

Master’s thesis

Using Neo4j DB system to store and query
linguistic pattern

VIGNESHWAR MANOHARAN B.E.

Department of Software Engineering
Supervisor: Prof. Dr. Ing. Petr Kroha, CSc.

December 27, 2021

Acknowledgements

This thesis work would not have been possible without assistance from Mr.
Kroha and Mr. David Senkyr, and I’m also grateful to my family and friends
who assisted me during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on December 27, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 VIGNESHWAR MANOHARAN. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

MANOHARAN, VIGNESHWAR. Using Neo4j DB system to store and query
linguistic pattern. Master’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2021.

Abstrakt

V této práci prezentuji svou implementaci ukládáńı lingvistických vzor̊u jako
orientovaného grafu do databáze Neo4j a dotazováńı se na odpov́ıdaj́ıćı vzory.
Dále to bude využito v jedné z činnost́ı dolováńı textu, které gramaticky kon-
troluj́ı nestrukturovaný text, a to primárně se značkováńım slovńıch druh̊u a
analýzou závislost́ı mezi každým slovem věty za účelem odhalováńı nepřesnost́ı,
které se vyskytuj́ı v textu a které jsou zp̊usobeny nejednoznačnost́ı, neúplnost
a ned̊uslednost. Tento proces použ́ıvá metodu rozpoznáváńı založenou na vzo-
rech k identifikaci vzor̊u v textu a poté jej porovnává s definovanými vzory,
aby se zjistily nepřesnosti. Protože tyto textové vzory věty jsou reprezen-
továny jako orientovaný graf, budou uloženy v databázi Neo4j, která obsa-
huje slova, slovńı druhy a interpunkci jako uzly. Závislosti mezi každým uz-
lem budou uloženy jako vztahy a poté bude provedeno porovnáváńı dotazu
(vzoru vět) s předdefinovaným uloženým vzorem. Toto slouž́ı ke kontrole, které
předdefinované vzory jsou podgrafy dotazu (vzor vět). Takže tyto výsledky bu-
dou použity v daľśı fázi procesu dolováńı textu k detekci a opravě nepřesnost́ı,
které se vyskytuj́ı v textu.

Kĺıčová slova Databázový systém Neo4j, Lingvistické vzory, TEMOS, Py2Neo,
Cypher query

vii

Abstract

In this thesis, I present my implementation of storing linguistic patterns as
an oriented graph in a Neo4j database and querying it to get matched pat-
terns. Furthermore, this will be used in one of the text mining activities
that grammatically inspect the unstructured text, primarily with the part of
speech tagging and dependency parsing between each word of a sentence to
detect inaccuracies that occur in a text that are caused by ambiguity, incom-
pleteness, and inconsistency. This process uses a pattern-based recognition
method to identify the patterns in a text and then matches it with the defined
patterns to detect inaccuracies. Since these textual patterns of a sentence are
represented as an oriented graph, they will be stored in the Neo4j database
which holds words, parts of speech, and punctuation as nodes. Dependencies
between each node will be stored as relationships, and then the matching of
Query (sentence pattern) with a predefined stored pattern will be done. This
is to check which predefined patterns are subgraphs of the Query (sentence
pattern). So, these results will be used in a further stage of the text mining
process to detect and fix the inaccuracies that occur in a text.

Keywords Neo4j database system, Linguistic patterns, TEMOS, Py2Neo,
Cypher query

viii

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Why Graph Database and especially Neo4j is perfect to
store linguistic patterns? 2

1.2 Objectives . 3
1.3 Structure of Thesis . 3

2 State-of-the-art 5
2.1 Natural Language Processing 5

2.1.1 NLP Tasks . 5
2.1.2 Levels of NLP . 6
2.1.3 Tools and approaches 7

2.2 Textual Requirements Specifications and Their Problems 8
2.2.1 What is Requirements Specification? 8
2.2.2 Problems in textual requirements 9

2.2.2.1 Ambiguity . 9
2.2.2.2 Incompleteness 10
2.2.2.3 Inconsistency 11

2.3 Linguistic Patterns . 11
2.3.1 TEMOS tool and Defined linguistic patterns 11

2.3.1.1 Defined Linguistic Patterns 14
2.3.1.2 Linguistic patterns are used to identify the

problems in a textual requirements: 18
2.4 Graph Database and Neo4j . 19

2.4.1 Graph Database . 19
2.4.1.1 Why Graph Database is efficient? 19

2.4.2 Neo4j . 20
2.4.2.1 Use Cases . 21
2.4.2.2 Neo4j vs RDF 21

ix

2.4.3 Cypher Query . 22
2.4.3.1 Why Cypher? 22
2.4.3.2 Representation of Nodes and Relationships in

Cypher . 22
2.4.3.3 CRUD(Create, Read, Update, and Delete) op-

erations in Cypher query 24
2.4.3.4 Cypher query vs SQL 26
2.4.3.5 Procedures and Functions 28

2.5 Summary . 29

3 ANALYSIS AND DESIGN 31
3.1 How to create an interface with Neo4j? 31

3.1.1 How the binary Bolt Protocol works in Neo4j Python
driver? . 32

3.1.2 HTTP API . 34
3.2 Decision to use Py2neo community driver for Neo4j interface . 38

3.2.0.1 Py2Neo . 39
3.2.0.2 Connection . 39
3.2.0.3 Database Management 42

3.3 Analysis of linguistic pattern matching in Neo4j 46
3.3.1 How can I obtain the sentence from TEMOS as an entry

in the Neo4j database? 47
3.3.2 Finding a suitable way for pattern matching in Neo4j

using a cypher query . 49
3.3.2.1 Analysis and design of dynamic execution . . . 50

3.4 Summary . 51

4 Configuration Stage 53
4.1 Neo4j Database . 53

4.1.1 APOC Installation . 53
4.2 Python setup . 54

4.2.1 Pycharm IDE . 54
4.2.2 Py2neo driver installation 54
4.2.3 Pytest . 55

4.3 Summary . 55

5 Implementation 57
5.1 Design for Implementation . 57
5.2 Storing the predefined linguistic patterns in a Neo4j Database . 58

5.2.1 Direct way of storing patterns using Neo4j’s GUI 58
5.2.2 Storing patterns using Python code 60
5.2.3 How the insert patterns function behaves? 63

5.3 Getting the Sentence as an Input to the Neo4j Database and
perform pattern matching . 70

x

5.3.1 Matching the Query/Sentence graph with the prede-
fined patterns . 72

5.3.2 Test Cases . 76
5.3.3 Overcoming the problems from the previous cypher query 79
5.3.4 Dynamic way of checking 85
5.3.5 Incorporating Cypher query inside the Python function 87

5.3.5.1 Deletion of Query graph after pattern matching 88
5.4 Summary . 89

6 Testing 91
6.1 Testing in Pytest . 91
6.2 Summary . 93

7 CONCLUSION AND FUTURE WORK 95
7.1 Conclusion . 95

7.1.1 Assignment completion 95
7.2 Future Work . 96

Bibliography 97

A List of Acronyms 105

B Code 107
B.1 graph patterns checker.py . 107
B.2 temos graph initializer . 110
B.3 tests.py . 114

C Contents of enclosed CD 121

xi

List of Figures

2.1 Workflow of TEMOS . 12
2.2 Result of Dependency parse annotator 13
2.3 Class/Attribute Sub-Pattern . 14
2.4 Class Attribute pattern matched sentence 15
2.5 Class Specialization Pattern . 15
2.6 Class Specialization Pattern matching with sentence 16
2.7 Attribute Pattern 1 . 16
2.8 Attribute Pattern 1 matching with sentence 16
2.9 Attribute Pattern 2 . 17
2.10 Attribute Pattern 2 matching with sentence 17
2.11 General relation pattern . 17
2.12 Generated Class Diagram . 18
2.13 Property graph model . 20
2.14 Graph with Nodes and Relationships 23
2.15 Returning the specific values . 26

3.1 Workflow of Bolt protocol . 32
3.2 HTTP API Transaction flow . 35
3.3 Screenshot for Neo4j Authorization 35
3.4 Sending HTTP request from Postman API tool 37
3.5 Node creation in Neo4j Database 38
3.6 Graph creation by create() method 45
3.7 Pattern recognition . 47
3.8 Example Sentence Pattern . 49
3.9 Example to show equality between graphs 50

5.1 Flowchart design for implementation 59
5.2 Screenshot for pattern storage using Neo4j GUI 60
5.3 Class diagram for Token class . 61
5.4 Class diagram for GraphPatternsChecker and TemosGraphInitializer 63

xiii

5.5 Flowchart for Storing operation . 64
5.6 Properties of Nodes represented as table 67
5.7 Properties of Nodes along with relationship 67
5.8 Pattern stored as graph . 69
5.9 Patterns stored as graph . 70
5.10 Sample pattern to represent duplicates 74
5.11 Query graph . 74
5.12 Screenshot for Result . 75
5.13 Screenshot of printing collections 75
5.14 Collections of pattern1 and Query in a Table format 76
5.15 Sample pattern . 76
5.16 JSON elements of sample pattern and Query 77
5.17 Pattern 2 . 77
5.18 Query graph with POS caption for nodes 78
5.19 Pattern 5 . 78
5.20 Test cases . 78
5.21 Sample Query graph . 79
5.22 Pattern 6 . 79
5.23 Example pattern . 84
5.24 Example Query . 84
5.25 Screenshot of executing a modified Cypher query 85
5.26 Satisfied test cases . 85
5.27 Screenshot of executing a dynamic Cypher query 87

6.1 Screenshot of running a pytest . 93

xiv

Chapter 1
Introduction

1.1 Motivation

The process of gathering requirements from stakeholders in order to construct
software is well-known as Requirement Specification. Additionally, while some
general methods such as mathematical specifications and graphical notations
are used to document these requirements, but an easy and informal way to
write requirements in a simple manner is through text or natural language, as
it enables both stakeholders and analysts to understand clearly. [1] However,
textual requirement specifications have some problems, including ambiguity
(words may have various meanings), inconsistency (text may contain incon-
sistencies), and incompleteness (lack of specific parts of information). As a
result, textual requirements necessitate both software engineers and compu-
tational linguistics experts who can examine and analyze the language using
their semantic understanding. [2] Similarly, to detect problems in a textual re-
quirements specification, a Natural Language Processing (NLP)-powered tool
called TEMOS (Textual Modelling System) is designed and implemented in
a research paper [2]. They extracted grammatical methods for recognizing
patterns in a text using that tool, which includes information on how words
are related via dependencies, the type of part of speech to which the words
belong, and so on. Following that, an investigation was undertaken utiliz-
ing certain predefined linguistic patterns in order to resolve the previously
described concerns with textual requirements. Additionally, this tool is capa-
ble of automatically generating fragments of the UML class model from the
textual requirements specification. Furthermore, to detect ambiguities in a
textual requirement, ambiguity patterns have been constructed. [3] Thus,
if the grammatically checked textual requirements fit an ambiguity pattern,
TEMOS will issue a warning message to the user and may even provide suit-
able remedies in some circumstances. Similarly, incompleteness patterns are
built to check for missing information in textual requirements, which results in
an incompleteness problem. [4] and patterns are also constructed to identify

1

1. Introduction

inconsistency produced by contradiction, which occurs when a phrase con-
tains one assertion but also contains its negative. [5] Certainly, incomplete
information is also a cause of inconsistency.

Thus, if specified patterns and textual requirements match, a TEMOS
tool will create a warning message informing users or domain experts of the
inaccuracies and the need for corrections.

How, though, will this operation be connected to this thesis? Indeed,
because linguistic patterns are represented as an oriented graph, they chose to
store them in a Neo4j graph database for pattern matching. Additionally, the
Neo4j database will be integrated with the TEMOS tool, which will evaluate
textual requirements by converting them to graphs and querying in Neo4j. [6]
Thus, my role is to store both the Query (sentence) patterns to be analyzed
and the predefined patterns in a Neo4j database through interaction with the
TEMOS tool. Then, using Neo4j’s Cypher query, pattern matching will be
performed and the necessary results obtained for additional textual mining
operations.

1.1.1 Why Graph Database and especially Neo4j is perfect
to store linguistic patterns?

The defined linguistic patterns must be stored in a database and compared
against the structured format of a textual requirement determined by gram-
matical inspection. In general, these patterns are represented as oriented
graphs, with the vertices representing the words and the edges representing
the relationships between them. As a result, it is straightforward to store in
the Neo4j graph database. Everything is saved and shown in Neo4j as graphs
with nodes and relationships between them. The textual requirements or sen-
tences to be validated will be loaded into Neo4j as nodes and relationships.
It stores parts of speech tagging as properties of nodes, and each word gets
related to other words depending on their dependencies.

According to the paper, [6] an analysis was conducted to identify seman-
tically similar sentences, i.e., a sentence from a textual requirements specifi-
cation has a similarity to a sentence from an external source, and the similar
sentence can semantically enrich a sentence. Using RDF, they clustered sen-
tences from textual requirements and external sources into triples and created
subgraph relations between them to determine similarity. Then a semantic
enrichment method is used to speed up the search and generate questions for
domain experts to avoid incompleteness in the textual requirement specifica-
tion.

Due to the fact that the patterns are represented as oriented graphs, the
Neo4j database was chosen to store the sentence to be analyzed, and these
sentences will be saved in a database as a graph according to their lexical and
structural content. The transitive closure may thus be performed directly in

2

1.2. Objectives

Neo4j, and subgraph matching through cypher queries is also allowed. Follow-
ing that, these matched results would be utilized to do semantic enrichment.

1.2 Objectives

This thesis’s primary purpose is to develop a Neo4j database for storing all
defined linguistic patterns as graphs with vertices and edges. In Neo4j, vertices
are referred to as nodes, while edges are used to describe the relationships
between nodes. Then, as explained in section 1.1.1, the analyzed sentence will
be generally inserted into the database using a cypher query. The sentence will
be transmitted by an application called TEMOS, which uses natural language
processing to perform grammatical inspection on a sentence based on its parts
of speech and dependencies. Due to the fact that TEMOS is developed in
Python, it delivers a sentence as a list including attributes such as text, parts
of speech tagging, dependencies, and the text’s head.

My goal is to write Python code that iterates over the sentence list, and
then, using a Python-Neo4j interface, to store the iterated sentences in Neo4j
as nodes and the lexical content of a text as node characteristics such as
text, pos, dep, head, and so on. Then, depending on the property called
dependencies, which is identified as a relationship type, relationships will be
constructed between nodes, and the head of a text should specify which word
will be the sender node. Additionally, all node and relationship creation is
dynamic, which means that the Cypher query takes any sentence and auto-
matically stores it in a database as nodes and relationships. Then, using a
cypher query, I’ll do subgraph matching on a sentence graph and report the
results containing the predefined pattern name that matches the sentence.

These matched patterns will be utilized in association with the further
text mining activities described in section 1.1 and section 1.1.1 precisely to
facilitate the semantic enrichment process and to identify flaws in textual
requirement statements.

1.3 Structure of Thesis

This thesis will be classified into various parts. It begins with an introduction
in which I discuss the topic’s background and motivations. Then, the ratio-
nale for using the Neo4j database to store linguistic patterns is discussed in
section 1.1.1, and section 1.2 includes the intended goals to be achieved.

Next to the introduction, the following chapter 2 will be the state of the
art chapter that includes a brief description of the required software and infor-
mation pertinent to this thesis, such as Natural Language Processing (NLP),
the Neo4j database, and linguistic patterns.

chapter 3 describes the analysis that was undertaken to collect necessary
resources and illustrates how the database will be constructed to precisely

3

1. Introduction

store and query linguistic patterns. Additionally, I will describe the Neo4j-
Python interface in this chapter.

Following that, the chapter 4 describes the deployment of the required
software and tools to begin implementation.

In chapter 5, I will detail my implementation of storing predefined linguistic
patterns in a database using the Py2neo interface and loading a Query(sentence)
sent from a TEMOS tool along with its lexical content based on grammatical
inspection as a graph entry in the Neo4j database. Importantly, a dynamic
pattern matching between the Query (sentence) graph and predefined linguis-
tic patterns performed by a Cypher query will be demonstrated fully. Addi-
tionally, test cases will be built to verify that Cypher query operate properly.
Following that, any remaining issues will be resolved by amending the Cypher
query. Once the dynamically performed Cypher query is complete, I will finish
the implementation by integrating it into the Python code that does pattern
matching and returns results.

The completely developed Python code will be tested at chapter 6. It
begins by outlining the requirements that must be met. The program will
then be checked for functionality and accuracy using the pytest framework.

Finally, I conclude my argument with a chapter section 7.1. This chapter
will summarize my thesis implementation, confirming that I accomplished
all of the thesis’s prerequisites. Furthermore, I will discuss probable future
developments.

4

Chapter 2
State-of-the-art

It is necessary to provide a detailed explanation of the linguistic patterns
that I am going to store in a database and query using it, as well as a brief
description of the textual requirements and issues that arise in them, as well as
other tools that are required, most notably the Neo4j database, which serves
as the foundation for this thesis implementation. Thus, all of these points will
be discussed in detail in this chapter.

2.1 Natural Language Processing

Natural Language Processing (NLP) is a subfield of Artificial Intelligence con-
cerned with machine learning to comprehend natural language text and spoken
words in the same manner that humans do. [7] It is a synthesis of computa-
tional linguistics with statistical, machine learning, and deep learning models
of human language. Through the use of NLP, computer programs may be pro-
grammed to translate across languages and to respond to spoken commands.
Natural language processing converts unstructured text or speech data to a
structured data format. This is accomplished by the identification of named
entities and also through the identification of word patterns through the use
of procedures such as tokenization, stemming, and lemmatization, which in-
vestigate the roots of words. [8]

2.1.1 NLP Tasks

NLP performs a variety of activities that break down a text and enable appli-
cations to comprehend and evaluate it, as well as deal with its grammatical
structure, meaning, and usage. Several of these tasks include the following:

• Speech recognition software that translates spoken words into text.
It’s advantageous for applications that respond to voice instructions.

5

2. State-of-the-art

• Part of speech tagging is subject to grammatical examination. It
recognizes and annotates the parts of speech contained in a word or
text, such as a noun, verb, adverb, and so on.

• Word sense disambiguation, which identifies words that may have
different meanings and thus leads to ambiguity. It determines the unclear
word using a semantic analysis procedure.

• The phrase Co-reference resolution refers to the process of determin-
ing if two terms relate to the same thing.

• Sentiment analysis is used to examine texts that contain subjective
traits, feelings, and attitudes.

• The term Named entity recognition is sometimes used to describe
to the job of extracting and classifying important information (entities)
from a text. It might be a single word or a collection of words. [9]

For instance, it recognizes the name John as a person and the firm Oracle
as a company.

2.1.2 Levels of NLP

Natural language processing is separated into several phases or tiers, which
are as follows:

• The study of speech sounds within and between words is referred to as
Phonology. [10] This level, however, is outside the scope of this thesis
since I will be primarily utilizing structured textual patterns based on
NLP.

• At the morphological level, the nature of words has been investigated,
including word structures and word creation. Words are comprised of
morphemes; they are the smallest units of meaning. For example, the
word unhappiness may be deconstructed into morphemes such as prefix-
un, suffix-ness, and stem-happy, which is also known as a free morpheme.
The bound morpheme (prefix and suffix) necessitates the attachment of
this free morpheme. That is, the prefix and suffix are determined by the
root word. [11]

• Lexical level enables NLP to analyze words based on their lexical mean-
ing (individual words) and parts of speech such as nouns, adverbs, and
verbs, among others. It makes use of a language called lexicon, which
is a collection of individual lexemes, which might be a single word or a
combination of words.

6

2.1. Natural Language Processing

• The Syntactic level of analysis examines the words in a sentence to
determine its grammatical structure. It necessitates the use of both a
grammar and a parser. This level’s output exposes both structural links
between words and their parts of speech tagging (POS). [10] It makes
use of parsing, which is the process of dividing a phrase into constituents
and describing their syntactic responsibilities. After parsing a sentence,
it generates a parse tree that comprises part of speech tagging, phrases
(with the subject as a noun phrase and the predicate as a verb phrase),
and dependency links between words.
Both the lexical and syntactic analyses are more pertinent to this thesis.
Because I will be storing textual patterns that were generated using a
tool called spacy NLP based on lexical and syntactic structure. I shall
discuss this method in further detail in my subsequent explanations.

• The Semantic level assists in determining the precise meaning of a
sentence by establishing a relationship between the syntactic aspects
discussed previously, and also involves disambiguation of words, which
have many definitions or meanings. This level focuses on the proper in-
terpretation of sentences rather than on the analysis of individual words
or phrases. [11]

• The other levels, which are unrelated to this thesis, include Discourse,
which analyzes the structure and meaning of a text beyond a single sen-
tence and makes connections between words and sentences, and Prag-
matic, which takes real-world knowledge into account and understands
how it affects the meaning of words.

2.1.3 Tools and approaches

Natural language processing includes a variety of tools that help us grasp a
language and demonstrate how it works in certain scenarios. [12] There are
several NLP tools available on the market. I’ll describe various Python-based
tools and their relationships to the backdrop of linguistic patterns, which I’ll
use for a Neo4j database in this thesis.

1. Python with Natural Language Toolkit: The Python programming
language has a variety of tools and libraries for doing natural language
processing tasks. The majority of them are included in the Natural
Language Toolkit, which is open source software that includes libraries
and tools for constructing natural language processing algorithms. [7]
NLTK contains libraries for natural language processing tasks such as

• Sentence parsing (as mentioned before in the syntactic level part
of section 2.1.2)

• Word segmentation

7

2. State-of-the-art

• Lemmatization and stemming (the process of reducing words
to their root words)

• Tokenization for breaking phrases, sentences, and paragraphs into
tokens to help a machine better understand a text.

• Semantic reasoning is used to reach logical conclusions based on
facts taken from a text.

2. Stanford Core-NLP: It is a general-purpose text analysis tool, similar
to NLTK. The primary benefit of Stanford Natural Language Processing
is its tremendous scalability. Because of high scalability it is better for,

• Extracting data from open source websites (social media, user-
generated reviews)

• Sentiment analysis
• Conversational interfaces such as chatbots
• Text processing and production, which are beneficial for customer

support, e-commerce, and so forth.

