: Tesseract Text Detection and Recognition can be used
for real-time extraction, useful for example in mobile applications, whereas
CRAFT Text Detection in combination with Tesseract Text Recognition could
be run overnight on a collection of images, and reviewed the next day, for
accuracy reliant use-cases.

6.2 Comparing Machine Learning Models

To compare machine learning models, we split the labeled data set randomly
into training data set, consisting of 77% and testing data set, consisting of 33%
of the labeled data set. The data requires prediction for 5 classifications: ID,
ICO, Due Date, Amount and None, where the None classification represents
all the other number dominant values on invoices. The sample size of the
None classification is therefore much larger than the sample size of previous
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4 classifications combined (more than 90% in labeled data). Due to this fact,
we define our own accuracy score, which takes only the first 4 classifications
into consideration. The resulting scores are the Training Accuracy, which
is performed on training data, and Testing Accuracy, performed on testing
data. For comparison, we retain the None classification in the form Default
Accuracy.

The table 6.4 shows the achieved Training Accuracy and Testing Accuracy,
as well as the Default Accuracy for each classification model. The best per-
forming models seem to be ensemble methods (Random Forest and Gradient
Boosting). The 100% accuracy on the training data set might seem weird and
is most likely due to overfitting[41]. Despite that, they still have the best pre-
dictive power (73% and 70%) on the testing data set of all the models shown.
Logistic Regression and SVM did not perform bad either, unlike K-NN or
worse, Naive Bayes.

Training
Accuracy

Testing
Accuracy

Default
Accuracy

Logistic Regression 84% 67% 98%
K-NN 53% 20% 95%
SVM 85% 58% 98%
Naive Bayes -1% -1.3% 81%
Random Forest 100% 73% 99%
Gradient Boosting 99% 70% 99%

Table 6.4: Machine-learning classification models comparison by accuracy

Apart from Gradient Boosting, all models finished training before 1 second,
while Gradient Boosting took 7 seconds to train.

6.2.1 Hyperparameter tuning

Since we suspect the overfitting on the ensemble methods, let us try different
combinations of parameters for the models to find the right configuration
for our data set. This process is called hypterparameter tuning[42]. The
figure 6.1 shows the accuracy development through different combinations of
n estimators and max depth parameters for the Random Forest Classifier. As
we can see, low values max depth causes dips in accuracy while n estimators
have a positive impact on the accuracy on testing data until the value 400.
The resulting best parameter values for the Random Forest Classifier were in
this case 151 for n estimators and 28 for max depth.

The Gradient Boosting Classifier is much slower to train, therefore we
opted for a smaller number of parameter combinations. Again, the figure 6.2
shows the accuracy development, where smaller max depth were causing dips
in accuracy, while n estimators larger than 50 show worsening accuracy on
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the test data. The best parameters found are 37 n estimators and max depth
4.

Random Forest Classifier took about 400 seconds to try out 600 combi-
nations of parameters, while Gradient Boosting Classifier took around 300
seconds to try out 300 parameter combinations.

Figure 6.1: Random Forest Classifier Hyperparameter tuning

Figure 6.2: Gradient Boosting Classifier Hyperparameter tuning

6.2.2 Most important features

One of Random Forest Classifier’s advantages is the ability to output feature
importance scores, which is shown in table 6.5. Here we can find which fea-
tures we created in the Feature Engineering section (5.1) that had the best
predictive ability. Most of the features we can find in the table are as ex-
pected: ”splatnosti”, ”uhrade”, ”ic”, ”celkem”, ”castka” are the texts that
usually occur around our key values. The ”top bins” and ”left bins” are fea-
tures that convey the location segment on invoices, while ”height bin” and
”height bin scarcity” should represent the grouped font sizes and scarcity of
the groups on each invoice image. ”ID candidate” and ”ICO candidate” rep-
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rank score feature
1 0.116962 splatnosti
2 0.060957 uhrade
3 0.051209 text length
4 0.049187 top bins
5 0.048335 height bin scarcity
6 0.040368 doklad
7 0.038229 castka
8 0.037184 left bins
9 0.032298 vyuctovani
10 0.028949 ICO candidate
11 0.025694 ic
12 0.024192 danovy
13 0.022357 faktura
14 0.022340 height bins
15 0.018727 dic
16 0.014688 martin
17 0.013226 ID candidate
18 0.012690 celkem
19 0.012122 placeno
20 0.011703 platbu