3. Spacy-NLP: Spacy is the NLTK tool’s next stage. While NLTK is
rather sluggish and difficult at the application level, spacy is smoother,
quicker, and delivers a more efficient user experience. Additionally, it
is ideal for syntactic analysis (which is a level of NLP discussed above
in section 2.1.2). Unlike Stanford CoreNLP and other tools, Spacy
integrates all functionalities, eliminating the need to manually choose
modules. Additionally, the framework may be developed through the
use of preset building components. Additionally, Spacy is great for per-
forming deep text analytics and sentiment analysis. [13]

2.2 Textual Requirements Specifications and
Their Problems

2.2.1 What is Requirements Specification?

Specification of Requirements is a subset of Requirements Engineering. [1]
The major objective is to document the requirements for both the user and the
system. Additionally, the requirements definition should be exact and easy to
comprehend, which is challenging to achieve due to the diverse interpretations
of stakeholders, resulting in conflicts and inconsistencies in the requirements.
[14]

Specifications for requirements can be written as,

• Easily understandable text as a natural language specification

8

2.2. Textual Requirements Specifications and Their Problems

• Using a standard form or template in a structural manner.

• Create description languages by the use of programming languages.

• Using a Graphical notations and,

• The Mathematics specification requires the use of mathematical con-
cepts such as finite-state machines or sets. On the other hand, a com-
plete formal specification is difficult for customers or stakeholders to
grasp.

Thus, among the aforementioned methods of constructing a requirements
specification, a textual requirement written in natural language is the least
complex. By default, it does not require any specified or standard format.

2.2.2 Problems in textual requirements

Both the client and the analyst can easily understand the requirements spec-
ification when they use a textual requirement. On the other hand, the short-
comings of textual requirements are [2]:

1. Ambiguity

2. Incompleteness and

3. Inconsistency

2.2.2.1 Ambiguity

Ambiguity refers to the ability of a word to be understood in two or more
senses or ways. It is a frequent occurrence in natural language text. While
establishing a Requirements specification in a textual format is more straight-
forward and intelligible, it is vital to discover ambiguity in the textual require-
ments. [15]:

Consider the following examples of ambiguity in sentences:

1. He runs the marathon.

2. She prepares dishes for dinner.

Sentence (1) creates ambiguity because it leaves open the possibility that a
person runs (organizes) a marathon competition or a person also runs (partici-
pates) in a marathon. In the another statement, the same circumstance exists.
It can be interpreted in two ways, a man or woman preparing dishes (plates)
for dinner. Additionally, it suggests she prepares dinner dishes (meal).

Additionally, ambiguities are categorised according to their kind. They
are listed and discussed below depending on the following:

9

2. State-of-the-art

• Lexical Ambiguity: It is defined as a term with several meanings.
For instance, the term black refers to both dark and corrupted (black
economy). Lexical ambiguity also happens when two words have the
same sound but have distinct spellings, such as too and two, hole and
whole, and so on. [16]

• Syntactic Ambiguity: Additionally, it is referred to as structural am-
biguity. This sort of ambiguity happens when a series of words contains
words with varying grammatical structures, each of which conveys a dis-
tinct meaning. For instance, Small toy store may be interpreted in two
ways: as (a small toy) shop or as a small (toy) shop. In one sense, the
shop’s size is smaller, while in the other, the toy’s size is smaller. [16]
Similarly, there are other statements that create syntactic uncertainty,
for example, He noticed the man with the field glass, The entrance near
to stairs with the members-only sign [3], and so on.

• Semantic Ambiguity: It occurs when a statement may be understood
in more than one manner within its context, despite the absence of lexi-
cal or syntactic ambiguity. For instance, when several quantifiers appear
in the same phrase, such as all citizens have a personal identity number,
the statement can be understood in one of two ways: each citizen has
a personal identification number, or all citizens have a personal identi-
fication number. [17]

• Pragmatic Ambiguity: This type of ambiguity happens when a state-
ment has many interpretations within the circumstances of its produc-
tion. For example, in a sentence The trucks shall treat the roads before
they freeze, word they could mention both the roads as well as the trucks.
[17]

• Vagueness Ambiguity: It occurs when a statement lacks the necessary
meaning. For instance, Software is a development platform for projects.
The term platform has many meanings in this statement. [16]

2.2.2.2 Incompleteness

An incompleteness problem occurs when certain associated information is
missing or incomplete in a textual requirements specification. For instance,
if a simplified model of a software system omits critical information essential
for modeling a genuine system, Additionally, when stakeholders or domain ex-
perts collaborate with the analyst on textual requirement specifications, they
will omit some details. [4] Taking the statement Syntax error as an example,
it is not specified which program contains a syntax error. [16]

In a real-world scenario, if a functional requirement for an application that
is capable of sorting the results is specified and is explained as follows: The

10

2.3. Linguistic Patterns

application should sort the results when the user views them, and it should
sort the results according to price, distance, restaurant name, and so on.

According to the preceding explanation of textual requirements, a state-
ment such as sort the results, sort by price omits critical information and
generates an incompleteness issue, such as which results should be sorted.
Moreover, at what cost?

2.2.2.3 Inconsistency

Textual requirements, in general, may not always convey consistent informa-
tion about the system to be built. Because requirements may be produced by
stakeholders with disparate interests, ambitions, and backgrounds, as well as
limited subject expertise. [5]

There are two types of inconsistencies. One such instance is semantic
overlaps between required clauses. For instance, if two conflicting assertions
exist with the same subject and matching verb with object, this indicates that
the statement and its negation are in the same condition concurrently. Ad-
ditionally, inconsistency might occur as a result of requirement incompletion
(omission of information).

Inconsistency will have a mixed effect. On the downside, it may delay
and raise the cost of developing software systems, and there is no guarantee of
safety or dependability. On the plus side, inconsistencies may aid in identifying
elements of the system that require more examination. [18]

2.3 Linguistic Patterns

Linguistic patterns are grammatical principles that enable speakers and writ-
ers of a shared language to communicate effectively. Grammar, from the
linguist’s perspective, is not only a collection of rules; it also includes a set
of blueprints that assist users toward producing explicit and predictable sen-
tences. Languages and their divergence are based on grammatical structures.
Additionally, all languages are composed of patterns that make sense of the
language’s properties, which include the arbitrary symbols, sounds, and words.
[19]

2.3.1 TEMOS tool and Defined linguistic patterns

As previously stated, textual requirements include drawbacks such as ambigu-
ity, inconsistency, and incompleteness. These mistakes must be corrected by
a user, but they must first be brought to the user’s notice. Thus, to address
the issues of textual requirements, a tool called TEMOS (Textual Modelling
System) was designed and implemented in the paper [2]. It assists in compar-
ing portions of textual requirements specifications to corresponding fragments
of a static UML model for possible inaccuracies. It is developed in the Python

11

2. State-of-the-art

programming language and makes use of the Stanford Core NLP framework
for processing plain text in natural language using annotators. These are col-
lections of processes for resolving various aspects of linguistics and generating
notations describing the outcomes.

I shall describe in detail the TEMOS tool’s primary components and the
specified patterns, which are all relevant to this thesis work.

Figure 2.1: Workflow of TEMOS

[2]

Stanford Core NLP includes a number of annotation tools, however the
TEMOS tool utilizes the following: [20]

• Tokenize Annotator - The input text was parsed and a lexical analysis
performed using the tokenization annotator.

• Sentence Annotation (WordsToSentenceAnnotator) - Tokens are used
to build sentences by Words to Sentence Annotator which splits a se-
quence of tokens into sentences.

12

2.3. Linguistic Patterns

• Part Of speech Annotation - It annotates tokens according to their
POS tags. A Part Of Speech Tagger (POS Tagger) is a piece of software
that scans text and assigns a part of speech to each word (token), such
as a noun, verb, adjective, or other type of word. [21] Additionally, it
annotates interpunction and other special characters in a text with the
corresponding character. [2]

• Lemma Annotation (Morpha Annotator) - For each token, the Mor-
pha Annotator creates a fundamental form (lemmas).

• Dependency Parse Annotator - This is the most remarkable annota-
tion from the perspective of the TEMOS tool. It examines a sentence’s
grammatical structure and searches for links between words, such as the
nominal subject of a verb and the dependent object of a verb. The di-
rection of reliance is denoted by arrows, and each phrase has a root word
that can be repeated one or more times and is not dependent on any
input.

• Coref Annotator- This is the final annotator from Stanford CoreNLP
that the TEMOS tool has utilized. This annotator’s aim is to identify
the words and pronouns it refers to.

TEMOS follows the pattern-based approach. The pattern-based recognition
works by grammatical inspection of a word in a sentence, which has been done
by the annotations. It largely depends on dependency recognition and part
of speech tagging for this purpose, in order to determine the grammatical
functions of words in textual requirements.

The pattern recognition algorithm then iterates over a sentence’s root
words, which correspond to a word’s part of speech tagging, and, as indicated
before, the most remarkable annotator, called the dependency parse annotator,
establishes a dependence between words.

The result of the dependency parse annotator on a sentence is given in the
below Fig 2.2.

Figure 2.2: Result of Dependency parse annotator

[2]

13

2. State-of-the-art

Following the generation of a pattern based on the dependency parse anno-
tator, the generated pattern will be compared to the defined patterns in order
to identify a class, attribute, or inside a sentence. This is the fundamen-
tal concept implemented by a TEMOS tool, which converts the components
of a textual document to a UML class diagram based on the annotations.
Additionally, TEMOS developed several annotation types for the process of
producing UML class diagrams. They are as follows:

• Class Annotation - similar to a root, this is a simple annotation that
may exist on its own.

• Attribute Annotation - an annotation that is related with its owner or
class annotation. For instance, if a student is a class, then its properties
include its name, age, and so on.

• Relation Annotation - this annotation establishes a connection be-
tween the two classes. Thus, it would have both the source and target
class annotations.

2.3.1.1 Defined Linguistic Patterns

The defined linguistic patterns are matched to the sentence, which is in a
structured and lexical format immediately following an inspection of the gram-
matical roles, particularly those associated with the part of speech tag and
dependency parse annotation. Thus, it is a pattern matching procedure that
determines whether or not textual patterns exist in a given pattern. To con-
vert a linguistically analyzed structure sentence to a UML diagram using the
TEMOS tool, a sentence pattern must be matched to one of the provided
patterns Class/Attribute, Attribute pattern, General relation pattern, or Class
Specialization pattern. Thus, by comparing against these patterns, it is feasi-
ble to determine which word in a sentence is a class/attribute and how it is
connected to other words (class). I’ve described each defined pattern and its
graphic depiction in detail below based on [2]:

1. Class/Attribute Sub-Pattern: This sub pattern is utilized when a
word matches the class or attribute annotations.

Figure 2.3: Class/Attribute Sub-Pattern

[2]

14

2.3. Linguistic Patterns

Figure 2.4: Class Attribute pattern matched sentence

[2]

Figure 2.4 illustrates the pattern matching of a sentence to a Class/At-
tribute pattern. The matching words are highlighted in the background.

2. Class-Specialization Pattern: This pattern is satisfying if some de-
fined rules have been satisfied. They are:

• In a sentence, the root token should be a noun. If this is the case,
there will be a class annotation.

• Verb (to be verb) should be a child with copula-type dependency
(cop).

• The second class annotation must exist as a noun and be a child
of the root word with a nominal subject(nsubj) dependence.

• If any nouns exist as children with conjuct(conj) dependency rela-
tions to the root word, they will be the other class annotations.

• Finally, a relation annotation using the source and target classes
would be produced. Additionally, verb denotes the class relation-
ship.

In Figure 2.5 and Figure 2.6, the Class specialization pattern and the
sentence matched with it have been shown.

Figure 2.5: Class Specialization Pattern

[2]

3. Attribute Pattern 1: The purpose of this pattern is to extract class
and relationship annotation attributes from textual requirements. When
the following requirements are met, the sentence pattern will be matched.

• A root token would be a verb, more specifically a to have or to
contain verb.

15

2. State-of-the-art

Figure 2.6: Class Specialization Pattern matching with sentence

[2]

• A Class annotation is a noun that must exist as a child of the type
nominal subject(nsubj) dependence.

• Another noun must exist as a child of a root word through a de-
pendency object (dobj). Then this noun will be an annotation as
an attribute. If any noun exists in the same way as this with a
dependence object and as a child of the root word, it will likewise
be annotated as attributes.

Figure 2.7: Attribute Pattern 1

[2]

Figure 2.8: Attribute Pattern 1 matching with sentence

[2]

4. Attribute Pattern 2: This pattern indicates whether a root token
is a noun or a verb, as indicated by the preceding attribute pattern.
Additionally, it adheres to certain sets of regulations.

• If the Root token is a noun, this will be a attribute annotation (A1).
• Additionally, there must be a noun as a child of the nominal mod-

ifier (nmod:of) dependency type. If this is the case, a class anno-
tation(C1) will be created.

• If the root token has any other noun as a child with the dependency
type conjuction by and (conj:and), then the attribute annotations
(A2...An) will also be present.

16

2.3. Linguistic Patterns

Figure 2.9: Attribute Pattern 2

[2]

Figure 2.10: Attribute Pattern 2 matching with sentence

[2]

5. General Relation Pattern: This pattern can be used if none of the
preceding ones match. Its construction is depicted in the diagram below.
2.11.

Figure 2.11: General relation pattern

[2]

Following that, sentences are matched against a predefined pattern. TEMOS
generates UML models from classes and attributes. I will provide a brief
overview of this procedure because it is beyond the scope of this thesis.

According to the paper [2], they created textual requirements for the hotel
booking system and, using the Class/Attribute, Attribute Patterns, and other
previously specified patterns, the TEMOS tool generated a UML diagram.

A few of the sentences that match the patterns are as follows:

• Our business group owns many hotels. The highlighted words are
those that have the Class/Attribute sub-pattern and the General relation
pattern, where business group and hotels are the two class annota-
tions and owns is the relation between those classes.

• The customer is identifiable by the name, surname, and address;
hence, this sentence matches the Attribute pattern 1, and the highlighted
term customer is a class, and the name, surname, and address are
attributes of the class.

17

2. State-of-the-art

Similarly, every other sentence will be matched to the defined patterns,
and TEMOS will build a class diagram for each component, as seen in the
following picture:

Figure 2.12: Generated Class Diagram

[2]

2.3.1.2 Linguistic patterns are used to identify the problems in a
textual requirements:

The problems that occur in textual requirements, such as ambiguity, incom-
pleteness, and inconsistency, as described in the section 2.2.2, are identified
and resolved by matching against defined patterns introduced and designed in
[3], [4], [5]. After implementing the pattern-based approach by matching a
sentence against the patterns of ambiguity, incompleteness, and inconsistency,
a TEMOS tool will generate warning messages to users writing textual re-
quirements regarding the identification of inaccuracies and insistence on their
resolution.

As a result, when employing a linguistic pattern matching technique to
discover faults in a text, a Neo4j Graph Database should be used, as the
patterns are represented as oriented graphs. Thus, the sentence to be analyzed

18

2.4. Graph Database and Neo4j

has been converted into a graph format based on its structural and lexical
content by TEMOS using the framework spacy-NLP(section 2.1.3), and the
graph has been saved and queried in a Neo4j database to get the matching
patterns. [6]

In the next section, I’ll discuss the Neo4j Graph Database and its features,
benefits, and comparisons.

2.4 Graph Database and Neo4j

2.4.1 Graph Database

A graph database is a type of database that is meant to handle both the
relationships between data and the significance assigned to the data itself. To
save the data, it should first be diagrammed by illustrating how each unique
entity is related to the others. [22]

2.4.1.1 Why Graph Database is efficient?

Everything is related in a real-world living environment. There are no separate
pieces of information; everywhere around us, we perceive interrelated domains.
Thus, only a database that is fundamentally relational is capable of effectively
storing, processing, and querying connections. Additionally, while traditional
databases calculate associations during the query process via complex JOIN
operations, a graph database saves connections with the data in the model.
Additionally, accessing nodes and relationships in a native graph database
is a fast constant-time operation that enables rapid traversal of millions of
interconnections per second per core.

A graph database is the most efficient way to manage densely linked data
and sophisticated queries, regardless of the data’s overall size. It utilizes
simply a pattern and a set of starting points to explore the data around those
initial starting points, collecting and aggregating information from millions of
nodes and associations while leaving any material that is not relevant to the
search undisturbed.

In comparison to other technologies, graph databases employ a variety
of distinct methodologies, all of which are critical components of a graph
database. One such technique is the property graph model, in which data is
arranged as nodes, relationships, and properties. Data will be stored as nodes
and relationships.

Nodes are the basic units of a graph, and they can have any number of
attributes, which are expressed as key-value pairs called properties. Labels
can be applied to nodes to indicate their various responsibilities within the
domain. Additionally, node labels would deal with the attachment of meta-
data (such as index or constraint information) to specific nodes. Meanwhile,
relationships connect two node items in a directed, named, and semantically

19

2. State-of-the-art

meaningful way (for example, an employee WORKS FOR a company, where
WORKS FOR is a relationship between nodes Employee and Company). A
connection must always have an incoming or outgoing direction, a start node
(the point at which the relationship begins), and an end node. Similarly, nodes
and relationships can have properties, and in the majority of situations, these
properties are quantitative, such as weights, prices, distances, and time inter-
vals. Additionally, because to the efficient storing of connections, two nodes
can share any number or kind of relationships without affecting performance.
[22]

Figure 2.13: Property graph model

[22]

2.4.2 Neo4j

Neo4j is an open-source, NoSQL, native graph database that adheres to the
ACID (Atomicity, Consistency, Isolation, and Durability) principles for appli-
cation backend transactions. It was first created in 2003, including Java and
Scala source code. Neo4j is available in two editions: Community Edition and
Enterprise Edition. Additionally, it is referred to as a native graph database
due to the efficiency with which the property graph model is implemented
down to the storage level. This implies that data is stored precisely how we
planned it, and the database navigates and traverses the graph using pointers.

Neo4j has complete database features, including ACID transaction sup-
port, cluster support, and runtime failover, which makes graphs appropriate
for usage in production environments. [22]

Neo4j’s popularity among developers, architects, and database adminis-
trators may be attributed to some of the following features:

• Cypher, a declarative query language comparable to SQL, but opti-
mized for graphs.

• Constant time intervals for both depth and breadth in large graphs
as a result of efficient node and relationship modeling. Additionally, it
allows for a manageable expansion in the number of nodes to billions.

20

2.4. Graph Database and Neo4j

• Flexible property graphs that are changeable over time enable the de-
velopment and addition of new relationships to progress the domain data
as business requirements change.

• Neo4j offers Drivers to communicate with it in a variety of popular
programming languages, including Java, Javascript,.NET, and Python.

2.4.2.1 Use Cases

Neo4j is extensively utilized by hundreds of businesses and organizations in
almost every industry, including the following and several more. [23]:

• Detection and Analytics of Fraud

• Monitoring of network and database infrastructure for IT operations

• Social media platforms and graphs of social networks

• Management of identities and access

• Retail supply chain management

• Telecommunication

2.4.2.2 Neo4j vs RDF

Neo4j is related to the RDF (Resource Description Framework) technique that
is frequently used for Linked Open Data. While both Neo4j and RDF rep-
resentations may be visually expressed using nodes and arcs, the graph com-
ponents are significantly different. In general, RDF is focused on the edge-
centered, whereas graph databases are centered on the node. Additionally,
graph databases would clearly distinguish between properties and relation-
ships, and labels would be used to identify nodes and relationships depending
on their entity (person, student, etc.), which is a notion that is similar to
ontologies. [24]

While RDF may be queried using inference rules to extract implicit in-
formation from explicit relationships, Neo4j can be queried using the Cypher
Query Language(CQL) to access nodes and their relationships to other nodes.
Neo4j graph databases are better suited for traversing graphs and determining
paths. In general, Neo4j has established a sophisticated and simple querying
language called Cypher, which is built using ASCII graphical characters. I’ll
discuss the cypher query language in the next section.

21

2. State-of-the-art

2.4.3 Cypher Query

Cypher is a graph query language developed by Neo4j for the purpose of
storing and retrieving data from a graph database. Neo4j’s goal is to make
graph data querying simple for anybody to learn, understand, and use, while
simultaneously integrating the power and capability of other mainstream data
access languages such as SQL. [25] Cypher’s syntax provides a visual and
logical means of matching node and relationship patterns in a graph. It is an
ASCII-Art syntax-based SQL-inspired language for defining visual patterns in
graphs. It enables users to write expressive and fast queries for graph data
CRUD (Create, Read, Update, and Delete) actions. Additionally, it is not
only the optimal method for interacting with data and neo4j, but it is also
an open source initiative known as the openCypher project. [26] provides an
open query language for property graph databases, a technical compatibility
kit, and a Cypher runtime.

2.4.3.1 Why Cypher?

I previously discussed Neo4j’s property graph model and its design of both
nodes and relationships with associated properties in section 2.4.1.1. However,
both nodes and relationships are basic components that contribute to the
efficient and strong pattern property graph model. Patterns are a collection
of nodes and relationships that may be used to visualize basic or complicated
traversals and pathways across a graph. Additionally, the cypher is highly
pattern-based and offers data in a graphical way. It is, in general, a pattern-
based recognition system that communicates with users via visual diagrams.
[27] As a result of the cypher’s pattern-based recognition, it enables the storage
and query of linguistic patterns in a neo4j database.

2.4.3.2 Representation of Nodes and Relationships in Cypher

The Cypher utilizes ASCII-Art patterns to graphically represent each com-
ponent. [27] Thus, visual representation refers to graphs, and the primary
components of a graph are typically vertices and edges. In neo4j, which makes
use of the cypher query language, vertices are represented as nodes, and edges
are used to describe relationships between the nodes.

For instance, I have created a sample hospital data set to give a brief
explanation of how the cypher works. That data contains information about
patients, doctors, and relationship between patients and doctors. The graphical
representation of the neo4j has been given below in Figure 2.14:

What the represented graph says in a normal language is Peter James(Patient)
consults Richie Timoth(Doctor). JohnLeo(Patient) consults SindhuB(Doctor)
. And both patients are acquainted with one another.

The nodes in the data model can be identified by their nouns or objects.
For example, in the represented graph, Richie Timoth, Peter James, John

22

2.4. Graph Database and Neo4j

Figure 2.14: Graph with Nodes and Relationships

Leo and SindhuB are represented as nodes. The nodes in a Cypher query are
written with brackets, e.g. (patient). Those parentheses look to show that
the nodes are represented as circles in a visual data model.

• Node Variables - The variables relate to the nodes, and they can be
accessed later through them. For example, variables (p) for patient and
(d) for doctor node. It can be any variable name, exactly as variables
in programming languages, and subsequent references can use the same
name.

• Node Labels - Labels are node-specific tags that allow us to specify the
sorts of things we can search for or create. For instance, the node labels
will be Patient, Doctor, and so forth. This is comparable to SQL, which
we may query to locate and obtain data from a certain table. Similarly,
labels are used to do this in Cypher. As a result, if the node labels are
not specified, Cypher will have difficulty checking all the nodes in the
database. For instance, the following are some alternative methods for
labeling nodes:

1 () // anonymous node (no label or variable)
2 (p1: PATIENT) // using variable p1 and
3 label Patient for 1st patient
4 (p2: PATIENT) // using variable p2 and
5 label Patient for 2nd patient
6 (: DOCTOR) //no variable and labeled as Doctor
7 (d1: DOCTOR) // using variable d1 and labeled as Doctor

• Relationships between nodes - By establishing relationships between
nodes, the graph database becomes more efficient. Relationships are
represented by an arrow, and depending on the incoming or outgoing
relationship, we may use either right or left arrows between nodes. Al-
though we establish relationships between nodes, without knowledge of
what they contain, the relationship will be incomplete. Thus, the type

23

2. State-of-the-art

of relationship would be indicated as well, and it would be enclosed in
square brackets. As an illustration, consider the following:

(p1)-[:KNOW]->(p2)

Thus, in this case, p1 and p2 are connected via the KNOW relationship
type. Additionally, as seen in Figure 2.14, the relationship between
nodes and the various sorts of relationships are described, including
[:CONSULT] and [:KNOW].
Additionally, it is possible to describe a relationship just by dashes,
without specifying either incoming or outgoing directions, implying that
a relationship can be traversed in both ways. Therefore, if there is
no directional relationship, the cypher will not perform in a certain
direction and will instead obtain the relationship and all related nodes.
This improvement to a cypher makes it more adaptable, rather than
requiring users to be always aware of the direction of the connection.

• Nodes and Relationship properties - The property graph model’s
primary component is properties, which are name-value pairs that give
more information about nodes and relationships. For example, the node
PATIENT contains properties such as (name), (id), and so on, while
the relationship type CONSULT includes a property called (problem).
Additionally, the node’s properties are queried.

(p1:PATIENT { id: "Pet", name: "Peter James",
address: "534 ErewhonPleasantville,Vic",
contact: "(03) 5555 6473", appointmenttime: "13:00" })

And Relationship property as,

-[c1:CONSULT { problem: "Cold" }]->

2.4.3.3 CRUD(Create, Read, Update, and Delete)
operations in Cypher query

• Creation of Nodes and Relationships - All nodes and relationships,
as well as their associated properties, will be created through a clause
called CREATE in the cypher. It can be constructed individually as
nodes and then as relationships between them, or it can be constructed
simultaneously as nodes and relationships. For instance, I generated the
PATIENT and DOCTOR nodes in Cypher, along with their associated
properties and relationships.

CREATE
(p1:PATIENT { id: "Pet", name: "Peter James",

24

2.4. Graph Database and Neo4j

address: "534 ErewhonPleasantville,Vic",
contact: "(03) 5555 6473",
appointmenttime: "13:00" }),

(p2:PATIENT { id: "John", name: "John Leo",
address: "56Park st,LA",
contact: "(03) 5555 6473",
appointmenttime: "13:00" }),

(d1:DOCTOR { id: "richie", name: "Richie Timoth",
specialist:"General" }),

(d2:DOCTOR { id: "sindhu", name: "Sindhu B",
specialist:"Neuro" }),

(p1)-[c1:CONSULT { problem: "Cold" }]->(d1),
(p2)-[c2:CONSULT { problem: "Spine injury" }]->(d2),
(p1)-[k1:KNOW]->(p2);

• Reading the created or existing nodes and relationships - The
produced nodes and relationships can be retrieved using the MATCH
and RETURN keywords. The MATCH keyword searches the neo4j
database for an existing node, relationship, label, property, or pattern.
This MATCH is analogous to the SELECT statement in SQL (Struc-
tured Query Language). Additionally, we can indicate which values or
results we want to return from a Cypher query by using the RETURN
keyword. While the return character is not necessary when construct-
ing nodes or relationships, it must be present while reading. The node
and relationship variables discussed previously are major elements when
using the RETURN keyword to return values. [28]
The following cypher query is to retrieve back all the nodes and rela-
tionships that have been created in the database as depicted in a Figure
2.14.

MATCH (n) RETURN (n)

To retrieve data with certain criteria, such as getting the id,
name, and appointment time of a Patient who is consulting a
specific Doctor:

MATCH (p:PATIENT)-[:CONSULT]->(d:DOCTOR
{name:"Sindhu B"})
RETURN p.id,p.name,p.appointmenttime

The above cypher query will give the results as shown below in Figure
2.15.
In addition, it is also possible to filter the query results using WHERE
condition [29] and also sort the values either by ascending or descending
order using the keyword ORDER BY. [30]

25

2. State-of-the-art

Figure 2.15: Returning the specific values

Example:

//Return the name of a doctor who is a specialist in General
MATCH (d1:DOCTOR)
WHERE d1.specialist = "General"
RETURN d1.name;

• Updation in Cypher - Cypher executes update operations by using
the SET keyword to modify the node’s properties. To begin, we can
use a MATCH to locate the node for which we need to make changes,
and then, using the SET keyword (with the syntax variable.property),
we can add, delete, or update a node’s property, such as its name, age,
and so on. [31]

//Adding a new property contact to a doctor.
MATCH (d:DOCTOR {name:"Richie Timoth"})
SET d.contact = "rt11@gmail.com"
RETURN d.contact

• Deletion of nodes and relationships - Cypher includes the DELETE
keyword, which allows to delete nodes and relationships from a database.
However, because Neo4j is an ACID-compliant database, deleting a node
that is connected to other nodes is not possible. Because if it were con-
ceivable, it may have resulted in a relationship pointing to nothing, re-
sulting in a incomplete graph. Thus, the relationship should be destroyed
first, followed by the nodes.

2.4.3.4 Cypher query vs SQL

Anyone familiar with SQL may build cypher statements for graph database
management using cypher queries. Due to the fact that it is similar to SQL in

26

2.4. Graph Database and Neo4j

terms of declarative and textual query languages, but is designed for graphs.
[32]

The Cypher is composed of several commonly used SQL clauses, keywords,
and expressions (predicates and functions), including WHERE, ORDER BY,
SKIP, LIMIT, and AND. Meanwhile, Cypher describes graph patterns by
utilizing the MATCH keyword to find the exact pattern in a database and
returning it using the RETURN keyword. This process is comparable to
SQL’s SELECT and FROM keywords, which are used to get records from a
table.

For example, to display the entire contents of the students table in SQL.
It can be queried as,

SELECT s.*
FROM student as s;

Similarly, in cypher, it can be done by matching a pattern that returns all
the nodes labeled as :STUDENT.

MATCH (s:STUDENT)
RETURN s;

Furthermore, sorting results using the ORDER BY clause and filtering
results based on equality using the WHERE condition are both supported in
cypher, just as they are in SQL.

Additionally, Cypher provides a relationship between nodes, analogous to
SQL’s JOIN operations. For instance, the following SQL and Cypher code
can be used to do JOIN operations between a teacher and a student, as well
as to extract the teacher’s name:

JOIN operation in SQL:

SELECT t.Name
FROM Teacher AS t
JOIN Student AS s ON (s.StudentID = t.TeacherID)

Relationship in Cypher

MATCH (s:Student)<-[:Teaches]-(t:Teacher)
RETURN t.name

Similarly, Cypher supports a variety of JOIN operations through RELA-
TIONSHIP. Additionally, other SQL keywords, such as

• DISTINCT(to return distinct results)

• GROUP BY (Grouping)

• COUNT, SUM, AVG, MAX (Aggregations)

27

2. State-of-the-art

2.4.3.5 Procedures and Functions

Apart from providing an efficient graph database experience, Neo4j and Cypher
are occasionally required to execute more advanced features like as paralleliza-
tion, additional graphical algorithms, and so on. As a result, an expansion of
Neo4j and Cypher with User-Defined Procedures and Functions was required
for that purpose. [33]

What procedures and functions does this section refer to?
Indeed, because the functions perform fundamental computations and re-

turn a single value, they are applicable to every expression or predicate. On the
other hand, procedures carry out intricate operations and generate streams of
output. Additionally, it must be used within the CALL statement of Cypher,
with the results accessible via the YIELD keyword. Moreover, they can gen-
erate, obtain, or calculate data for later Cypher query processing stages.

These functions and procedures are included in Neo4j and can be accessed
through the following statements in a Neo4j browser.

This is to display all the available procedures.
CALL dbms. procedures()

This statement is to display all available functions.
CALL dbms. functions()

APOC Library:
Neo4j laboratories is a collection of the most cutting-edge developments

in graph technology, including an incredible collection of libraries developed
by the Neo4j community and team. The most extensive toolkit among those
projects is the APOC (Awesome Procedures on Cypher) library, which in-
cludes a variety of procedures and functions (around 450) for data integration,
graph remodelling, data transformation, operational functionality and so on.
[34]

Some of the procedures and functions included in that huge variety are as
follows: [35]

• apoc.create This procedure assists in the dynamic creation of nodes,
relationships, properties, and labels, as well as many other actions.

• apoc.merge This procedure is used to dynamically conduct a merg-
ing operation. Actually, the MERGE operation is almost identical to
the Cypher keyword CREATE, except that it adds nodes and relation-
ships only if they do not already exist in the database, hence avoiding
duplication.

Similarly, the APOC library has additional procedures and functions for
dealing with natural language text, doing mathematical calculations, and ex-
ecuting other cypher queries. Additionally, I will discuss the precise APOC

28

2.5. Summary

procedures and functions that will be related to and used to accomplish my
dissertation in my subsequent analysis.

2.5 Summary

In summary, this chapter introduced Natural Language Processing (NLP) by
describing its various levels and methods for processing text into a structural
and lexical format, as described in section 2.1.

Following that, the explanation of textual requirements specifications was
discussed, as well as the inaccuracies of that in section 2.2.

Following that, in section 2.3, a thorough description of linguistic patterns
and the background for this thesis are offered, as well as a brief introduction
to the TEMOS tool and its capabilities.

Finally, I introduced the Neo4j graph database and its operations using
the Cypher Query Language (CQL) in section 2.4. These were demonstrated
through the use of CRUD (Create, Read, Update, and Delete) activities. Ad-
ditionally, I compared the Cypher query language to existing database query
languages. Additionally, I discussed the sophisticated functions and proce-
dures available in Neo4j.

Thus, the fundamental knowledge necessary for this thesis is presented.
Now is the time to do an analysis of the resources required to commence
implementation.

29

Chapter 3
ANALYSIS AND DESIGN

This chapter will detail the analysis I undertook to determine the best method
for achieving my thesis’s objective. It will explore the tools required to con-
struct an interface between Python and Neo4j that will operate as a common
interface with TEMOS, allowing for the extraction of Query(sentence pat-
terns) and pattern matching in Neo4j. Certainly, this chapter will cover the
context in which I received the concepts for performing a match between the
pattern of a Query (sentence) to be analyzed and the defined linguistic pat-
terns.

Following the study, a design will be created for a Neo4j graph database
to store and conduct pattern matching, as well as an API interface between
TEMOS and Neo4j.

3.1 How to create an interface with Neo4j?

I began my investigation by attempting to determine how to construct an
interface with Neo4j. Additionally, I discovered that Neo4j supports the .Net,
Java, JavaScript, Go, and Python programming languages via the binary Bolt
protocol. However, Neo4j’s community drivers support all programming lan-
guages, protocols and APIs. [36] Thus, it is important to connect to Neo4j
using the desired programming language for developing an application, and
only then can the database be accessed. Without a doubt, I prefer to utilize
Neo4j in conjunction with Python. Additionally, the Python interface was
chosen since the TEMOS tool (section 2.3.1) is built in the Python program-
ming language. Thus, if I query Neo4j from Python through an interface, I
will have access to a TEMOS tool and will be able to receive a Query (sen-
tence pattern) for analysis and then compare it to a Neo4j database of saved
linguistic patterns to obtain results.

Additionally, it is hassle-free to utilize a driver that connects to Neo4j
through either the Binary Bolt protocol or HTTP.

31

3. ANALYSIS AND DESIGN

3.1.1 How the binary Bolt Protocol works in Neo4j Python
driver?

Neo4j by default employs the Bolt binary protocol, which is a client-server
protocol optimized for database applications. It is more efficient and lighter
than the previous method. Bolt protocol versions run via TCP or Websocket
connections with optional TLS encapsulation. This protocol is statement-
oriented and enables clients to transmit statements composed of a single string
and a set of typed parameters. The server will respond to all requests with a
result message and an optional stream of result records. [37]

Figure 3.1: Workflow of Bolt protocol

[37]

I analyzed the bolt protocol in Python by installing a Neo4j Python driver
in order to understand how the database is accessed, and I’ve summarized the
method below along with code snippets:

• Connection URI and Authentication: I have started a connection
using a bolt protocol URI and user credentials to access the database.
[38]

uri = "bolt://localhost:7687"
userName = "neo4j"
password = "123"
driver = GraphDatabase.driver(uri, auth=(userName, password))

32

3.1. How to create an interface with Neo4j?

• Session and Transactions: After authentication, a new session is
generated between the client and a Neo4j server, and this session enables
the user to begin a transaction by running a cypher query statement that
should be executed. Additionally, can commit those transactions to a
database. Actually, transactions are the units of work (jobs) executed
throughout a session. [39]
For instance, the following code sends the Cypher query as an auto-
commit transaction. In this manner, a single query statement can be sent
per transaction. Additionally, it will not retry in the event of a failure.
[40] For instance, the following code simply establishes a session with
a database and executes a query to retrieve the doctor’s name before
storing the result as a record (list) and printing it. It is only capable of
completing a single instance in this circumstance.

with driver.session() as session:
result = []
matched = session.run("MATCH (d:DOCTOR) "

"RETURN d.name AS name")

for record in matched:
result.append(record["name"])

print(result)

On the other hand, I am able to perform a query for two distinct in-
stances by utilizing the transaction procedures. For instance, the follow-
ing code executes (sends) a query to retrieve the name of a patient who
has a relationship [: CONSULT] with a certain doctor. Additionally,
a WHERE condition is used to filter the doctor’s name. Additionally,
the session has two read transactions, each of which contains a sin-
gle instance, i.e., the doctor’s name, which serves as the input for the
WHERE condition’s value. The transaction was then repeated several
times to satisfy both instances and put the results into a record, and
then I obtained all the remaining result streams using a PULL ALL re-
quest. Indeed, PULL ALL is the action of obtaining from a server all
remaining results as records. If the request is successful, the server will
provide the results.

def get_patient_of(tx, name):
patient = []
result = tx.run("MATCH (p:PATIENT)-[:CONSULT]->(d:DOCTOR) "

"WHERE d.name = $name "
"RETURN p.name AS patient", name=name)

for record in result:
patient.append(record["patient"])

33

3. ANALYSIS AND DESIGN

return patient

with driver.session() as session:
patient = session.read_transaction\

(get_patient_of, "Richie Timoth")
for patient in patient:

print(patient)

with driver.session() as session:
patient = session.read_transaction\

(get_patient_of, "Sindhu B")
for patient in patient:

print(patient)

As a result of this brief examination, I learned about the creation and
management of interfaces and transactions with a Neo4j database using a
binary bolt protocol and a Neo4j python driver.

3.1.2 HTTP API

Neo4j is also available through an HTTP API. We may submit a POST re-
quest to Neo4j that contains a JSON representation of the cypher query. It
leaves the transactions open for many requests until we commit or rollback
the modifications. After the request is approved, the response will be given in
the form of JSON streams including result items. [41]

To begin, the transaction must be initiated by submitting a POST request
to the transaction endpoint containing zero or more cypher queries. The server
then answers to this request with the result elements for the cypher query as
well as the transaction id associated with it. Following that, we can include
further cypher statements and commit the transactions to the database by
referencing the transaction’s location. Additionally, the DELETE method
enables the rollback operation to delete the requests, and any subsequent
statements will fail instantly.

Additionally, it is feasible to begin and commit a transaction within a single
HTTP request.

I used the Postman API tool to test the HTTP API transaction requests
described in Figure 3.2 with my Neo4j database.

What is Postman API ?
Postman is an API development and consumption platform. The postman

tool assists in the design, testing, and discovery of APIs. [43]. I used this
tool to determine how Neo4j is available via the HTTP API, in the hope that

34

3.1. How to create an interface with Neo4j?

Figure 3.2: HTTP API Transaction flow

[42]

it would provide me with some insight into how the interface between Neo4j
and HTTP may be implemented.

It is important to authenticate and approve the HTTP requests that will
be sent before connecting to Neo4j. Thus, it is possible by supplying the right
login and password for a Neo4j database that has been built.

Figure 3.3: Screenshot for Neo4j Authorization

35

3. ANALYSIS AND DESIGN

On a single HTTP request, I initiated the transaction and also conducted
a commit operation.

And I submitted the POST request as specified below, along with JSON
statements containing a Cypher query for node creation.

• POST http://localhost:7474/db/neo4j/tx/commit

• Accept: application/json;charset=UTF-8

• Content-Type: application/json

JSON statement with query:

{
"statements": [
{
"statement": "CREATE (n:Person {firstName: $name}) RETURN n",

"parameters": {
"name": "KK"

}
}

]
}

As a response, I received a status confirmation and a JSON result element.

• 200: OK

• Content-Type: application/json;charset=utf-8

{
"results": [

{
"columns": [

"n"
],
"data": [

{
"row": [

{
"firstName": "KK"

}
],
"meta": [

{

36

3.1. How to create an interface with Neo4j?

"id": 0,
"type": "node",
"deleted": false

}
]

}
]

}
],
"errors": []

}

Figure 3.4: Sending HTTP request from Postman API tool

As a consequence, the node was built based on the sent cypher query. I
have added a screenshot of it in Figure 3.5.

After examining the Bolt protocol and HTTP API, I acquired a better
understanding of how the Neo4j interface works, which led me to pick one of
Neo4j’s community drivers, called Py2neo. I’ll discuss the tool’s features and
why I chose it in the next section.

37

3. ANALYSIS AND DESIGN

Figure 3.5: Node creation in Neo4j Database

3.2 Decision to use Py2neo community driver for
Neo4j interface

After analyzing the Binary Bolt protocol’s behavior in the native Neo4j driver
and the HTTP API transactions, I decided to use the Neo4j community driver
to create an interface between Python and Neo4j

What is Neo4j community driver? Community drivers are created by
members of each programming language community to facilitate communica-
tion between the chosen programming language and the Neo4j database. It
is available for the majority of programming languages, including C, Python,
Perl, and PHP. [36] Considering the requirement for a Python interface, I
focused on the Neo4j community driver for Python.

Python community driver - The available community drivers for python
are:

• Py2Neo - It is a client library and a more extensive toolkit that enables
users to interact with Neo4j from Python programs or the command line.
[36]

• Neomodel - The Neomodel driver, on the other hand, is an Object
Graph Mapper that supports Django models. Django is a Python web
framework for developing web applications that use the Neo4j database
as a backend. [44] So, picking this driver will be irrelevant, as I will not
be working with any web frameworks.

38

3.2. Decision to use Py2neo community driver for Neo4j interface

Hence, I chose Py2Neo as my preferred driver for creating an interface
with the Neo4j database.

3.2.0.1 Py2Neo

As previously stated, Py2Neo is a library that enables client-side Python pro-
grams to communicate with Neo4j. Nigel Small, a Neo4j API specialist,
created it. Additionally, this library supports both the Bolt protocol (sec-
tion 3.1.1) and the HTTP API (section 3.1.2) and provides a high-level API
experience for Neo4j. This API’s core section is a Graph API. It has a Graph
class that represents a graph database exposed by a Neo4j server running on
a single instance or in a cluster, and it offers access to a substantial amount
of the py2neo capabilities. Additionally, the GraphService object represents
the entire graph database system. [45]

Additionally, py2neo has built-in methods and classes for implementing
certain functionality. All of them are kept in the py2neo root namespace. It
is like a huge module, and it contains the codes that define each function and
class.

The features of these methods and classes, which include database connec-
tion, database administration (storing and retrieving nodes and relationships
from the database), and error handling. I’ll describe Py2neo’s functionality
and process in the following parts.

3.2.0.2 Connection

To begin with, it establishes a connection to the database. Generally, py2neo
makes extensive use of the predefined classes Graph and GraphService, which
both aid in creating the groundwork for accessing the Neo4j database. Ad-
ditionally, these classes receive the profile, which is actually a URI (Uniform
Resource Identifier), and any other unique settings during the API’s develop-
ment. Both will define how and where a connection is possible. [46]

The URI profile conforms to the standard format, which is as follows:

<scheme>://[<user>[:<password>]@]<host>[:<port>]

Some of the URI schemes (protocols) that are supported are as
follows: :

• neo4j - Bolt with routing(unsecured)

• neo4j+s - Bolt with routing(secured with certificate checks)

• neo4j+ssc - Bolt with routing(secured but no certificate checks)

• bolt - Bolt direct connection (unsecured connection)

39

3. ANALYSIS AND DESIGN

• bolt+s - Bolt direct(secured with full certificate checks)

• bolt+ssc - Bolt direct(secured with no certificate checks)

• http - HTTP direct (unsecured)

• https - HTTP direct (secured with full certificate checks)

• http+s - HTTP direct(secured with full certificate checks)

• http+ssc - HTTP direct(secured with no certificate checks)

Following are the individual settings needed for the connection:

• uri - A complete profile URI that is supplied as an argument to the
Graph() constructor.

• scheme - Any of the above-mentioned supported schemes may be uti-
lized.

• protocol - It specifies the protocol name that will be used for commu-
nication, for example, bolt or http.

• address - Host name and the port number of the Neo4j server to make
a connection. For example, the address can be represented as local-
host:7687.

• authentication - The database’s authentication details include user-
name and password to establish a connection.

• secure - If a flag is used to indicate that a connection should be secured,
the connection will be secured using a TLS (Transport Layer Security)
certificate, commonly known as a Socket Secure Layer (SSL), which may
be accomplished with Python’s built-in ssl module.

• verify - This is a flag indicating that the server certificate should be
checked thoroughly. However, this requirement applies when the pre-
ceding secure setting is met. That is, this only applies if the connection
is secure.

• routing- A routing flag has been utilized if the connections should be
routed through various servers. This feature, however, is available only
in service profiles, not in ordinary connection profiles.

This is how the Graph() class from the py2neo module was exported. Ad-
ditionally, the Graph constructor receives an argument specifying the URI,
protocol, address, and authentication credentials. And finally, if the details
are valid, the connection to the Neo4j database is feasible.