Table 6.5: Feature importances from Random Forest Classifier

resent whether the value matches the regular expression formats. Here, it is
quite weird that ”Due Date candidate” and ”Amount candidate” did not make
it to the list of top 20 features.
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Chapter 7
Conclusion

This work introduced a solution for the task of Template-less Extraction of
Structured Data from Czech Invoices (also called Invoice Data Capture), which
is currently only available commercially. In this work, the Invoice Data Cap-
ture task was split into three sub-tasks: Text Detection, which locates the
bounding boxes of texts on an invoice image, Text Recognition, which reads
the text contained in the bounding boxes and Structured Data Extraction,
which identifies important information from the outputs of previous two tasks.

Firstly, we analyzed the current open-source and commercial Invoice Data
Capture applications. We then studied the existing approaches and tools
of Text Detection, Text Recognition (OCR), Supervised Machine Learning
Classification, Natural Language Processing and Image Pre-processing.

Next, we implemented the labeling tool, which was used to label the es-
sential parts of invoice images, creating labeled data for evaluation and com-
parison of all considered tools, models and methods, as well as for training of
the machine-learning models.

The labeled data was then used to test and evaluate the accuracy of Text
Detection and Recognition models. The results indicated the dominant per-
formance in accuracy, achieving 100% in Text Detection and around 90% in
Text Recognition when applying the CRAFT model against the EAST model
and Tesseract’s native text detection method. However, the major drawback
of the CRAFT model is the computational speed, therefore the Tesseract’s
native text detection method, which is the second best accurate, is retained
for the use-case of real-time extraction of structured data from an invoice.

Using the best Text Detection and Recognition method, we extracted raw
data from invoices and combined them with the labeled data, obtaining train-
ing data to test and compare ML classifiers for the Structured Data Extraction
task. Our findings showed that among 6 most popular ML classification mod-
els, Random Forest Classifier had the best final accuracy at 100% for training
data and 73% for out of sample data, making the resulting solution usable,
thus the goal of this thesis was achieved, while also fulfilling all instructions
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and requirements of the assignment.
There is certainly room for improvements in this work. The labeling tool

could be enhanced by adding authentication for support of multiple users, im-
plementing more functions and improving the user interface, while the model
for Invoice Data Capture could be improved by introducing deep learning
neural networks.
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Appendix A
List of used abbreviations

AI Artificial Intelligence

API Application Programming Interface

AWS Amazon Web Services

ML Machine Learning

OCR Optical Character Recognition

RDS Relational Database Services

RNN Recurent Neural Networks

LSTM Long Short-Term Memory

NER Named Entity Recognition

KNN K-Nearest Neighbours

SVM Support Vector Machine

CRAFT Character Region Awareness for Text Detection

EAST Efficient and Accurate Scene Text Detector

ALTO Analyzed Layout and Text Object

NLP Natural Language Processing

JSON JavaScript Object Notation

REST Representational State Transfer

ID Identity

ICO Identifikačńı č́ıslo osoby (Personal Identification Number)
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A. List of used abbreviations

VAT Value Added Tax

XML Extensible Markup Language

ICDAR International Conference on Document Analysis and Recognition

CUDA Compute Unified Device Architecture

PDF Portable Document Format

SDK Software Development Kit

SQL Structured Query Language

URL Uniform Resource Locator
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Appendix B
Contents of the enclosed media

README.md .............................. brief description of the content
src

impl............................. source code of the implementation
client........................labeling tool front-end source code
server........................labeling tool back-end source code

thesis ............... thesis text folder for LATEX source code format
text.................................................thesis text folder

thesis.pdf .............................. thesis text in PDF format
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