40

3.2. Decision to use Py2neo community driver for Neo4j interface

from py2neo import Graph
g = Graph("bolt://localhost:7687", auth=("neo4j", "123"))

Profile objects for Connection

The py2neo module includes several pre-defined profile objects, including
the ConnectionProfile and ServiceProfile objects for connection. These objects
are used when the URI, authentication information, and other configuration
parameters are left undefined. [46]

For instance, if the Graph() constructor is empty and has no parameters.
Then, using default settings, the bolt protocol was used to connect to a local-
host on port 7687, with the default username and password being neo4j and
password.

from py2neo import Graph
g = Graph()

The ConnectionProfile contains default values for establishing a connection
to the Neo4j database, as well as the necessary individual parameters that are
set as default and can be modified via environment variables.

Assigned default values are:

DEFAULT_PROTOCOL = "bolt"
DEFAULT_SECURE = False
DEFAULT_VERIFY = True
DEFAULT_USER = "neo4j"
DEFAULT_PASSWORD = "password"
DEFAULT_HOST = "localhost"
DEFAULT_BOLT_PORT = 7687
DEFAULT_HTTP_PORT = 7474
DEFAULT_HTTPS_PORT = 7473

Available Environment variables:

Neo4J_URI
NEO4J_AUTH
NEO4J_SECURE
NEO4J_VERIFY

How it works?

Each setting is produced as a instance attribute with its associated default
values. Following that, the property function manages those attributes, which
is signified by the @property decorator. Additionally, distinct functions are
constructed to specify how each action should behave. These routines verify

41

3. ANALYSIS AND DESIGN

that the connection’s needed settings, such as URI, protocol, and authentica-
tion information, are met; if they are not, an exception is thrown. Addition-
ally, if no values are supplied and are unaffected by environment variables, the
default values assigned will be utilized.

For example, if no uri is specified, the default bolt URI is used. Similarly,
if none of the other individual options are supplied, they will be set to default.
However, if the user has configured the graph database’s password to a default
password, the connection will succeed. Otherwise, authentication will fail and
no connection to the database would be permitted. I examined this by just
running a connection test from the command line in Python. The py2neo
module code for ConnectionProfile is presented in [47].

The ServiceProfile provides the same connection details as the Connec-
tionProfile, but it is for a full Neo4j service, such as cluster or single in-
stance management. Additionally, all of ConnectionProfile’s characteristics
have been inherited. Additionally, whenever the profile defines connectivity
to a full Neo4j service, the routing option is provided. However, unlike other
properties, this routing option is not activated by default.

3.2.0.3 Database Management

Graph Service objects- Py2neo manages databases using predefined classes
and objects. The most fundamental class, called Graph Service, comprises
graph objects used for storing and retrieving activity. [48]

The URI can be passed to the GraphService() constructor as well:

from py2neo import GraphService
gs = GraphService("bolt://localhost:7687")

Alternatively, no parameters can be supplied to the constructor. The
default URI bolt:/localhost:7687 will be considered in that case.

gs = GraphService()

Additionally, the GraphService class has some functions (which include
property functions) and attributes that enable certain operations to be per-
formed. They are as follows:

• iter(graph service)
This method returns a list of all named graphs in the database.

• graph service[name]
This method provides access to a Graph class.

42

3.2. Decision to use Py2neo community driver for Neo4j interface

• property config

A dictionary has been created to store the configuration parameters
necessary to configure Neo4j.

Likewise, additional methods are offered for creating a connection, obtain-
ing a kernel version of the running Neo4j program, and creating a shortcut
for ConnectionProfile.

Graph objects

This Graph() class is essential in Py2Neo. It accomplishes it by adminis-
tering a named graph database that is available via the Neo4j graph database
service. Naturally, the connection information, as well as any relevant spe-
cific settings, can be given by URI or Connection Profile. Indeed, the name
parameter in this Graph class enables the graph database to be identified by
its name. Additionally, passing a None for the name parameter selects the
default database that the user starts and runs on the Neo4j server. [49]

Additionally, the SystemGraph class can manage the graph database. It is
a subclass of the Graph class and enables remote DBMS access to the system
database (Database Management System).

Once the connection is established, the Graph class offers a means of access-
ing the majority of the functionality offered in py2neo. This function enables
you to handle both the graph database and the Cypher query. Indeed, these
functions implement the CRUD operations of the cypher in a pythonic fashion
(as explained in section 2.4.3.3). Additionally, transactions (as indicated in
section 3.1.1) will be formed in the same manner as the native Neo4j driver,
allowing for the simultaneous execution of one or more graph operations. auto
and begin methods generate and terminate these transaction objects, respec-
tively. commit and rollback methods commit and rollback these transaction
objects. [50]

Execution of Cypher Queries - Direct Cypher queries can be conducted
and transmitted to the database within the transaction. To do this, py2neo
provides techniques such as,

• evaluate() - This function conducts a single cypher query and returns
the value of the first record’s first column. [51]

• run() - The cypher query can be sent to the Neo4j server for execution,
and the results are returned as a stream of records. [52] Indeed, record
is more akin to a list that has an ordered, keyed collection of data. By
giving their key or index, the values contained in that can be retrieved.
Additionally, a Cursor object is utilized to browse the record stream.

43

3. ANALYSIS AND DESIGN

• update() - A function that does a single cypher query but does not
deliver any results. For example, it modifies the database by adding
nodes or relationships but does not return any results.

Apart from directly executing cypher statements using the aforementioned
methods, Py2neo supports CRUD actions via Subgraph objects. In general, a
Subgraph is a collection of random nodes and connections; it also serves as the
basis class for the Node, Relationship, and Path classes. By integrating the
nodes and relationships, a subgraph may be formed. Additionally, the ratio-
nale for calling it Subgraph is because it aggregates all of py2neo’s data values
and then uses them as arguments for a variety of graph database operations,
such as Graph.create(), Graph.merge(), and so on. This technique enables the
efficient transmission of several items to the database in a single round trip,
while also lowering network overhead. [53]

The different Subgraph operations are:

• create(subgraph) Node and Relationship objects are created by as-
signing them to a local Subgraph and then sending them as inputs to the
constructor to make modifications (create) in a database.

For example, the following code creates two nodes using the Node and
Relationship objects and assigns them to the variables a and b. Following
that, it is supplied as a Subgraph parameter to the g.create() function
during database construction.

g = Graph("bolt://localhost:7687",
auth=("neo4j", "123"))

a = Node("Patient", name="John")
b = Node("Doctor", name="Richard")
ab = Relationship(a, "CONSULT", b)
g.create(ab)

By experimenting with the above code, I am able to see nodes and
relationships that have been created in my Neo4j database, as depicted
in Figure 3.6.

• merge(subgraph) A subgraph merging operation creates or updates
a subgraph’s nodes and relationships. It is accomplished by comparing
the node to the database’s existing nodes. If it matches the node’s label
and property value, no new node is formed. Rather than that, if any
further property values are mentioned, the node will be changed. In
the absence of an exact match, the merge operation will produce a new
node. The same follows for relationships in which both the start and
end nodes, as well as the relationship type, have been compared. If no

44

3.2. Decision to use Py2neo community driver for Neo4j interface

Figure 3.6: Graph creation by create() method

match is discovered, a new relationship is made; if a match is found, the
existing one is modified. Thus, the merging procedure is analogous to
avoiding duplicate nodes and linkages.

merge(subgraph, primary label=None, primary key=None)

Parameters of merge function:

– subgraph - a Node, Relationship or other Subgraph object can be
given.

– primary label - a label which wants to be checked for it’s existence
in a database.

– primary key - property key(s) of the nodes to be checked for
existence.

from py2neo import Graph, Node, Relationship

g = Graph("bolt://localhost:7687",
auth=("neo4j", "123"))

a = Node("Patient", name="John")
g.merge(a, "Patient", "name")
b = Node("Doctor", name="Richard")
g.merge(b, "Doctor", "name")
ab = Relationship(a, "CONSULT", b)
g.merge(ab, "Patient", "name")

In the above example, each node and relationship in the subgraph have
been merged separately. Besides, the label (Patient and Doctor) and
property key (name) are used for the comparison with the existing nodes
and relationships in the database.

45

3. ANALYSIS AND DESIGN

• delete(subgraph) This function may be used to remove distant nodes
and relationships that correspond to the local subgraph. If, on the other
hand, just the relationships are to be deleted, the separate() function
can be utilized.

• exists(subgraph) It is used to determine whether or not a graph con-
tains one or more entities.

• pull(subgraph) A pull operation is used to update the entities (nodes
and relationships) in the local subgraph from their distant equivalents.

• push(subgraph) Push is the inverse of pull, which updates remote
entities from their local counterparts.

Following the storage of entities in the remote Neo4j database, it is es-
sential to read or return the execution results. In that regard, the MATCH
keyword can be used in conjunction with either direct cypher execution or the
py2neo-provided methods for matching nodes and relationships. Additionally,
py2neo supports certain criteria for sorting and filtering results via ORDER
BY, WHERE, LIMIT, SKIP, COUNT, and a variety of other functions analo-
gous to Cypher clauses. [54] Additionally, several forms of problems occur in
Neo4j and during its connection. This may be determined using py2neo’s Er-
ror messages. They are accessible for ClientError, DatabaseError, and other
Connection-related errors. [55]

Eventually, from the overall analysis of py2neo and its various operations,
I came to know about how the Neo4j database can be managed by execut-
ing cypher queries from Python programming language using py2neo as an
interface, and also by using a plethora of functions and objects available in
py2neo. So, this analysis on py2neo leads to the efficient way of storing the
defined linguistic patterns in a Neo4j database. This is one of the objectives of
my dissertation. Moreover, this Python interface makes it possible to interact
with the TEMOS tool, as it is written in the Python programming language.
Therefore, I can obtain the sentence to be analysed as an entry in the Neo4j
database. Finally, after successfully storing the input sentence patterns from
TEMOS and predefined linguistic patterns, I am able to match those patterns
to achieve my goal for this thesis.

3.3 Analysis of linguistic pattern matching in
Neo4j

Followed by an analysis of the Python interface for the Neo4j database, it is
necessary to find a way to get the Query (sentence) from TEMOS as an input
to the Neo4j database and implement the pattern matching. So in this section

46

3.3. Analysis of linguistic pattern matching in Neo4j

I’m going to do my analysis of that. First, it begins with finding a better way
to receive the sentence patterns as an entry in the Neo4j database.

3.3.1 How can I obtain the sentence from TEMOS as an
entry in the Neo4j database?

In accordance with the requirements, I must create a method as a shared in-
terface. By calling that method, TEMOS should be able to send the sentence
as a list, which holds grammatically inspected sentences based on annota-
tions such as part of speech tagging, and dependencies (section 2.3.1) for each
word in a sentence based on the spacy-NLP framework (which is used by the
updated version of the TEMOS tool) [6].

For example:

sentence = [
Token("Each", "DT", "det"),
Token("confirmation", "NN", "compound"),
Token("window", "NN", "nsubj"),
Token("has", "AUX", None),
Token("a", "DT", "det"),
Token("close", "JJ", "amod"),
Token("button", "NN", "dobj"),
Token(".", ".", "punct")

]

sentence[0].head = sentence[2]
sentence[1].head = sentence[2]
sentence[2].head = sentence[3]
sentence[4].head = sentence[6]
sentence[5].head = sentence[6]
sentence[6].head = sentence[3]
sentence[7].head = sentence[3]

The above collection represents the pattern recognition, and words can be
connected (related) according to their head dependencies and parts of speech.
For example, the item in position [0] receives information from the element in
position [2]. Likewise, based on these dependencies, the relationships between
each word should be created.

Figure 3.7: Pattern recognition

47

3. ANALYSIS AND DESIGN

Subsequently, it should be stored and appear as a pattern in Neo4j as men-
tioned in Figure 3.7. Thus, the simplest possible way to do this is to store
words as nodes with part of speech tags and dependency as properties. Mean-
while, relationships will be created as per dependency head. However, this
manual approach is welcome when we are processing some sentence patterns.
But, it is a strenuous task to be achieved when hundreds of sentence patterns
want to be stored. On the other hand, it is not also a requirement and a goal
to be obtained. So this has to be a dynamic approach that should work for
any sentence with its grammar annotations. Hence, the feasible method is to
iterate the elements of the sentence list and store the word attribute as nodes,
and grammatical annotations as properties of the respective node. Following
this, the header dependencies should be iterated to create a relationship be-
tween the nodes. Therefore, it sounds like it is accessible and iteration need
not be burdensome to perform in Python. But then, how should these iterated
values be saved in Neo4j?

Consequently, to make it viable Py2neo comes into play. Certainly, py2neo
holds plenty of objects, functions, and constructors (section 3.2.0.3) to create
nodes, relationships, and many more other Cypher query operations which
are supported by Neo4j. Likewise, one among them is Node object which is
used to create a node. [53] This constructor takes label and properties of the
node in key-value pairs, as given below. On the other hand, I explained how
the creation operation works with this constructor in section 3.2.0.3.

a = Node("Patient", name="John")
g.merge(a, "Patient", "name")

As a result, I devised the concept of providing iterated values to this node
constructor from the collection of sentence patterns, which comprises words,
part of speech tagging, dependencies, and head dependencies, i.e., the sender
node for each node. Additionally, a link between those nodes can be estab-
lished using either a direct cypher query for relationship or by the py2neo’s re-
lationship object, but the relationship should be generated on a periodic basis
based on the head dependency. Secondly, this dynamic relationship construc-
tion is reminiscent of Neo4j’s APOC procedure section 2.4.3.5, which includes
a number of procedures, one of which appears to be useful for dynamically
creating or merging relationships between nodes. Therefore, I can create re-
lationships using either the apoc.create.relationship procedure [56] or the
apoc.merge.relationship procedure [57], which avoids the development of
duplicate relationships.

So far, I’ve gained comprehensive knowledge about how to retrieve a
TEMOS sentence pattern list by iterating over it and storing it in Neo4j as
a graph with nodes and relationships through the efficient py2neo interface.
Next, extensive analysis is required to determine a feasible method for pattern

48

3.3. Analysis of linguistic pattern matching in Neo4j

matching between the stored predefined linguistic patterns and the sentence
patterns using a cypher query.

3.3.2 Finding a suitable way for pattern matching in Neo4j
using a cypher query

This part will detail my examination of pattern matching between stored
linguistic patterns as graphs in the Neo4j database, as well as how I came
up with the concept of executing pattern matching using a Cypher query to
accomplish the thesis’s purpose. To begin with, let me explain the pattern
matching that should be achieved.

I’ve given a visual picture below as an example:

Figure 3.8: Example Sentence Pattern

The preceding image depicts a sentence pattern that has been matched
with patterns 1 and 3, indicating that they are subgraphs of the sentence
pattern due to the fact that those patterns are presented identically in the
sentence pattern. For example, in pattern 1, the AUX node communicates
the nsubj dependence connection to the NN node, while the same AUX com-
municates the dobj relationship to the other NN node. The same structure is
revealed if we look for it in the sentence pattern. (I’ve highlighted those nodes
in red.) Similarly, pattern 3 matched as well (I marked those nodes with blue
to represent them).

Likewise, I’m required to design a Cypher query in the Neo4j database in
order to discover common properties and relationships between the sentence
pattern graph (which we can also refer to as a Query per requirement) and
the other predefined linguistic graph patterns. This allows me to determine

49

3. ANALYSIS AND DESIGN

which predefined patterns correspond to the sentence pattern graph (Query).
So, what are the common properties and relationships that are referred to ?

Indeed, each node in the Query graph will have the words, part of speech
tags, and dependencies as properties, and will be connected to the other nodes
via the dependencies. Similarly, nodes of predefined linguistic patterns include
characteristics indicating their parts of speech tagging and dependencies, and
those nodes will be associated according to their dependence relationship. As
a result, the properties and relationships are key in this case. Each node
communicates with another by sending and receiving. Thus, by obtaining
the POS property and kind of relationship that are conveyed from sender to
receiver nodes of both graphs to be matched (say, Query and pattern 1), it is
possible to determine whether the Query graph and pattern 1 share common
POS characteristics and relationship types, and also whether they are in exact
structure. If so, then I can deduce that both graphs are matched and one is a
subgraph of the other.

For example, the following picture illustrates the common characteristics
between the Query and Pattern 1 graphs.

Figure 3.9: Example to show equality between graphs

So far, I’ve come up with the idea of developing a Cypher query that
performs statically. i.e., Query graph specifically checks with patterns 1, 2,
or 3. However, I must construct my Cypher query to behave dynamically by
comparing all saved patterns in the database to the Query graph and displaying
the matched patterns as results. As a solution, the next subsection will present
my analysis of dynamic execution.

3.3.2.1 Analysis and design of dynamic execution

Consequently, this need for dynamic operations drove me to investigate the
possibility of Cypher query execution through an APOC procedure section 2.4.3.5,

50

3.4. Summary

as it contains several dynamic operations, such as for dynamically creating and
merging nodes and relationships, including apoc.create() and apoc.merge
(). Thus, these methods sparked my curiosity about the possibility of a pro-
cedure or function that might dynamically run a whole Cypher. And indeed,
I discovered a procedure called apoc.cypher.run (), which is used to pe-
riodically perform Cypher operations. [58] Moreover, after discovering this
resource, I had a vague notion that I might be able to execute my statically
coded Cypher query in a dynamic way. But, how will this be possible?

Actually, each graph pattern will be saved in the Neo4j database with
a unique label name such as Query, pattern 1, pattern 2, pattern 3, and so
forth. Thus, I will retrieve all the labels from the database and then verify for
matches to the Query graph by iterating through all the labels in the database
and outputting those that are all matched. The following built-in procedure
provided by Neo4j is useful for retrieving all labels in the database. It employs
the CALL clause to invoke the procedure and the YIELD clause to hold the
procedure’s return values. [59]

CALL db.labels()
YIELD label

Following that, I’ll incorporate my Cypher query into the apoc.cypher.run()
procedure, which will iterate through all the returned labels and compare the
graph patterns included under them to the Query graph for matching.

In summary, I’ve described my approach to dynamically matching patterns
between the Query graph (sentence pattern) and all other stored patterns in
the database in this part. As a result, I will employ this strategy in my
implementation.

3.4 Summary

In overall summary, I conducted an analysis to determine the best method for
creating an interface between Python and Neo4j in section 3.1

Then, under section 3.2, I determined that Py2neo would be the appropri-
ate interface. Additionally, I explored its connection to Neo4j and database
administration capabilities.

Finally, in section 3.3, I acquired a concept and a design for my Neo4j
database, which will get a Query (sentence) from a TEMOS tool, do pattern
matching, and output the matched patterns.

51

Chapter 4
Configuration Stage

Prior to entering into implementation, it is essential to provide specifics about
the tools and software that will be required and how they will be deployed.
So, I have added configuration details of each software separately.

4.1 Neo4j Database

Let’s begin with the thesis’s core software, the Neo4j database. Indeed, the
Neo4j database is available in a variety of versions [60] and can be installed
on Windows, macOS, or Linux. It is available as a console or desktop appli-
cation. [61] However, the desktop application is useful for developers since
it allows them to work with local Neo4j databases, manage multiple projects,
and connect to remote Neo4j servers. Additionally, it includes a complimen-
tary Developer License for the Enterprise Edition. [62]

Neo4j desktop software can be downloaded from the Neo4j Download Cen-
ter [63], and it can also be updated using a graphical user interface. Addition-
ally, it enables users to simply install extensions such as APOC and Graph
Data Science as plugins. Moreover, once installed, it provides a platform for
creating a local database within the desktop application due to the inclusion
of Neo4j Enterprise Edition.

For the aforementioned reasons, I chose to use the Neo4j Desktop applica-
tion, and I’ve provided the version I used below.

• Neo4j Desktop 1.3.4.

• Neo4j 4.3.1 Enterprise Edition.

4.1.1 APOC Installation

To take advantage of Neo4j’s extra features and procedures, users should in-
stall the APOC (Awesome Procedures On Cypher) add-on library. This was

53

4. Configuration Stage

already discussed in the section 2.4.3.5. Additionally, this APOC library can
be deployed as an extension plugin for the Neo4j Desktop application’s local
database. This is one of the Desktop application’s advantages. Besides that,
the APOC can also be installed manually by downloading the jar files and
inserting them directly in the Neo4j/plugins folder. However, because the
APOC relies on internal APIs, when manually installing Neo4j, it is necessary
to use the appropriate version. For example, if Neo4j is version 4.1.0, the ap-
propriate APOC version is 4.1.0.0. However, if APOC is installed as a plugin
within the Neo4j Desktop, a suitable version is picked automatically based on
the Neo4j database. [64]

Thus, in accordance with my Neo4j database, I used the APOC version
4.3.0.0.

4.2 Python setup

Python can be downloaded from their official website [65] and is available in
different versions. I specifically used Python 3.9.1 for my implementation.

4.2.1 Pycharm IDE

I chose to build my Python code using an IDE (Integrated Development En-
vironment), which enables the analysis, execution, and debugging of code in
a very sophisticated environment. As a result, I discovered Pycharm, a simi-
lar environment. It is intended for professional developers and is available in
both a professional and a community version. [66] To build Python code, all
I require is the community edition, which is completely free and open source.
So, I installed it on my Windows operating system. I used the community
edition, version 2021.1.2 in particular.

Additionally, there are various Python IDEs available. Pycharm was cho-
sen primarily for my convenience and also for its most user-friendly graphical
user interface (GUI). Meanwhile, the other tool, Jupyter Notebook, provides
an excellent experience for writing Python in a Web-based interaction envi-
ronment that is optimized for Python Notebooks, which are a hybrid of text
documents and Python code. Interestingly, it is also feasible to interact with
Neo4j from within a Jupyter notebook using Py2neo. And the Jupyter note-
book can be downloaded from the official website. [67]

4.2.2 Py2neo driver installation

Using a community driver named Py2neo, I created a high-level API between
Python and Neo4j. This driver can be installed using a pip installer, which is a
Python package installer. So, after installing the pip package installer, we will

54

4.3. Summary

be able to install any package from the Python package index. [68] Likewise,
Py2neo can be installed through the console using the following command:

pip install py2neo

When it comes to versioning Py2neo, it uses the YYYY.N.M scheme since
the year 2020. N is the yearly incrementing zero-based number, and M is
a modification inside that version. Additionally, the following Python and
Neo4j versions are supported for Py2neo installation: [69] [70]

• Python versions 2.7/3.4/3.5 (and above)

• Neo4j versions 3.4/3.5/4.0 (and above)

I specifically utilized Py2neo version 2021.2.3 for my implementation.

4.2.3 Pytest

A test should be run to confirm that the code operates well and generates ac-
curate results. As a result, I’ll be testing Python programs using a framework
called Pytest. [71] This can be installed using the below command from the
Python Package Index (PyPI). [72]

pip install pytest

I installed Pytest version 6.2.4 particularly to create tests for my code
implementation.

4.3 Summary

In summary, I’ve installed all the essential tools and software. Meanwhile, I
described the version and method of installation that I used. Finally, all of the
elements are in place and the process of executing this thesis implementation
can begin.

55

Chapter 5
Implementation

I’m going to work on the implementation process in this chapter using the
resources gathered and concepts developed in the chapter 3. First, I will
thoroughly define the procedure and replete it with a flowchart design for
clear representation. Following that, I’ll commence carrying out each and
every strategy necessary to accomplish this thesis objective. Moreover, I will
write some test cases to verify that the implemented code performs well and
meets the criteria, as well as to address any unsatisfied conditions through
implementation modifications. Finally, I will finish this chapter with a brief
overview of the accomplishments.

5.1 Design for Implementation

This section covers the implementation process’s flowchart, which is illustrated
in Figure 5.1. And I offered a brief description of each subsequent step.

1. To begin, it stores specified patterns in the Neo4j database, either di-
rectly using the Neo4j graphical user interface (GUI) with the use of
Cypher queries or through the use of the Py2neo interface and associ-
ated Cypher functions.

2. The following step is to accept a sentence pattern (Query) for analysis
as a list using a shared interface named get matched patterns from a
TEMOS tool. Following that, iteration of the received list will occur in
order to access the words, part of speech tags, and dependencies, before
converting them to graphs using Py2neo functions and Cypher queries
and storing them in a Neo4j database.

3. Then, the predefined patterns are matched to the sentence pattern (Query),
and the results are reported.

57

5. Implementation

4. Finally, the sentence pattern graph (Query) will be erased from the
database to create room for the analysis of another new sentence pattern,
and procedure 2 will proceed.

5.2 Storing the predefined linguistic patterns in a
Neo4j Database

After successfully deploying the Neo4j database as per the section 4.1, I began
my experiment by storing the predefined linguistic patterns from the research
papers [2], [3], [4], and [5]. However, before we begin, how are the patterns
to be stored in Neo4j?

Indeed, this is achievable in two ways:

• Cypher queries can be used to store items directly in Neo4j’s graphical
user interface (GUI).

• Additionally, another way is to include Cypher queries straight into
Python code, and then save the patterns in Neo4j using Py2neo sub-
graph operations, as defined in section 3.2.0.3.

Thus, I will demonstrate how I implemented both of the aforementioned
ways for storing specified patterns in Neo4j.

5.2.1 Direct way of storing patterns using Neo4j’s GUI

If we use this method, we must manually write a Cypher query to create nodes
and relationships based on the patterns using the Cypher CREATE keyword.
As with the basic experiment of creation that I described previously in the
section 2.4.3.3, I will use a similar approach for storing linguistic patterns
here.

I began my experiment by randomly selecting one of the defined linguistic
patterns named Attribute Pattern 1 from section 2.3.1.1 and constructing a
cypher query as given below to store in Neo4j based on pattern rules.

CREATE
(n1:AttributePattern1 {word: "NN", POS: "NN"}),
(n2:AttributePattern1 { word: "VB", POS: "VB"}),
(n3:AttributePattern1 {word: "NN", POS: "NN"}),
(n2)-[:nsubj]->(n1), (n2)-[:dobj]->(n3);

As a result, Neo4j now contains the pattern. And Figure 5.2 depicts the
corresponding screenshot.

58

5.2. Storing the predefined linguistic patterns in a Neo4j Database

Figure 5.1: Flowchart design for implementation

59

5. Implementation

Figure 5.2: Screenshot for pattern storage using Neo4j GUI

Similarly, the other predefined patterns can be saved in Neo4j by explicitly
configuring a cypher query in the Neo4j browser (GUI). Additionally, instead
of utilizing a CREATE clause in a cypher, we may use a MERGE clause. Be-
cause MERGE is also a writing clause for the cypher and a mixture of CRE-
ATE and MATCH. Indeed, the MERGE clause’s advantage is that it prevents
the construction of the same graph twice by determining if the identical nodes
and relationships already exist in the database. Otherwise, it generates the
graph; if not, it skips the construction. A MERGE query is constructed sim-
ilarly to a CREATE query, except that the CREATE clause is replaced by a
MERGE clause. As a result, in order to avoid duplicating pattern storage, I
chose to utilize the MERGE procedure to store further patterns.

Moreover, after dealing with the direct method of saving predefined pat-
terns in Neo4j, I choose to utilize a different strategy for storing additional
patterns, i.e storing them using Python code that incorporates Py2neo cypher
methods. Because I will be interacting with the TEMOS tool using Python
to obtain a sentence pattern (Query) for pattern matching. Thus, it would be
more efficient if my Python code had distinct methods for inserting (storing)
specified patterns into the database and retrieving sentence patterns from the
TEMOS tool for analysis. As a result, in the next section, I will apply and
describe this strategy.

5.2.2 Storing patterns using Python code

Prior to implementing this strategy, the code must be designed with the rel-
evant classes, attributes, and functions. Thus, I imported the Graph and
Node objects from Py2neo modules into the main code (which is named
graph patterns checker), whereas the Graph object is used to establish a
connection to Neo4j and create an interface for working with Neo4j from
Python (as previously explained in the Database management part of sec-
tion 3.2.0.1). [49] Additionally, the Node object is utilized to create the node

60

5.2. Storing the predefined linguistic patterns in a Neo4j Database

in Neo4j database. [53]

from py2neo import Graph, Node

Following that, I constructed a class entitled Token that contains an in-
ternal initializer function for initializing the class’s attributes, including text,
pos, dep, and head. These attributes are utilized to get access to the linguistic
pattern’s properties. Additionally, the self parameter is used to associate the
current instance of the class, and also providing access to the class’s attributes.

Below I have added the class diagram of Token class with its methods and
fields for representation.

Figure 5.3: Class diagram for Token class

On the other hand, I created a new class called GraphPatternsChecker
that begins with an initializer function that establishes a connection to Neo4j
by passing the connection’s individual settings, such as uri, username, and
password, to the Graph () constructor in accordance with Py2neo’s connec-
tion profile. Following that, I created two functions. One is to save the
predefined patterns in Neo4j, and the other is to do pattern matching on the
TEMOS-retrieved sentence using a Cypher query and eventually outputting
the matched patterns as results.

Now let’s focus on the function insert patterns which is to store predefined
patterns in Neo4j. However, before going into the detail about this function
behaviour. It is necessary to give limelight to the other class called Temos-
GraphInitializer. So, what is this class?

Actually, this is the class that initializes the insert patterns method, which
performs the storing process. Additionally, this class is produced in a distinct
Python file named temos graph initializer and imports the classes GraphPat-
ternsChecker and Token. Thus, the primary purpose of this class is to have
an initialize () function that generates a list of objects by adding Token class
instances to a list, and each index of the list points to and accesses the Token
class’s instance attributes and methods.

61

5. Implementation

For example, I generated a list pattern 1 as shown below, where each
collection links to an instance attribute of the class Token via a value.

pattern_1 = [
Token("NN", "NN", "nsubj"),
Token("AUX", "AUX", None),
Token("NN", "NN", "dobj")

]

pattern_1[0].head = pattern_1[1]
pattern_1[2].head = pattern_1[1]

When the first element in a list is considered, it really sends the values to
each attribute, such as,

NN → text
NN → pos
nsubj → dep

Similarly, other collections follow a similar pattern. Then, I assigned the
head dependencies by accessing the collection at a specified index correspond-
ing to a dependency on another collection.

Consider the following assignment, which indicates that the head attribute
of the element at index 0 will be the element at index 1. Thus, pattern 1[1]
communicates a connection to pattern 1[0], and the two are mutually reliant.
Similarly, the remaining head dependencies can be fulfilled.

pattern_1[0].head = pattern_1[1]

In general, this method of assigning values to Token class instance at-
tributes (text, pos, dep, and head) resembles the way nodes and relationships
are created in a Cypher query. However, how?

Indeed, if we consider the following cypher query, it constructs each node
together with its associated properties (text, pos, and dep) and relationships
between the nodes, using dep as the relationship type.

CREATE
(n1:Pattern1 {text: "NN", pos: "NN", dep: "nsubj"}),
(n2:Pattern1 {text: "AUX", pos: "AUX"}),
(n3:Pattern1 {text: "NN", pos: "NN", dep: "dobj"}),
(n2)-[:nsubj]->(n1), (n2)-[:dobj]->(n3);

As a result, it demonstrates that each index element in the list includes
the properties of each node, while the head dependencies indicate the nodes’
relationship.

62

5.2. Storing the predefined linguistic patterns in a Neo4j Database

Now that this list of objects has been created, how will it be sent to the
method insert patterns for storage in Neo4j?

Indeed, this is achievable by creating an object for the class GraphPattern-
sChecker that has the function insert patterns, and then calling that function
with the constructed list as an argument. Thus, in the following example,
graph patterns checker is the created object, and I called the function in-
sert patterns by passing the string pattern1 to say, under this label name,
store it in the database, and pass the list pattern 1 which contains informa-
tion about the nodes, properties, and relationships should be created.

graph_patterns_checker = GraphPatternsChecker()
graph_patterns_checker.insert_patterns("pattern1",
pattern_1)

Figure 5.4: Class diagram for GraphPatternsChecker and TemosGraphInitial-
izer

5.2.3 How the insert patterns function behaves?

On the other side, let’s see how the function insert patterns operates and
conducts the storing operation in Neo4j when it is called. To illustrate the
function clearly, I have included a flowchart in Figure 5.5.

Before we begin, let’s have a look at the insert patterns function’s param-
eters.

def insert_patterns(self, name: str, pattern: list[Token])

63

5. Implementation

Figure 5.5: Flowchart for Storing operation

64

5.2. Storing the predefined linguistic patterns in a Neo4j Database

In fact, it is constructed using the following parameters.

• self parameter is used to get the current instance of the class. For
example, the Graph() constructor which initiated the connection in the

init can get accessed inside the insert patterns function by using a
self parameter.

• name(str) is to get the name of the pattern which passed as string.

• pattern(list[Token]) get the passed list which holds the Token class’s
instances in it.

Now for the insert patterns function’s behavior. To begin, I iterated over
the list passed by the TemosGraphInitializer class as an input.

To do this, I utilized a for loop in Python combined with the range () func-
tion, which iterates through the list a specified number of times. Indeed, the
range () function begins at 0 and iterates up to the value specified within. Sub-
sequently, I used the len() method to determine the list’s total length (number
of elements) and handed it to the range function as range (len(pattern)). As
a result, it iterates over the list’s elements until it reaches the final one. For
instance, if the list has three elements, the length will be three, and iteration
will continue until the third element is reached.

Following that, once I’m within the list, I can access the instance at-
tributes included inside it by referencing the index, such as pattern[i].text,
pattern[i].pos, and pattern[i].dep. However, when it comes to the head values,
it is transmitted as,

pattern_1[0].head = pattern_1[1]
pattern_1[2].head = pattern_1[1]

If I access the 0th index’s head value in a similar way as done for other
attributes, such as pattern[i].head, I will obtain the given value pattern 1[1].
However, it is impossible to store this information as a node property and it
is also difficult to create dependent relationships. As a result, while looking
for a solution, I came up with the idea of utilizing a Python built-in function
called list index, which returns the index of the supplied element in a list. As
a consequence, I provided the pattern[i].head attribute to the index method,
and obtained the index value of the element containing the head attribute.

For instance, if pattern[0].head = pattern[1]. However, rather than return-
ing the actual value of pattern[1], I will obtain the element’s index, which is
1. After that, this integer value can be provided as the node’s head property.
Similarly, this can be done for other dependencies.

Additionally, when accessing each head attribute in a list, if any element
in the list lacks a head-dependent value, Python may throw a NoneType

65

5. Implementation

Attribute Error. For example, if the 0th and 2nd position items have head de-
pendence but the 1st position element is None, the NoneType error will occur.
As a result, I utilized an if-else condition to determine if the pattern[i].head
is empty or not. If it is not none, the index element of the pattern[i].head
is retrieved and placed in the variable named sendernode, where it will be
utilized as a node property. However, if pattern[i].head is null, that location
is skipped and does not result in the NoneType Attribute Error.

Thenceforth, I supplied all the accessed instance attributes from the list
as node properties within the Py2neo’s Node () constructor, as shown below.
And the value of the iteration, which should begin at 0, should be saved in
that id field. Additionally, the name property specifies the label name for
which the nodes can be stored, and its value is passed as a string.

Node(name, id=i, POS=pattern[i].pos, Word=pattern[i].text,
Dep=pattern[i].dep, head=sender_node)

Then, this Node() constructor is assigned to a variable named node as a
subgraph. The subgraph is then used as a constructor within the Py2neo’s
graph. merge() function. (As stated previously in section 3.2.0.3) Addition-
ally, the label name (primarykey) and id (propertykey) will be included, so
that the merging process can determine whether or not this node already
exists in the database using these keys.

self.graph.merge(node, name, "id")

As a result, this merge process will create nodes in Neo4j from the iterated
attributes from a list. However, how will the relationships between those
nodes be established? Indeed, this is possible through the development of a
Cypher query that establishes relationships between nodes based on their head
dependencies. However, this brings up the question of under what conditions
is this even possible?

Evidently, in response to this topic, I came up with a solution that connects
the nodes based on their id and head properties. By and large, the created
nodes have the properties shown in Figure 5.6. As we can see from the figure,
the head value of the first node (table) is 1, which indicates that it should
rely on and obtain a connection with the node with the id = 1, which meets
the criteria for the second node (table). As a result, both nodes should be
connected as shown in Figure 5.7. Thus, by comparing the id value of one
node to the head value of another node, relationships may be created, and the
dep property value of the recipient node serves as the relationship type.

Subsequently, I constructed the query shown below, which connects one
node to another when the conditions outlined above are fulfilled. Thus, this
query begins with the MATCH keyword, which considers two distinct nodes
stored under the same label name pattern1, and I used variables p and q as

66

5.2. Storing the predefined linguistic patterns in a Neo4j Database

Figure 5.6: Properties of Nodes represented as table

Figure 5.7: Properties of Nodes along with relationship

node references, gaining access to node properties such as p.id (for Node 1)
and s.head (for Node 2), and checking for equality between those properties
using WHERE conditions. Then, in a cypher query, I used the WITH term.
Additionally, this term is utilized to introduce the variables p and q, which
we already used within the WHERE condition. Indeed, if we utilized the
WHERE condition, the results should have been returned immediately. How-
ever, because I need to conduct more operations, I send the condition results
to the WITH keyword by creating variables p and q. Generally, the WITH
keyword is used to change the output prior to it being given. As a result of
this procedure, I’m required to establish relationships between the nodes that
satisfy the equality constraint. Moreover, it should be generated dynamically
for each node. In this regard, I created an APOC method (section 2.4.3.5)
that conducts the relationship merging process. This procedure accepts the
following parameters as input: [73]

• startNode

• relationshipType

• identProps

• onCreateProps

• endNode

• onMatchProps

67

5. Implementation

In our situation, we just require the startNode, relationshipType, and
endNode parameters to construct relationships. The rest of the arguments
would be null. As a consequence, I set the sender node’s variable p to the
startNode, the receiver node’s dependency property value to the relationship-
Type within the toString () function, because the relationshipType parameter
of APOC merge supports STRING, and the receiver node’s variable to the
endNode. Following that, the procedure will execute and return the formed
relationships using the YIELD keyword and an output parameter named rel.
Finally, the RETURN keyword returns the relationships that were built in
compliance with the equality constraints utilizing the APOC function.

MATCH(p:pattern1),(s:pattern1)
WHERE p.id = s.head
WITH p, s
CALL apoc.merge.relationship(p, (toString(s.Dep)), {}, {}, s, {})
YIELD rel
RETURN p, s

As a result, by directly performing the above Cypher query in Neo4j’s
GUI, the relationships between nodes are established perfectly. To run this
query from Python, however, I must include it in Py2neo’s run () method, as
shown below.

self.graph.run("MATCH(p:" + name + "),(s:" + name + ")"
"WHERE p.id = s.head WITH p, s "
"CALL apoc.merge.relationship(p, "
"(toString(s.Dep)), {}, {}, s, {}) "
"YIELD rel RETURN p, s")

Following that, I encapsulated this Cypher run operation within a distinct
function named create relationship (self, name: str). Correspondingly, this
function is called from the insert patterns function with a label name as an
argument, and in response, the create relationship function obtains a label
name and passes it to the MATCH keyword within the query, where it per-
forms the relationship operation between the nodes stored under that desired
label name.

In summary, I’ve programmed the insert patterns function to iterate over a
list in order to access the instance attributes sent by the TemosGraphInitializer
class, and then to use those attributes to store the predefined patterns in Neo4j
as a graph with nodes and relationships using the Cypher query and Py2neo
functions.

for i in range(len(pattern)):

if pattern[i].head is not None:

68

5.2. Storing the predefined linguistic patterns in a Neo4j Database

sender_node = pattern.index(pattern[i].head)

else:
sender_node = None

node = Node(name, id=i, POS=pattern[i].pos,
Word=pattern[i].text,
Dep=pattern[i].dep,
head=sender_node)

self.graph.merge(node, name, "id")
self.create_relationship(name)

As a result of this approach, the graph formed in Neo4j will look as seen
in Figure 5.8.

Figure 5.8: Pattern stored as graph

Similarly, I built the other predefined patterns as a list of objects in the
initialize () function of the TemosGraphInitializer class, sent them to the insert
pattern function, and stored them as graphs in Neo4j (Figure 5.9 illustrates
this with a screenshot). Additionally, this technique enables the addition of
any other patterns in the future.

After saving the predetermined patterns, it’s necessary to write code that
retrieves the sentence pattern from the TEMOS tool and conducts the pattern
matching procedure. Let’s have a look at this in the next part.

69

5. Implementation

Figure 5.9: Patterns stored as graph

5.3 Getting the Sentence as an Input to the Neo4j
Database and perform pattern matching

Now we’ll look at the process of obtaining sentence patterns from a TEMOS
tool and storing them in Neo4j for pattern matching and result generation.
To do this, I developed a new function named,

get_matched_patterns(self, sentence: list[Token])->list[str]

Moreover, this function accepts arguments such as:

• self parameter is used to get the current instance of the class. For
example, the Graph() constructor which initiated the connection in the

init can get accessed inside the get matched patterns function by
using a self parameter.

• sentence: (list[Token]) get the passed list which holds the Token
class’s instances in it. Additionally, the function will generate a sentence
graph in Neo4j by accessing these attributes.

Secondly, the function’s return type is a list of strings, marked as list[str].
On the other hand, when it comes to behavior, this method behaves sim-

ilarly to the other function named insert patterns that we have seen in sec-
tion 5.2.3. The distinction is that we are now obtaining a list of items via
the TEMOS tool. Thus, the procedure of iterating over the list, accessing in-
stance properties, and giving them to the Py2neo Node () constructor for the
purpose of creating nodes and relationships is identical to what I did in the
insert patterns method. Additionally, the minor adjustments is to the node’s
label name, which would be Query. Because it is not possible to provide a

70

5.3. Getting the Sentence as an Input to the Neo4j Database and perform
pattern matching

unique label name to nearly hundreds of words transmitted by TEMOS. Thus,
each sentence received will be saved in Neo4j for pattern matching analysis
under the fixed label name Query, and after the pattern matching is complete,
the Query graph will be erased and a new sentence will be received for analysis
under the label Query, and so on.

Node("Query", id=i, POS=pattern[i].pos, Word=pattern[i].text,
Dep=pattern[i].dep, head=sender_node)

Furthermore, get matched patterns is accessed by constructing an object
for the class GraphPatternsChecker that has the method get matched patterns,
and then passing the sentence (list) as an argument to a function call per-
formed using the object. For instance,

graph_patterns_checker = GraphPatternsChecker()
graph_patterns_checker.get_matched_patterns(sentence)

After receiving the sentence to be saved and analyzed in Neo4j, the first
get matched patterns method will complete the storage process by iterating
over it, accessing the attributes, and building nodes and relationships using
the Cypher and Py2neo functions. Moreover, the create relationship function
is called with a fixed label name, Query, and in response, relationships between
the nodes stored under that label name are created.

for k in range(len(sentence)):

if sentence[k].head is not None:
head_value = sentence.index(sentence[k].head)

else:
head_value = None

node = Node("Query", id=i, POS=pattern[i].pos,
Word=pattern[i].text,
Dep=pattern[i].dep,
head=sender_node)

self.graph.merge(node, "Query", "id")
self.create_relationship("Query")

Thus far, we’ve looked at the process of retrieving and saving sentences
from the TEMOS tool in Neo4j. Following that, it’s time to perform pat-
tern matching on the sentence and the predefined patterns, resulting in the
generation of the matched ones.

71

5. Implementation

5.3.1 Matching the Query/Sentence graph with the
predefined patterns

In this part, I will develop a Cypher query to perform pattern matching
between the Query (sentence) graph and predefined patterns based on the
resources and thoughts gathered throughout the pattern matching analysis
section (section 3.3.2).

To begin, I write a Cypher query that performs pattern matching between
a stored predefined pattern and the query graph statically. For this experi-
ment, I utilized the sample sentence pattern list with instance attributes (also
mentioned in section 3.3.1) in accordance with the criteria, and I saved it in
the Neo4j database under the label Query, as seen in Figure 5.9.

Following the database storage of the Query and predefined pattern graphs,
the time has come to develop a Cypher query for pattern matching.

Subsequently, I developed a Cypher query that does pattern matching
and returns true if the two patterns match. That is, a graph is a subgraph
of another graph. I performed this Cypher query using the Query graph and
the predefined pattern contained in the database (a dummy pattern called
pattern1 created for experimentation).

MATCH (a:pattern1)-[r1]->(b)
WITH collect({SenderPOS:a.POS,relation:type(r1),

ReceiverPOS:b.POS}) AS pattern
CALL
{
MATCH (n:Query)-[r]->(p)
RETURN collect({SenderPOS:n.POS,relation:type(r),
ReceiverPOS:p.POS}) AS query

}

WITH pattern as p,query as q
WHERE ALL (a IN p WHERE a IN q)
WITH apoc.coll.duplicatesWithCount(p) AS dup_pattern,
apoc.coll.duplicatesWithCount(q) AS dup_query
WHERE ALL (a IN dup_pattern WHERE a IN dup_query)
RETURN 1

I’ve described the behavior of the designed Cypher query in detail below:

1. To initiate, I’m checking the outgoing relationship of each node in the
pattern1 graph using the MATCH keyword. And, as previously ex-
plained in section 3.3.2, each node in the graph is connected to another
via sending or receiving; thus, by obtaining the part of speech (POS)

72

5.3. Getting the Sentence as an Input to the Neo4j Database and perform
pattern matching

property of the sender and receiver nodes, as well as the type of rela-
tionship communicated, I am able to compare these characteristics for
matching to those of the other graph, which were also obtained in a
similar manner.

2. Then, using Cypher query’s aggregating function named collect() under
the WITH keyword [74], I aggregate the POS property (sender and
recipient nodes) and the communicated relationship type into a collection
called pattern. Because the WITH keyword is used, the collection may
be used in subsequent query operations. Additionally, this is one of the
primary benefits of the WITH keyword. [75]

3. Following that, a collection mechanism akin to the pattern1 graph has
been implemented for the Query graph. However, this process is per-
formed as a subquery within the CALL clause. The rationale for creating
it as a subquery is to aggregate the properties of the Query graph in-
dependently of the collection of pattern1. The collect() method is used
inside the RETURN keyword in this subquery, and the collected data is
saved in a collection named query. Then, outside of the subquery, this
collection can be utilized for other actions or returned.

4. Following that, I’m manipulating both the pattern1 and Query graph
collections using the WITH keyword rather than returning since I have
other operations to complete. As a result, I’ve added a variable p to
represent a collection named pattern and a variable q to represent a
collection named query.

5. To determine if the collections have common properties, I utilized Neo4j’s
predicate function all (). Indeed, this all() method determines whether
or not the elements in a list are present in another list, which is actually
employed in conjunction with the WHERE condition constraint. [76]
Thus, by using the WHERE ALL condition, I’m determining whether or
not elements in the pattern (p) collection exist in the query (q) collection.
Moreover, a is the variable’s representation of an element.

6. After executing the equality condition, I persisted on verifying the equal-
ity of duplicate elements that exist in both collections. Thus, what would
this duplicate element be and what impact will it have?

Indeed, as seen in Figure 5.10, a relationship between NN and JJ with
the relationship type amod occurred twice. Therefore, if that is the
case, the other pattern with which it is matched should also include the
same type of relationship in the same number of counts. Otherwise,
the incorrect outcomes will be obtained. Therefore, I utilized an APOC
procedure named apoc.coll.duplicatesWithCount() which looks for dupli-
cate items and their counts in a list or collection and provides them in

73

5. Implementation

JSON format. [77] Thus, I used collection pattern (p) to do a check
and recorded the duplicate items and their count in a collection named
dup pattern. This was also done for collection query (q), which was saved
as a dup query. Following that, I used the WHERE ALL condition to
determine whether or not the duplicate element of the pattern and the
query were identical.

Figure 5.10: Sample pattern to represent duplicates

7. Finally, if all requirements are met, pattern1 is a subgraph of Query and
is matched. Thus, using the RETURN keyword, 1 will be printed as a
result.

As a consequence, when I execute this Cypher query straight from Neo4j’s
GUI, I obtain the value 1 since pattern1 matches the Query. Figure 5.12
includes a screenshot of the execution.

Figure 5.11: Query graph

To demonstrate how they are related and how pattern 1 is a subgraph of
Query, I returned collection lists including the elements pattern (p), query (q),
dup pattern, and dup query, as seen in Figure 5.13. It is represented in the
form of JSON elements.

74

5.3. Getting the Sentence as an Input to the Neo4j Database and perform
pattern matching

Figure 5.12: Screenshot for Result

Figure 5.13: Screenshot of printing collections

Additionally, to facilitate visualization, I have displayed it as a table, as
seen in Figure 5.14. The highlighted items are those that match. Furthermore,
pattern (dup pattern) has no duplicate components, but query (dup query)
contains them. However, it doesn’t matter if the Query graph has duplicates
or more components in comparison to the pattern. Because we’re determining
whether or not the pattern is a subgraph of Query. Thus, if all items in the
pattern, including duplicates (if any), are presented in Query, then only the
pattern is matched and a subgraph of Query.

For instance, I compared the graph of another sample pattern to Query,
which also has duplicate elements, as seen in Figure 5.15. As a consequence,
it is matched against Query, including duplicate items, and I have re-added
the collected JSON elements in a tabular style for clarity. (See Figure. 5.16.)

Likewise, I experimented with the constructed Cypher query by comparing
it to the other patterns; if they satisfy all of the requirements, result 1 is
printed. For instance, a sample pattern named pattern 2 is not matched with
Query, and while pattern 5 has duplicate components identical to those in
Query, it fails to match with the remaining elements, resulting in the pattern
being unmatched with the Query graph. I’ve illustrated the patterns below

75

5. Implementation

Figure 5.14: Collections of pattern1 and Query in a Table format

Figure 5.15: Sample pattern

by emphasizing the presented and unpresented parts in comparison to Query.
Additionally, I’ve re-added the Query graph image (Figure 5.18), but this time
with the nodes captioned with their POS properties to facilitate comparison.

Moreover, I developed some additional example patterns and verified them
using the Cypher query. As a consequence, it produces flawless outcomes.
Prior to finalizing the solution, it is vital to evaluate the intended query by
creating test cases and examining the risk factors to analyze to what extent it
works properly. As a result, I have written a test case in the following section.

5.3.2 Test Cases

To determine whether the query works correctly in all cases. I documented
several test cases and verified each one (as illustrated in Figure 5.20). I utilized
an online test planning application called TESTPAD for this purpose. [78]

76

5.3. Getting the Sentence as an Input to the Neo4j Database and perform
pattern matching

Figure 5.16: JSON elements of sample pattern and Query

Figure 5.17: Pattern 2

77

5. Implementation

Figure 5.18: Query graph with POS caption for nodes

Figure 5.19: Pattern 5

Figure 5.20: Test cases

78

5.3. Getting the Sentence as an Input to the Neo4j Database and perform
pattern matching

It works perfectly in the majority of cases, except for one, which involves
a relationship conflict. As a result, I’ll be modifying my Cypher query to
address the issue.

5.3.3 Overcoming the problems from the previous cypher
query

It is essential to resolve the relationship conflict that happens when the graph
contains similar types of POS. But first, let’s explore the basis of this rela-
tionship conflict.

What is relationship conflict?

Indeed, the built Cypher query will verify the existence of each outgoing
relationship in a saved pattern graph by comparing it to the Query graph.
However, if the Query graph or saved pattern graph contains the same kind
of POS several times (for example, NN type POS is supplied twice), the
comparison may result in a relationship conflict. To illustrate, I’ve included
an example Query graph (inspired by Preposition Phrase pattern from [3])
and a sample pattern graph.

Figure 5.21: Sample Query graph

Figure 5.22: Pattern 6

When we look at the sample Query graph, we find that it contains two NN
POS and three IN POS, as well as the relationships between them. Similarly,
pattern 6, which is a sample pattern graph, contains two NN and three IN
POS and relationships. As a consequence, when I compare this graph using
the generated Cypher query, it meets the constraints and returns the result,

79

5. Implementation

indicating that pattern 6 matches the example Query graph. However, it
should not be matched, because both graphs include prep relationship from NN
to IN (which I have highlighted in both graphs), and while this is the common
relationship between the two graphs, it is not in the precise structure. Because
the sending node NN in the Query graph receives an incoming relationship
of type pobj from another node, whereas the sending node NN in pattern 6
does not get an incoming relationship. Thus, this demonstrates that both are
not the same kind of one, which results in the conflict. However, the designed
Cypher query is unaware of this.

To avoid this, I experimented with the concept of checking the sending
node’s incoming relation type only when the same kind of POS occurs many
times in the same graph. Due to the fact that this results in relationship
conflict. Thus, the above Cypher query collects the sender node’s POS, the
recipient node’s POS, and the type of relationship between them. However,
the amended Cypher query will return the incoming relationship type of the
sender node as well. This indicates the Cypher query to check whether or not
the Query graph contains the precise structure of the pattern graph.

As a result, I created a new Cypher query with certain improvements to
prevent the conflicting relationships. I will describe each stage of the Cypher
query in detail below.

• To begin, similar to the previous designed Cypher Query, I’m checking
the outgoing relationship of each node in the pattern graph (in this
case, pattern 6, a sample graph created for experimentation) by using
the MATCH keyword.

MATCH (a:pattern6)-[r1]->(b)

Additionally, I’m using the OPTIONAL MATCH clause in the cypher
statements as specified below. Indeed, the advantage of the OPTIONAL
MATCH keyword is identical to that of the MATCH keyword, with the
exception that if no MATCH is discovered for the specified criteria to
be checked, it bypasses it by treating it as null. [79]

OPTIONAL MATCH (a:pattern6)-[rr]->(b)
OPTIONAL MATCH (i)-[ir]->(a)

This is to examine separately the incoming relationship of a node that
has an outgoing relationship with another node. For instance, I’m first
verifying the outgoing relationship of a node in pattern 6, where a is the
sender node, b is the receiver, and rr is the relationship type. Then, I
verify the incoming relationship type of the sender node a to determine
which node is its head node and what type of relationship they have,
where i is the head node and ir is the type of relationship.

80

5.3. Getting the Sentence as an Input to the Neo4j Database and perform
pattern matching

• Following that, as an update to the preceding Cypher query’s aggrega-
tion process, utilizing collect () in conjunction with the WITH keyword
(as indicated in item 2). Additionally, I’m aggregating the incoming
relationship type and storing it in a list named incoming pattern.

WITH collect({SenderPOS:a.POS,relation:type(r1),
ReceiverPOS:b.POS}) AS pattern,
collect({Incoming:type(ir),SendPOS:a.POS,
relation:type(rr)}) AS incoming_pattern

• Then, as an update to the preceding Cypher query’s collection mecha-
nism within the CALL subquery for Query graph (as specified in item 3),
I’m adding a Cypher statement to collect the incoming relationship type
of a sender node and store it in a list named incoming query. Addition-
ally, because the sample Query graph is based on the preposition phrase
pattern, I stored it in the database under the same name.

CALL
{

MATCH (n:PrepositionPhrase)-[r]->(p)
OPTIONAL MATCH (n:PrepositionPhrase)-[rr]->(p)
OPTIONAL MATCH (i)-[ir]->(n)
RETURN collect ({SenderPOS:n.POS,relation:type(r),
ReceiverPOS:p.POS}) AS query,
collect({Incoming:type(ir),SendPOS:n.POS,
relation:type(rr)}) AS incoming_query

}

• Then, in a separate CALL subquery, I’m collecting the sent node’s POS
property from both the pattern and the Query graph and saving them as
POS pattern and POS query. Because these properties will be needed
for more analysis to find out if there is relationship conflict in a graph.

CALL {
MATCH (pos:" + label + ")
RETURN collect(pos.POS) AS POS_pattern

}
CALL {

MATCH (pos:Query)
RETURN collect(pos.POS) AS POS_query

}

81

5. Implementation

• Following that, I’m using the WITH keyword to manipulate all the gath-
ered lists. To begin, I assigned a new variable to ip for the list of in-
coming pattern and iq for the list of incoming query. Because those lists
must be reintroduced using the WITH keyword. Otherwise, I will be
unable to access it in the future. Then, identical to the previous Cypher
query, I looked for duplicate items in the list pattern and put them in a
dup pattern list, as well as duplicate elements in the list query and placed
them in a separate list called dup query. Additionally, I’m utilizing an
APOC technique known as apoc.coll.duplicates (). [80] This technique is
identical to the other APOC procedure for detecting duplicate elements,
except that it does not count the number of duplicate elements; it just
finds them. Thus, I’m verifying whether the same kind of POS is present
in the pattern or the query from the list that previously gathered the
sender node’s POS type from both graphs, and then saving the duplicate
POS type presented in the pattern graph as a dup POS pattern and in
the query graph as a dup POS query.

WITH incoming_pattern AS ip,
incoming_query AS iq,
apoc.coll.duplicates(POS_pattern) AS
dup_POS_pattern,
apoc.coll.duplicates(POS_query) AS
dup_POS_query,
apoc.coll.duplicatesWithCount(pattern) AS
dup_pattern,
apoc.coll.duplicatesWithCount(query) AS
dup_query

• Next, as similar to the previous cypher query (item 5 and item 6), I’m
using Neo4j’s predicate function WHERE ALL to determine whether
or not the pattern’s whole set of components (including duplicates) is
provided in the query.

WHERE ALL(a IN pattern WHERE a IN query) AND
ALL(a IN dup_pattern WHERE a IN dup_query)

• Additionally, I’m determining whether the duplicate POS of nodes sup-
plied in the collections pattern and the query are equal and record-
ing the result in a collection named Equal POS. This is accomplished
through the use of the APOC procedure apoc.coll.isEqualCollection(),
which compares the two collections and returns TRUE if they are identi-
cal. [81] For instance, in our scenario, the pattern graph has two POS of
type NN and three POS of type IN (as represented in Figure 5.22), and
the query graph contains the same types of POS for the same number of

82

5.3. Getting the Sentence as an Input to the Neo4j Database and perform
pattern matching

times (illustrated in Figure 5.21). As a consequence, both of these graphs
meet the equality criteria when using apoc.coll.isEqualCollection().
Then, using the apoc.coll.containsAll() procedure, I determine whether
or not the iq collection includes all of the elements in ip and save the
results to a collection named Equal Incoming. Basically, I’m verifying
to see if the query graph has the elements, including the sender node’s
incoming relationship type, that were presented in the pattern graph.
For instance, if we consider our pattern graph (shown in Figure 5.22)
in which an IN POS type node transmits a prep relationship type to
another IN and receives an advmod type relationship from another node
as an incoming relationship. Thus, if Query also has the same type, i.e.,
an IN node gets an advmod type relationship and sends a prep to another
IN node, the relationship is valid and both nodes are in the identical
structure. Similarly, it verifies all of the graph’s sending nodes.
As a final condition, I’m using a WHERE condition to determine whether
both graphs (pattern and query) contain the same type and number of
POS; if they do, this will result in relationship conflict; to avoid this, the
Cypher query must also check for the sender node’s incoming relation-
ship type; as a result, both graphs must have identical structure. That is
why, in my constructed Cypher query, I specified using an AND operator
that while Equal POS is true, Equal Incoming must also be true. On
the other hand, if no graph contains the same kind and number of POS,
there will be no relationship conflict, and therefore it doesn’t matter if
the verification of the sender node’s incoming relationship type can be
satisfied or not. As a result, I specified in my built Cypher Query uti-
lizing an OR operator that if Equal POS is false, and Equal Incoming
might be either true or false.

WITH apoc.coll.isEqualCollection(dup_POS_pattern,
dup_POS_query) AS Equal_POS,
apoc.coll.containsAll(iq,ip) AS Equal_Incoming
WHERE (Equal_POS = true AND Equal_Incoming = true)
OR (Equal_POS = false AND (Equal_Incoming = false
OR Equal_Incoming = true))

However, what if I set the condition that checks for the sender node’s
incoming relationship true at all times, despite the fact that there will
be no POS of the same kind or number and no likelihood of relationship
conflict?
Indeed, it may produce incorrect findings. Consider the following sce-
nario: if we have a pattern similar to that illustrated in Figure 5.23, with
just one sender node and no duplicate POS given, there will be no rela-
tionship conflict. On the other hand, if we compare this pattern to the

83

5. Implementation

example Query graph in Figure 5.24, we see that it is really present there
(I have highlighted it for illustration purposes), and the result should be
matched. However, if I add a condition requiring that the sender node’s
incoming relation be fulfilled, the pattern graph will fail the condition
and will not match the Query. However, this is the incorrect outcome.
As a result, I included an incoming relationship type check of the sender
node only when the nodes have the potential to cause a relationship
conflict.

Figure 5.23: Example pattern

Figure 5.24: Example Query

• Finally, if all of the specified requirements are met and the pattern is
legitimate, it becomes a subgraph of Query and is matched. As a result
of the RETURN keyword, the value 1 will be printed.

RETURN 1

As a result, when I run this amended Cypher query directly from Neo4j’s
GUI, I received no return value since pattern6 did not match the Query, but
it is now a perfect result(illustrated in Figure 5.25). Indeed, I had previously
obtained an incorrect return (as matched) due to a relationship conflict, but
the modified Cypher query resolved the issue. Additionally, it works effectively
and produces accurate answers for other patterns as well.

84

5.3. Getting the Sentence as an Input to the Neo4j Database and perform
pattern matching

Figure 5.25: Screenshot of executing a modified Cypher query

Eventually, the updated Cypher query satisfies all test cases, including
avoidance of relationship conflicts.

Figure 5.26: Satisfied test cases

Then, in accordance with this thesis need, it is time to build this Cypher
query to execute dynamically in order to compare all the patterns in the
database with the Query graph and return the matched patterns as results.

5.3.4 Dynamic way of checking

So far, I’ve illustrated how to statically match a saved pattern with a Query
graph, i.e., by defining a specific pattern to be matched with Query manually.
However, in this part, I will demonstrate how to dynamically execute a defined
Cypher query based on the resources and information collected in the analysis
and design part of dynamic execution (section 3.3.2.1).

85

5. Implementation

First, as designed, I’m retrieving all of the label names associated with
the graphs saved in the database through Neo4j’s built-in procedure, which is
invoked via a CALL clause and saves the label names via a YIELD clause.

Following that, I’m invoking the apoc.cypher.run() method with my stat-
ically defined Cypher query. Additionally, rather of manually checking the
label names of the pattern graph, such as pattern 1, pattern 2, etc., I’m sup-
plying the gathered label names from the YIELD clause. Thus, whenever the
pattern label name should appear within the Cypher query, those locations
are replaced with dynamic node labels.

For example:

MATCH (a:" + label + ")-[r1]->(b)

Therefore, this APOC procedure along with the Cypher query will access
the pattern graphs stored in the database through the label name, check for
a match with the Query graph, and ultimately deliver the label names of the
graphs that are all matched with the Query graph.

However, how will it deliver the label name for the matched graph as a
result?

Indeed, the Cypher query included within the apoc.cypher run() pro-
cedure will RETURN 1 if the pattern currently being verified matches the
Query graph. If it is not found, no value is printed. Additionally, following
this dynamic execution in the APOC procedure, I’m collecting the returned
values using a YIELD clause, so that if the performed query produced any
value, i.e., 1, if matched, that value will be collected and the label name of the
pattern graph will be returned. If no value is given, the pattern has not been
matched, and hence the label name is not returned.

CALL db.labels()
YIELD label
CALL apoc.cypher.run("MATCH (a:" + label + ")-[r1]->(b)
OPTIONAL MATCH (a:" + label + ")-[rr]->(b)
// Cypher is executing dynamically
.
.
.
//Checking pattern graph with Query for matching
// Print result when it is matched
RETURN 1",{})
YIELD value
RETURN label

86

5.3. Getting the Sentence as an Input to the Neo4j Database and perform
pattern matching

Then, by performing the dynamic Cypher query in Neo4j’s GUI, I obtained
the label name for the matched pattern. I’ve included a screenshot in Figure
5.27.

Figure 5.27: Screenshot of executing a dynamic Cypher query

Ultimately, the dynamic Cypher query is ready to get the Query(Sentence)
graph’s matching patterns. However, this must be integrated into the Python
code in order to verify the sentence patterns received from TEMOS and return
the matching patterns as results.

5.3.5 Incorporating Cypher query inside the Python function

The Cypher query can be easily integrated into Python code for execution
through Py2neo’s run () method. I have previously used this function to
insert queries within Python (section 5.2.3). As such, I’m going to add the
designed dynamic cypher query into the run () operation here as well to obtain
matching patterns as results.

Actually, I need to incorporate this operation into the Python code’s
get matched patterns function (section 5.3). Additionally, I’m inserting
this Cypher execution operation immediately following the iterative process of
obtaining the sentence pattern from TEMOS and loading it into the database
for analysis. Thus, after the sentence pattern (Query) is stored in the database,
this Cypher matching query will connect with the Neo4j server and perform
the necessary matching operations between the Query and other specified pat-
terns in the database. However, the question of delivering the results of the
pattern matching to Python may arise.

Indeed, such behavior is feasible. Because I’ve assigned this run () oper-
ation to a variable named matched just for this reason. Thus, after this query
is executed, the run () operation will create results in the form of a stream of
records, which will be stored in the variable named matched. Actually, records
are an ordered collection of values that are categorized according to key-value

87

5. Implementation

pairs. [51] In this situation, the value is the name of a label, and the key is
the label.

After capturing the records in a matched variable, I iterate over them,
adding each record to an empty list depending on its key, label. Thus, all
returned label names for matched patterns are now placed in the empty list
called match = [].

Finally, by returning the list match, the matched pattern graphs’ label
names will display in the Python console.

I’ve included the code for the described procedure below.

An empty list to capture returned results
match = []
matched = self.graph.run(#Cypher query will execute)

#iterating through the returned records
for record in matched:

appending each record based on it's key "label"
#inside the empty list
match.append(record["label"])

returning the label name as results
return match

5.3.5.1 Deletion of Query graph after pattern matching

Once the pattern matching is complete and the results are obtained, the Query
graph should be erased from the database. Additionally, it should create room
for the arrival of a new Query(sentence) for pattern matching, and the process
will repeat. As a result, I developed the following Cypher query to conduct
this delete action.

MATCH (n:Query)
OPTIONAL MATCH(n)-[r]-()
DELETE n,r

This delete query will look for the graph labeled Query. Then, because
the OPTIONAL MATCH keyword is used, it will verify that all nodes in
the Query graph are related to one another. If yes, it will first destroy the
relationships, and then the nodes. If the nodes are not linked, it just deletes
them all. Finally, the database will be emptied of the whole Query graph.

Moreover, as like other Cypher queries, I incorporated this delete query as
well inside the graph.run() operation in Python code as given below.

88

5.4. Summary

self.graph.run("MATCH(n:Query) "
"OPTIONAL MATCH(n)-[r]-() "
"DELETE n,r")

5.4 Summary

In conclusion, let’s review my total implementation process. To begin, in
section 5.2, I demonstrated how to store linguistic patterns in Neo4j both
directly via the Neo4j graphical user interface (section 5.2.1) and primarily
using Python code (section 5.2.2). I detailed the Python function that was
developed for the storage purpose, as well as its behavior.

After that, in section 5.3, I detailed and showed how to retrieve sentence
patterns and load them as an input to the Neo4j database as a graph.

Next, I developed a Cypher query in section 5.3.1 to do pattern matching
between the pattern and the Query(sentence) graph. Then, in section 5.3.2, I
designed a test case to see whether or not the built Cypher query is functional.
As a consequence, I resolved the issues in section 5.3.3 by modifying the
Cypher query to function properly.

In section 5.3.4, I enhanced my statically written Cypher query by dynam-
ically matching patterns.

Finally, in section 5.3.5, I integrated my completely finished Cypher query
into the Python code and executed it to return the matching patterns. Ad-
ditionally, in section 5.3.5.1, I explained the construction of the delete query
that would destroy the Query graph from the database after pattern matching
is complete.

89

Chapter 6
Testing

It is now necessary to test the fully implemented code to check that it functions
properly and complies with the thesis criteria. As a result, I’ll discuss the
testing of the code and provide test results in this chapter.

6.1 Testing in Pytest

I’m using Pytest, a testing tool that enables me to rapidly and successfully
test the generated Python code’s operations for accurate results. Besides, I
have deployed this testing tool as mentioned in the configuration stage (sec-
tion 4.2.3).

To begin, what exactly should be evaluated?

1. The developed Python code should properly accept the sentence pattern
sent as a list and generate the graph in Neo4j by iterating over the
instance attributes included inside the list.

2. Then, pattern matching between the received Query (sentence) and
other predetermined patterns stored in the database should be per-
formed, and the matched patterns should be presented as results, and
they should be the correct ones.

3. Finally, the database should be cleared of the examined Query (sen-
tence). Additionally, it should be prepared to take another Query(sentence)
for analysis, at which point the process will repeat. Thus, it should ac-
cept any Query(sentence) and analyze it, returning accurate results.

Following that, I generated a separate Python file containing the test func-
tions to test the aforementioned actions. And each function returns the sen-
tence to be analyzed as a list of objects, with each element pointing to an
instance attribute of the Token class, which contains the initializer for initial-
izing the attributes (text, pos, dep, and head) required for textual patterns,

91

6. Testing

as demonstrated in the section 5.2.2. Additionally, I created these sentence
patterns in accordance with the papers [2] and [3]. Moreover, in these papers,
some of the example sentences don’t have grammatical inspections, so I used
a Spacy-NLP tool [13] to get pos tags and dependencies for the texts. Based
on that, I made a sentence pattern for testing.

After that, I created an object for the class GraphPatternsChecker() that
I imported from the graph patterns checker.python file. Then, using the cre-
ated object, I’m passing the sentence list as an argument to run the function
named get matched patterns. Indeed, this function is responsible for receiving
the sentence and loading it into Neo4j, as described in section 5.3. More-
over, the results will be generated once get matched patterns completes its
process. So, to capture those results, I’m calling that function from within
the matched patterns variable. As a result, when get matched patterns() re-
turns a result, it will be stored in this variable.

Now, I’m going to use Python’s assert keyword to verify that the returned
results are accurate. This is to ensure that the condition is satisfied and
to return true if it is; else, an AssertionError is thrown. Thus, by using
the assert keyword, I’m ensuring that the collected results of the matched
patterns reflect the desired results. If it passes the test, it indicates that the
constructed code is accurate and provides the expected outcomes.

However, what if the matched patterns and the desired results are identical
but one of them has elements in a different order?

In fact, it would cause an AssertionError. To avoid this, equality checks
should be performed regardless of the order of the elements. As a consequence,
I utilized the built-in Python method frozenset(). Thus, if I used this to
compare two frozenset collections, it would check for equality regardless of
the elements order.

I’ve included a code sample below to illustrate my overall explanation.

def test_sentence():

#Sentence patterns as list of objects
sentence = [
.
.
Attributes necessary for textual patterns are present.
.
]

graph_patterns_checker = GraphPatternsChecker()
matched_patterns = \
graph_patterns_checker.get_matched_patterns(sentence)

92

6.2. Summary

assert frozenset(matched_patterns) == \
frozenset(['pattern1', 'pattern3', 'Query',

'ClassAttribute'])

Similarly, I developed ten distinct sorts of test functions that each hold a
unique sentence pattern. Then, using the pytest command, I ran the tests.py
file that contains all of these test functions.

As a result, all test functions passed, indicating that the Python code was
written correctly and produces accurate results. I’ve included a screenshot of
a run I performed in my Python terminal below.

Figure 6.1: Screenshot of running a pytest

6.2 Summary

In summary, the test findings satisfy the following valid requirements specified
at the beginning of this testing chapter:

• The Python code successfully accepted the sentence patterns, which were
supplied as a list, and built the Neo4j graph by iterating over the list’s
attributes.

• Successful pattern matching between the received Query(sentence) and
predefined patterns, with accurate results generated.

• Finally, the investigated Query(sentence) has been deleted, as evidenced
by the succession of all test functions, indicating that the analyzed Query
was deleted to make room for another sentence.

93

Chapter 7
CONCLUSION AND FUTURE

WORK

7.1 Conclusion

This thesis focused on constructing a Neo4j database for graph-based storage
of linguistic patterns. It incorporates both predefined patterns and sentence
patterns(Query) obtained from a TEMOS through a shared Python inter-
face. Then, using a Cypher query in Neo4j, pattern matching was performed
between the received sentence pattern(Query) and predetermined patterns,
and the results were successfully created. As a result, I conclude that these
matched patterns are ready to be used in additional text mining operations,
namely to aid in the process of semantic enrichment and the discovery of
inaccuracies in a textual requirements specification. Additionally, the imple-
mented Neo4j database and Python program can be used to receive any textual
linguistic pattern with its lexical content, transform it to structural content as
a graph in Neo4j, and perform pattern matching using a dynamically designed
Cypher query that compares the received sentence to all predefined linguistic
patterns and generates the pattern name for all matched subgraphs of the
received sentence pattern.

7.1.1 Assignment completion

I have fulfilled all of the prerequisites for this master’s thesis, which are shown
below:

1. I introduced the Neo4j graph database and described why it is useful,
as well as how it is possible to store graphs using the Cypher Query
Language, on which Neo4j is based.

2. I gave a brief introduction to the linguistic patterns that were dealt
with in this thesis. Additionally, I discussed the linguistic patterns’

95

7. CONCLUSION AND FUTURE WORK

basis, which is Natural Language Processing (NLP), and how these lin-
guistic patterns are employed in requirement specifications to discover
inaccuracies in natural language text.

3. As a core part of this thesis, I designed and implemented the Neo4j
graph database for storing linguistic patterns generated by Python code
(which also stores cypher queries), utilizing a Py2neo interface to inter-
act Python and Neo4j. Additionally, I demonstrated another method
for storing linguistic patterns in Neo4j by constructing a Cypher Query
directly in Neo4j’s graphical user interface.

4. Following that, I implemented a Python shared interface that enables
TEMOS software to provide sentence patterns (Query) for analysis,
which are then transferred to Neo4j as a graph through the Python
to Neo4j interface. After that, the constructed dynamic cypher query
was used to execute pattern matching, resulting in the generation of
matched patterns.

5. Finally, all of these operations were verified using pytest to confirm that
the Python code developed, including the Cypher query, performed as
expected and delivered accurate results. As a result, it can accept any
sentence that emanates from TEMOS, do pattern matching, and deliver
accurate results.

7.2 Future Work

The database that was created lays the foundation for future enhancements.
The present solution involves retrieving one Query(sentence) from TEMOS
at a time, analyzing it, and then deleting it to create space for another
Query(sentence). However, this procedure may be modified to receive nu-
merous inputs concurrently and do pattern matching analysis and produce
results. This may be accomplished by the use of a Python iteration with a
dynamic range to take many Query (sentences) concurrently, or with develop-
ments in Cypher querying through the use of the efficient APOC procedures
well-known for dynamic operations.

96

Bibliography

[1] Requirements Specification[online]. [Cited 2021-10-23]. Available from:
https://visuresolutions.com/requirements-specification/

[2] Šenkỳr, D.; Kroha, P. Patterns in textual requirements specification. In
Proceedings of the 13th International Conference on Software Technolo-
gies, Porto, Portugal, 2018, pp. 197–204.

[3] Šenkỳř, D.; Kroha, P. Patterns of ambiguity in textual requirements spec-
ification. In Rocha, A. et al: Proceedings of WorldCIST’19 – World Con-
ference on Information Systems and Technologies, Advances in Intelligent
Systems and Computing Nr. 930, New Knowledge in Information Systems
and Technologies, volume 1, Springer, 2019, pp. 886–895.

[4] Šenkỳr, D.; Kroha, P. Problem of incompleteness in textual requirements
specification. In Proceedings of the 14th International Conference on Soft-
ware Technologies, Porto, Portugal, volume 1: ICSOFT, SciPress, 2019,
ISBN 978-989-758-379-7, pp. 323–330.

[5] Šenkýř., D.; Kroha., P. Problem of Inconsistency in Textual Require-
ments Specification. In Proceedings of the 16th International Conference
on Evaluation of Novel Approaches to Software Engineering - ENASE,,
INSTICC, SciTePress, 2021, ISBN 978-989-758-508-1, ISSN 2184-4895,
pp. 213–220, doi:10.5220/0010421602130220.

[6] Šenkýř, D.; Kroha, P. Problem of Semantic Enrichment of Sentences Used
in Textual Requirements Specification. In Advanced Information Systems
Engineering Workshops, edited by A. Polyvyanyy; S. Rinderle-Ma, Cham:
Springer International Publishing, 2021, ISBN 978-3-030-79022-6, pp. 69–
80.

[7] What is Natural Language Processing?[online]. [Cited on 2021-10-
29]. Available from: https://www.ibm.com/cloud/learn/natural-
language-processing

97

https://visuresolutions.com/requirements-specification/
https://www.ibm.com/cloud/learn/natural-language-processing
https://www.ibm.com/cloud/learn/natural-language-processing

Bibliography

[8] NLP vs. NLU vs. NLG: the differences between three natural language
processing concepts [online]. Nov. 2020, [cited on 2021-10-31]. Avail-
able from: https://www.ibm.com/blogs/watson/2020/11/nlp-vs-
nlu-vs-nlg-the-differences-between-three-natural-language-
processing-concepts/

[9] Marshall, C. What is named entity recognition (NER) and how
can I use it?[online]. June 2020, [Cited on 2021-10-31]. Avail-
able from: https://medium.com/mysuperai/what-is-named-entity-
recognition-ner-and-how-can-i-use-it-2b68cf6f545d

[10] Liddy, E. Natural language processing in Encyclopedia of Library and
Information Science 2nd ed., New York: Marcel Decker. 2001.

[11] Español, C. K. What are the different levels of NLP?[online]. Apr.
2020, [Cited on 2021-11-01]. Available from: https://medium.com/
@CKEspanol/what-are-the-different-levels-of-nlp-how-do-
these-integrate-with-information-retrieval-c0de6b9ebf61

[12] Natural Language Processing Tools and Libraries in 2021[online]. [Cited
on 2021-11-02]. Available from: https://theappsolutions.com/blog/
development/nlp-tools/

[13] spaCy · Industrial-strength Natural Language Processing in
Python[online]. [Cited on 2021-12-26]. Available from: https:
//spacy.io/

[14] Elgabry, O. Requirements Engineering — Requirements Specifica-
tion (Part 3) [online]. Sept. 2017, [Cited on 2021-11-04]. Avail-
able from: https://medium.com/omarelgabrys-blog/requirements-
engineering-elicitation-analysis-part-5-2dd9cffafae8

[15] Bhonde, S.; Paikrao, R.; et al. Text association analysis and ambiguity
in text mining. In AIP Conference Proceedings, volume 1324, American
Institute of Physics, 2010, pp. 204–206.

[16] Vimalraj, T.; Seema, B. Identification of Ambiguity in Requirement Spec-
ification using Multilingual Word Sense. In International Journal of Ad-
vanced Research in Computer and Communication Engineering, Issue 6,
volume Vol. 5, June 2016, ISSN 2278-1021 [online].

[17] Gleich, B.; Creighton, O.; et al. Ambiguity Detection: Towards a Tool
Explaining Ambiguity Sources. In Requirements Engineering: Founda-
tion for Software Quality, edited by R. Wieringa; A. Persson, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, ISBN 978-3-642-14192-8,
pp. 218–232.

98

https://www.ibm.com/blogs/watson/2020/11/nlp-vs-nlu-vs-nlg-the-differences-between-three-natural-language-processing-concepts/
https://www.ibm.com/blogs/watson/2020/11/nlp-vs-nlu-vs-nlg-the-differences-between-three-natural-language-processing-concepts/
https://www.ibm.com/blogs/watson/2020/11/nlp-vs-nlu-vs-nlg-the-differences-between-three-natural-language-processing-concepts/
https://medium.com/mysuperai/what-is-named-entity-recognition-ner-and-how-can-i-use-it-2b68cf6f545d
https://medium.com/mysuperai/what-is-named-entity-recognition-ner-and-how-can-i-use-it-2b68cf6f545d
https://medium.com/@CKEspanol/what-are-the-different-levels-of-nlp-how-do-these-integrate-with-information-retrieval-c0de6b9ebf61
https://medium.com/@CKEspanol/what-are-the-different-levels-of-nlp-how-do-these-integrate-with-information-retrieval-c0de6b9ebf61
https://medium.com/@CKEspanol/what-are-the-different-levels-of-nlp-how-do-these-integrate-with-information-retrieval-c0de6b9ebf61
https://theappsolutions.com/blog/development/nlp-tools/
https://theappsolutions.com/blog/development/nlp-tools/
https://spacy.io/
https://spacy.io/
https://medium.com/omarelgabrys-blog/requirements-engineering-elicitation-analysis-part-5-2dd9cffafae8
https://medium.com/omarelgabrys-blog/requirements-engineering-elicitation-analysis-part-5-2dd9cffafae8

Bibliography

[18] Spanoudakis, G.; Zisman, A. Inconsistency Management in Software
Engineering: Survey and Open Research Issues. Handbook of Soft-
ware Engineering and Knowledge Engineering, 11 2000, doi:10.1142/
9789812389718 0015.

[19] Silva, A. Linguistic Patterns and Linguistic Styles for Requirements Spec-
ification (I): An Application Case with the Rigorous RSL/Business-Level
Language. 07 2017, pp. 1–27, doi:10.1145/3147704.3147728.

[20] Full List Of Annotators[online]. [Cited on 2021-11-17]. Available from:
https://stanfordnlp.github.io/CoreNLP/annotators.html

[21] The Stanford Natural Language Processing Group[online]. [Cited on
2021-11-17]. Available from: https://nlp.stanford.edu/software/
tagger.html

[22] What is a Graph Database? - Developer Guides [online]. [Cited
on 2021-11-09]. Available from: https://neo4j.com/developer/graph-
database/

[23] Graph Database Use Cases. Available from: https://neo4j.com/use-
cases/

[24] Di Maro, M.; Valentino, M.; et al. Graph databases for designing high-
performance speech recognition grammars. In IWCS 2017—12th Inter-
national Conference on Computational Semantics—Short papers, 2017.

[25] Cypher Query Language - Developer Guides. Available from: https:
//neo4j.com/developer/cypher/

[26] openCypher · openCypher [online]. [Cited on 2021-11-16]. Available
from: http://opencypher.org/

[27] Getting Started with Cypher - Developer Guides [online]. [Cited on 2021-
11-16]. Available from: https://neo4j.com/developer/cypher/intro-
cypher/

[28] Querying with Cypher - Developer Guides[online]. [Cited on 2021-11-20].
Available from: https://neo4j.com/developer/cypher/querying/

[29] Filtering Query Results - Developer Guides[online]. [Cited on 2021-11-20].
Available from: https://neo4j.com/developer/cypher/filtering-
query-results/

[30] ORDER BY - Neo4j Cypher Manual[online]. [Cited on 2021-11-
20]. Available from: https://neo4j.com/docs/cypher-manual/4.3/
clauses/order-by/

99

https://stanfordnlp.github.io/CoreNLP/annotators.html
https://nlp.stanford.edu/software/tagger.html
https://nlp.stanford.edu/software/tagger.html
https://neo4j.com/developer/graph-database/
https://neo4j.com/developer/graph-database/
https://neo4j.com/use-cases/
https://neo4j.com/use-cases/
https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/
http://opencypher.org/
https://neo4j.com/developer/cypher/intro-cypher/
https://neo4j.com/developer/cypher/intro-cypher/
https://neo4j.com/developer/cypher/querying/
https://neo4j.com/developer/cypher/filtering-query-results/
https://neo4j.com/developer/cypher/filtering-query-results/
https://neo4j.com/docs/cypher-manual/4.3/clauses/order-by/
https://neo4j.com/docs/cypher-manual/4.3/clauses/order-by/

Bibliography

[31] Updating with Cypher - Developer Guides [online]. [Cited on 2021-11-21].
Available from: https://neo4j.com/developer/cypher/updating/

[32] Comparing SQL with Cypher - Developer Guides [online]. [Cited on 2021-
11-28]. Available from: https://neo4j.com/developer/cypher/guide-
sql-to-cypher/

[33] User Defined Procedures and Functions - Developer Guides[online].
[Cited on 2021-12-05]. Available from: https://neo4j.com/developer/
cypher/procedures-functions/

[34] Neo4j Labs - Neo4j Labs [online]. [Cited on 2021-12-05]. Available from:
https://neo4j.com/labs/

[35] Procedures & Functions - APOC Documentation[online]. [Cited on 2021-
12-06]. Available from: https://neo4j.com/labs/apoc/4.1/overview/

[36] Drivers & Language Guides - Developer Guides[online]. [Cited on
2021-11-21]. Available from: https://neo4j.com/developer/language-
guides/

[37] Bolt Protocol[online]. [Cited on 2021-11-21]. Available from: https://
boltprotocol.org/

[38] 4.2. Client applications - Chapter 4. Drivers[online]. [Cited on 2021-
11-23]. Available from: https://neo4j.com/docs/developer-manual/
current/drivers/client-applications/

[39] API Documentation — Neo4j Python Driver 4.3 [online]. [Cited on 2021-
11-23]. Available from: https://neo4j.com/docs/api/python-driver/
current/api.html#session

[40] API Documentation — Neo4j Python Driver 4.3 [online]. [Cited on 2021-
11-23]. Available from: https://neo4j.com/docs/api/python-driver/
current/api.html#transaction

[41] Introduction - HTTP API [online]. [Cited on 2021-11-22]. Available from:
https://neo4j.com/docs/http-api/4.3/introduction/

[42] Transaction flow - HTTP API [online]. [Cited on 2021-11-22].
Available from: https://neo4j.com/docs/http-api/4.3/actions/
transaction-flow/

[43] Postman API Platform [online]. [Cited on 2021-11-22]. Available from:
https://www.postman.com/product/what-is-postman/

100

https://neo4j.com/developer/cypher/updating/
https://neo4j.com/developer/cypher/guide-sql-to-cypher/
https://neo4j.com/developer/cypher/guide-sql-to-cypher/
https://neo4j.com/developer/cypher/procedures-functions/
https://neo4j.com/developer/cypher/procedures-functions/
https://neo4j.com/labs/
https://neo4j.com/labs/apoc/4.1/overview/
https://neo4j.com/developer/language-guides/
https://neo4j.com/developer/language-guides/
https://boltprotocol.org/
https://boltprotocol.org/
https://neo4j.com/docs/developer-manual/current/drivers/client-applications/
https://neo4j.com/docs/developer-manual/current/drivers/client-applications/
https://neo4j.com/docs/api/python-driver/current/api.html##session
https://neo4j.com/docs/api/python-driver/current/api.html##session
https://neo4j.com/docs/api/python-driver/current/api.html##transaction
https://neo4j.com/docs/api/python-driver/current/api.html##transaction
https://neo4j.com/docs/http-api/4.3/introduction/
https://neo4j.com/docs/http-api/4.3/actions/transaction-flow/
https://neo4j.com/docs/http-api/4.3/actions/transaction-flow/
https://www.postman.com/product/what-is-postman/

Bibliography

[44] Welcome to Paradise Paper Search App’s Django + Neomodel Tuto-
rial! — Paradise Paper Search 1 documentation [online]. [Cited on 2021-
11-25]. Available from: https://neo4j-examples.github.io/paradise-
papers-django/

[45] The Py2neo Handbook — py2neo 2021.1 [online]. [Cited on 2021-11-25].
Available from: https://py2neo.org/2021.1/#core-graph-api

[46] Connection profiles — py2neo 2021.1[online]. [Cited on 2021-11-25]. Avail-
able from: https://py2neo.org/2021.1/profiles.html#connection-
profiles

[47] py2neo — py2neo 2021.1. [Cited on 2021-11-27]. Avail-
able from: https://py2neo.org/2021.1/_modules/
py2neo.html#ConnectionProfile{[online]}

[48] Workflow — py2neo 2021.1. [Cited on 2021-11-28]. Available
from: https://py2neo.org/2021.1/workflow.html#graphservice-
objects{[online]}

[49] Workflow — py2neo 2021.1[online]. [Cited on 2021-11-29]. Available from:
https://py2neo.org/2021.1/workflow.html#py2neo.Graph

[50] Workflow — py2neo 2021.1 [online]. [Cited on 2021-11-29]. Available from:
https://py2neo.org/2021.1/workflow.html#transaction-objects

[51] py2neo.cypher – Cypher Execution — py2neo 2021.1 [online]. [Cited
on 2021-11-29]. Available from: https://py2neo.org/2021.1/cypher/
index.html#record-objects

[52] 2. py2neo.database – Graph Databases — The Py2neo v4 Hand-
book[online]. [Cited on 2021-11-29]. Available from: https://
py2neo.org/v4/database.html#py2neo.database.Graph.run

[53] py2neo.data – Graph data types — py2neo 2021.1[online]. [Cited
on 2021-11-30]. Available from: https://py2neo.org/2021.1/data/
index.html#py2neo.data.Subgraph

[54] Node and relationship matching — py2neo 2021.1[online]. [Cited
on 2021-11-30]. Available from: https://py2neo.org/2021.1/
matching.html#node-matching

[55] Errors — py2neo 2021.1[online]. 2021-12-01. Available from: https://
py2neo.org/2021.1/errors.html

[56] apoc.create.relationship - APOC Documentation[online]. [Cited 2021-
12-06]. Available from: https://neo4j.com/labs/apoc/4.1/overview/
apoc.create/apoc.create.relationship/

101

https://neo4j-examples.github.io/paradise-papers-django/
https://neo4j-examples.github.io/paradise-papers-django/
https://py2neo.org/2021.1/##core-graph-api
https://py2neo.org/2021.1/profiles.html##connection-profiles
https://py2neo.org/2021.1/profiles.html##connection-profiles
https://py2neo.org/2021.1/_modules/py2neo.html##ConnectionProfile {[online]}
https://py2neo.org/2021.1/_modules/py2neo.html##ConnectionProfile {[online]}
https://py2neo.org/2021.1/workflow.html##graphservice-objects{[online]}
https://py2neo.org/2021.1/workflow.html##graphservice-objects{[online]}
https://py2neo.org/2021.1/workflow.html##py2neo.Graph
https://py2neo.org/2021.1/workflow.html##transaction-objects
https://py2neo.org/2021.1/cypher/index.html##record-objects
https://py2neo.org/2021.1/cypher/index.html##record-objects
https://py2neo.org/v4/database.html##py2neo.database.Graph.run
https://py2neo.org/v4/database.html##py2neo.database.Graph.run
https://py2neo.org/2021.1/data/index.html##py2neo.data.Subgraph
https://py2neo.org/2021.1/data/index.html##py2neo.data.Subgraph
https://py2neo.org/2021.1/matching.html##node-matching
https://py2neo.org/2021.1/matching.html##node-matching
https://py2neo.org/2021.1/errors.html
https://py2neo.org/2021.1/errors.html
https://neo4j.com/labs/apoc/4.1/overview/apoc.create/apoc.create.relationship/
https://neo4j.com/labs/apoc/4.1/overview/apoc.create/apoc.create.relationship/

Bibliography

[57] apoc.merge.relationship - APOC Documentation [online]. [Cited on 2021-
12-06]. Available from: https://neo4j.com/labs/apoc/4.1/overview/
apoc.merge/apoc.merge.relationship/

[58] apoc.cypher.run - APOC Documentation. Available from: https://
neo4j.com/labs/apoc/4.1/overview/apoc.cypher/apoc.cypher.run/

[59] CALL procedure - Neo4j Cypher Manual[online]. [Cited on 2021-
12-09]. Available from: https://neo4j.com/docs/cypher-manual/4.4/
clauses/call/

[60] Neo4j Supported Versions - Knowledge Base[online]. [Cited on 2021-
12-10]. Available from: https://neo4j.com/developer/kb/neo4j-
supported-versions/

[61] Installation - Operations Manual[online]. [Cited on 2021-12-10].
Available from: https://neo4j.com/docs/operations-manual/4.4/
installation/

[62] Neo4j Desktop User Interface Guide - Developer Guides [online]. [Cited
on 2021-12-10]. Available from: https://neo4j.com/developer/neo4j-
desktop/

[63] Neo4j Download Center - Neo4j Graph Database Platform[online]. [Cited
on 2021-12-10]. Available from: https://neo4j.com/download-center/
#desktop

[64] Installation - APOC Documentation[online]. [Cited on 2021-12-10]. Avail-
able from: https://neo4j.com/labs/apoc/4.1/installation/

[65] Download Python[online]. [Cited on 2021-12-10]. Available from: https:
//www.python.org/downloads/

[66] PyCharm: the Python IDE for Professional Developers by Jet-
Brains[online]. [Cited on 2021-12-11]. Available from: https://
www.jetbrains.com/pycharm/

[67] Project Jupyter[online]. 2021-12-11. Available from: https:
//www.jupyter.org

[68] pip: The PyPA recommended tool for installing Python packages.[online].
[Cited on 2021-12-10]. Available from: https://pip.pypa.io/

[69] py2neo: Python client library and toolkit for Neo4j[online]. [Cited on
2021-12-10]. Available from: https://py2neo.org/

[70] The Py2neo Handbook — py2neo 2021.1[online]. [Cited on 2021-12-10].
Available from: https://py2neo.org/2021.1/#releases-versioning

102

https://neo4j.com/labs/apoc/4.1/overview/apoc.merge/apoc.merge.relationship/
https://neo4j.com/labs/apoc/4.1/overview/apoc.merge/apoc.merge.relationship/
https://neo4j.com/labs/apoc/4.1/overview/apoc.cypher/apoc.cypher.run/
https://neo4j.com/labs/apoc/4.1/overview/apoc.cypher/apoc.cypher.run/
https://neo4j.com/docs/cypher-manual/4.4/clauses/call/
https://neo4j.com/docs/cypher-manual/4.4/clauses/call/
https://neo4j.com/developer/kb/neo4j-supported-versions/
https://neo4j.com/developer/kb/neo4j-supported-versions/
https://neo4j.com/docs/operations-manual/4.4/installation/
https://neo4j.com/docs/operations-manual/4.4/installation/
https://neo4j.com/developer/neo4j-desktop/
https://neo4j.com/developer/neo4j-desktop/
https://neo4j.com/download-center/##desktop
https://neo4j.com/download-center/##desktop
https://neo4j.com/labs/apoc/4.1/installation/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.jupyter.org
https://www.jupyter.org
https://pip.pypa.io/
https://py2neo.org/
https://py2neo.org/2021.1/##releases-versioning

Bibliography

[71] Installation and Getting Started — pytest documentation[online]. [Cited
on 2021-12-11]. Available from: https://docs.pytest.org/en/6.2.x/
getting-started.html

[72] pytest: pytest: simple powerful testing with Python[online]. [Cited on
2021-12-11]. Available from: https://docs.pytest.org/en/latest/

[73] apoc.merge.relationship - APOC Documentation[online]. [Cited on 2021-
12-17]. Available from: https://neo4j.com/labs/apoc/4.1/overview/
apoc.merge/apoc.merge.relationship/

[74] Aggregating functions - Neo4j Cypher Manual[online]. [Cited on 2021-
12-18]. Available from: https://neo4j.com/docs/cypher-manual/4.4/
functions/aggregating/

[75] WITH - Neo4j Cypher Manual[online]. [Cited on 2021-12-18]. Available
from: https://neo4j.com/docs/cypher-manual/4.4/clauses/with/

[76] Predicate functions - Neo4j Cypher Manual[online]. [Cited on 2021-
12-18]. Available from: https://neo4j.com/docs/cypher-manual/4.4/
functions/predicate/

[77] apoc.coll.duplicatesWithCount - APOC Documentation[online]. [Cited
on 2021-12-18]. Available from: https://neo4j.com/labs/apoc/4.1/
overview/apoc.coll/apoc.coll.duplicatesWithCount/

[78] A Test Plan Tool for simpler Test Case Management | Testpad[online].
[Cited on 2021-12-20]. Available from: https://ontestpad.com/

[79] OPTIONAL MATCH - Neo4j Cypher Manual[online]. [Cited on 2021-
12-20]. Available from: https://neo4j.com/docs/cypher-manual/4.4/
clauses/optional-match/

[80] apoc.coll.duplicates - APOC Documentation[online]. [Cited on 2021-
12-20]. Available from: https://neo4j.com/labs/apoc/4.2/overview/
apoc.coll/apoc.coll.duplicates/

[81] apoc.coll.isEqualCollection - APOC Documentation[online]. [Cited
on 2021-12-20]. Available from: https://neo4j.com/labs/apoc/4.2/
overview/apoc.coll/apoc.coll.isEqualCollection/

103

https://docs.pytest.org/en/6.2.x/getting-started.html
https://docs.pytest.org/en/6.2.x/getting-started.html
https://docs.pytest.org/en/latest/
https://neo4j.com/labs/apoc/4.1/overview/apoc.merge/apoc.merge.relationship/
https://neo4j.com/labs/apoc/4.1/overview/apoc.merge/apoc.merge.relationship/
https://neo4j.com/docs/cypher-manual/4.4/functions/aggregating/
https://neo4j.com/docs/cypher-manual/4.4/functions/aggregating/
https://neo4j.com/docs/cypher-manual/4.4/clauses/with/
https://neo4j.com/docs/cypher-manual/4.4/functions/predicate/
https://neo4j.com/docs/cypher-manual/4.4/functions/predicate/
https://neo4j.com/labs/apoc/4.1/overview/apoc.coll/apoc.coll.duplicatesWithCount/
https://neo4j.com/labs/apoc/4.1/overview/apoc.coll/apoc.coll.duplicatesWithCount/
https://ontestpad.com/
https://neo4j.com/docs/cypher-manual/4.4/clauses/optional-match/
https://neo4j.com/docs/cypher-manual/4.4/clauses/optional-match/
https://neo4j.com/labs/apoc/4.2/overview/apoc.coll/apoc.coll.duplicates/
https://neo4j.com/labs/apoc/4.2/overview/apoc.coll/apoc.coll.duplicates/
https://neo4j.com/labs/apoc/4.2/overview/apoc.coll/apoc.coll.isEqualCollection/
https://neo4j.com/labs/apoc/4.2/overview/apoc.coll/apoc.coll.isEqualCollection/

Appendix A
List of Acronyms

APOC Awesome Procedures on Cypher
API Application Programming Interface
ACID Atomicity Consistency Isolation and Durability
CQL Cypher Query Language
CRUD Create Read Update Delete
GUI Graphical User Interface
HTTP Hyper Text Transfer Protocol
IDE Integrated Development Environment
JSON JavaScript Object Notation
NLP Natural Language Processing
NLTK Natural Language Toolkit
POS Parts of Speech Tagging
PyPI Python Package Index
RDF Resource Description Framework
SQL Structured Query Language
SSL Socket Secure Layer
TCP Transmission Control Protocol
TLS Transport Layer Security
TEMOS Textual Modelling System
UML Unified Modeling Language
URI Uniform Resource Identifier

105

Appendix B
Code

B.1 graph patterns checker.py

1 from py2neo import Graph , Node , Relationship
2
3
4 class Token:
5 """
6 This is a class for accessing through the sentence list.
7
8 Attributes :
9 text(str): The words in a sentence .

10 pos(str): The part of speech tagging of a word.
11 dep(str): The dependencies between words.
12
13 """
14
15 def __init__ (self , text: str , pos: str , dep: str) -> None:
16 """
17 The constructor for Token class.
18 :param text: The words in a sentence .
19 :param pos: The part of speech tagging of a word.
20 :param dep: The dependencies between words.
21 """
22 self.text = text
23 self.pos = pos
24 self.dep = dep
25 self.head = None
26
27
28 class GraphPatternsChecker :
29 """
30 This is class to check a graph patterns for it 's matching .
31 """
32
33 def __init__ (self) -> None:
34 """

107

B. Code

35 The constructor to initiate the graph database connection
36 """
37 self.graph = Graph("bolt :// localhost :7687", auth =("neo4j"

, "123"))
38
39 def create_relationship (self , name: str):
40
41 self.graph.run("MATCH(p:" + name + ") ,(s:" + name + ")"
42 "WHERE p.id = s.head WITH p, s "
43 "CALL apoc.merge. relationship (p, "
44 "(toString (s.Dep)), {}, {}, s, {}) "
45 "YIELD rel RETURN p, s")
46
47 def insert_patterns (self , name: str , pattern : list[Token]) ->

None:
48 """
49 A function to take defined patterns and store it

dynamically based on relationships .
50
51 Parameters "
52 name: under which label name the patterns should be

stored .
53 pattern (list): list of pattern 's properties and

relationships
54 """
55
56 for i in range(len(pattern)):
57
58 if pattern [i]. head is not None:
59 sender_node = pattern .index(pattern [i]. head)
60
61 else:
62 sender_node = None
63
64 node = Node(name , id=i, POS= pattern [i].pos , Word=

pattern [i].text ,
65 Dep= pattern [i].dep ,
66 head= sender_node)
67
68 self.graph. merge(node , name , "id")
69 self. create_relationship (name)
70
71 def get_matched_patterns (self , sentence : list[Token]) -> list

[str]:
72 """
73 A function to takes in a sentence and returns the matched

patterns
74
75 Parameters :
76 sentence (list): The list of tokens .
77
78 Returns :
79 list(str): The list of matched patterns .
80 """

108

B.1. graph patterns checker.py

81
82 for k in range(len(sentence)):
83
84 if sentence [k]. head is not None:
85 head_value = sentence .index(sentence [k]. head)
86
87 else:
88 head_value = None
89
90 node = Node("Query", id=k, POS= sentence [k].pos , Word=

sentence [k].text ,
91 Dep= sentence [k].dep ,
92 head= head_value)
93 self.graph.merge(node , "Query", "id")
94 self. create_relationship ("Query")
95
96 match = []
97 matched = self.graph.run(""" CALL db. labels ()
98 YIELD label
99 CALL apoc. cypher .run (" MATCH (a:" + label +

") -[r1]->(b)
100 OPTIONAL MATCH (a:" + label + ") -[rr]->(b)
101 OPTIONAL MATCH (i) -[ir]->(a)
102 WITH collect ({ SenderPOS :a.POS , relation :

type(r1),ReceiverPOS :b.POS }) AS pattern ,
103 collect ({ Incoming :type(ir),SendPOS :a.POS ,

relation :type(rr)}) AS incoming_pattern
104 CALL { MATCH (n:Query) -[r]->(p)
105 OPTIONAL MATCH (n:Query) -[rr]->(p)

OPTIONAL MATCH (i) -[ir]->(n)
106 RETURN collect ({ SenderPOS :n.POS , relation :

type(r),ReceiverPOS :p.POS }) AS query ,
107 collect ({ Incoming :type(ir),SendPOS :n.POS ,

relation :type(rr)}) AS incoming_query }
108 CALL { MATCH (pos :" + label + ") RETURN

collect (pos.POS) AS POS_pattern }
109 CALL { MATCH (pos:Query) RETURN collect (

pos.POS) AS POS_query }
110 WITH incoming_pattern AS ip , incoming_query

AS iq ,
111 apoc.coll. duplicates (POS_pattern) AS

dup_POS_pattern ,
112 apoc.coll. duplicates (POS_query) AS

dup_POS_query ,
113 apoc.coll. duplicatesWithCount (pattern) AS

dup_pattern ,
114 apoc.coll. duplicatesWithCount (query) AS

dup_query
115 WHERE ALL(a IN pattern WHERE a IN query)

AND ALL(a IN dup_pattern WHERE a IN dup_query)
116 WITH apoc.coll. isEqualCollection (

dup_POS_pattern , dup_POS_query) AS Equal_POS ,
117 apoc.coll. containsAll (iq ,ip) AS

Equal_Incoming

109

B. Code

118 WHERE (Equal_POS = true AND Equal_Incoming
= true) OR

119 (Equal_POS = false AND (Equal_Incoming =
false OR Equal_Incoming = true))

120 RETURN 1" ,{})
121 YIELD value
122 RETURN label """)
123
124 for record in matched :
125 match. append (record ["label"])
126 self.graph.run("MATCH(n:Query)
127 OPTIONAL MATCH(n) -[r]-() DELETE n,r")
128
129 return match

B.2 temos graph initializer

1 from graph_patterns_checker import GraphPatternsChecker , Token
2
3
4 class TemosGraphInitializer :
5 """ This is a class to store a predefined linguistics patterns

in a database ."""
6
7 def initialize (self) -> None:
8 pattern_1 = [
9 Token("NN", "NN", "nsubj"),

10 Token("AUX", "AUX", None),
11 Token("NN", "NN", "dobj")
12]
13
14 pattern_1 [0]. head = pattern_1 [1]
15 pattern_1 [2]. head = pattern_1 [1]
16
17 pattern_2 = [
18 Token("NN", "NN", "nsubj"),
19 Token("VB", "VB", None),
20 Token("NN", "NN", "dobj")
21]
22
23 pattern_2 [0]. head = pattern_2 [1]
24 pattern_2 [2]. head = pattern_2 [1]
25
26 pattern_3 = [
27 Token("JJ", "JJ", "amod"),
28 Token("NN", "NN", None)
29
30]
31
32 pattern_3 [0]. head = pattern_3 [1]
33
34 pattern_4 = [

110

B.2. temos graph initializer

35 Token("JJ", "JJ", "amod"),
36 Token("NN", "NN", None),
37 Token("DT", "DT", "det")
38
39]
40 pattern_4 [0]. head = pattern_4 [1]
41 pattern_4 [2]. head = pattern_4 [1]
42
43 pattern_5 = [
44 Token("DT", "DT", "det"),
45 Token("NN", "NN", "dobj"),
46 Token("VB", "VB", None),
47 Token("NN", "NN", "nsubj"),
48 Token("DT", "DT", "det")
49
50]
51 pattern_5 [0]. head = pattern_5 [1]
52 pattern_5 [1]. head = pattern_5 [2]
53 pattern_5 [3]. head = pattern_5 [2]
54 pattern_5 [4]. head = pattern_5 [3]
55
56 class_attr = [
57 Token("NN", "NN", " compound "),
58 Token("NN", "NN", None)
59]
60
61 class_attr [0]. head = class_attr [1]
62
63 class_special = [
64 Token("NN", "NN", "nsubj"),
65 Token("VB", "VB", "cop"),
66 Token("NN", "NN", " compound "),
67 Token("NN", "NN", None),
68 Token("NN", "NN", "conj"),
69 Token("NN", "NN", " compound ")
70]
71
72 class_special [0]. head = class_special [3]
73 class_special [1]. head = class_special [3]
74 class_special [2]. head = class_special [3]
75 class_special [4]. head = class_special [3]
76 class_special [5]. head = class_special [4]
77
78 Attr_1 = [
79 Token("NN", "NN", "nsubj"),
80 Token("VB", "VB", None),
81 Token("NN", "NN", "dobj"),
82
83]
84 Attr_1 [0]. head = Attr_1 [1]
85 Attr_1 [2]. head = Attr_1 [1]
86
87 Attr_2 = [
88 Token("NN", "NN", " nmodof "),

111

B. Code

89 Token("NN", "NN", None)
90]
91
92 Attr_2 [0]. head = Attr_2 [1]
93
94 General_relation = [
95 Token("NN", "NN", "nsubj"),
96 Token("VB", "VB", None),
97 Token("NN", "NN", " compound "),
98 Token("NN", "NN", "dobj")
99]

100 General_relation [0]. head = General_relation [2]
101 General_relation [2]. head = General_relation [3]
102 General_relation [3]. head = General_relation [1]
103
104 Preposition_Phrase = [
105 Token("NN", "NN", None),
106 Token("IN", "IN", " advmod "),
107 Token("IN", "IN", "prep"),
108 Token("NN", "NN", "pobj"),
109 Token("IN", "IN", "prep")
110
111]
112 Preposition_Phrase [1]. head = Preposition_Phrase [0]
113 Preposition_Phrase [2]. head = Preposition_Phrase [1]
114 Preposition_Phrase [3]. head = Preposition_Phrase [2]
115 Preposition_Phrase [4]. head = Preposition_Phrase [3]
116
117 pattern_6 = [
118 Token("NN", "NN", None),
119 Token("IN", "IN", " advmod "),
120 Token("IN", "IN", "prep"),
121 Token("NN", "NN", "pobj"),
122 Token("IN", "IN", "prep")
123]
124
125 pattern_6 [1]. head = pattern_6 [0]
126 pattern_6 [2]. head = pattern_6 [1]
127 pattern_6 [3]. head = pattern_6 [2]
128 pattern_6 [4]. head = pattern_6 [0]
129
130 Preposition_Phrase_Modifier = [
131 Token("VB", "VB", None),
132 Token("NN", "NN", "dobj"),
133 Token("IN", "IN", "prep"),
134 Token("NN", "NN", "pobj")
135]
136 Preposition_Phrase_Modifier [1]. head =

Preposition_Phrase_Modifier [0]
137 Preposition_Phrase_Modifier [2]. head =

Preposition_Phrase_Modifier [1]
138 Preposition_Phrase_Modifier [3]. head =

Preposition_Phrase_Modifier [2]
139

112

B.2. temos graph initializer

140 Sub_attach = [
141 Token("PRN", "PRN", "nsubj"),
142 Token("VB", "VB", None),
143 Token("PRN", "PRN", "nsubj"),
144 Token("IN", "IN", "mark"),
145 Token("VB", "VB", "ccomp"),
146 Token("NN", "NN", " npadvmod ")
147]
148 Sub_attach [0]. head = Sub_attach [1]
149 Sub_attach [2]. head = Sub_attach [4]
150 Sub_attach [3]. head = Sub_attach [4]
151 Sub_attach [4]. head = Sub_attach [1]
152 Sub_attach [5]. head = Sub_attach [4]
153
154 Adv_Pos_1 = [
155 Token("VB", "VB", None),
156 Token("RB", "RB", " advmod "),
157 Token("CC", "CC", "cc"),
158 Token("RB", "RB", " advmod "),
159 Token("VB", "VB", "conj")
160]
161 Adv_Pos_1 [1]. head = Adv_Pos_1 [0]
162 Adv_Pos_1 [2]. head = Adv_Pos_1 [0]
163 Adv_Pos_1 [3]. head = Adv_Pos_1 [4]
164 Adv_Pos_1 [4]. head = Adv_Pos_1 [0]
165
166 Adv_Pos_2 = [
167 Token("VB", "VB", None),
168 Token("RB", "RB", " advmod "),
169 Token("VB", "VB", "amod"),
170 Token("NN", "NN", "dobj")
171]
172 Adv_Pos_2 [1]. head = Adv_Pos_2 [2]
173 Adv_Pos_2 [2]. head = Adv_Pos_2 [3]
174 Adv_Pos_2 [3]. head = Adv_Pos_2 [0]
175
176 PP_Adj = [
177 Token("VB", "VB", "aux"),
178 Token("VBG", "VBG", None),
179 Token("NN", "NN", "dobj")
180]
181 PP_Adj [0]. head = PP_Adj [1]
182 PP_Adj [2]. head = PP_Adj [1]
183
184 graph_patterns_checker = GraphPatternsChecker ()
185 graph_patterns_checker . insert_patterns (" pattern1 ",

pattern_1)
186 graph_patterns_checker . insert_patterns (" pattern2 ",

pattern_2)
187 graph_patterns_checker . insert_patterns (" pattern3 ",

pattern_3)
188 graph_patterns_checker . insert_patterns (" pattern4 ",

pattern_4)
189 graph_patterns_checker . insert_patterns (" pattern5 ",

113

B. Code

pattern_5)
190 graph_patterns_checker . insert_patterns (" ClassAttribute ",

class_attr)
191 graph_patterns_checker . insert_patterns ("

ClassSpecialization ", class_special)
192 graph_patterns_checker . insert_patterns (" Attributepattern1

", Attr_1)
193 graph_patterns_checker . insert_patterns (" Attributepattern2

", Attr_2)
194 graph_patterns_checker . insert_patterns ("

Generalrelationpattern ", General_relation)
195 graph_patterns_checker . insert_patterns (" PrepositionPhrase

", Preposition_Phrase)
196 graph_patterns_checker . insert_patterns (" pattern6 ",

pattern_6)
197 graph_patterns_checker . insert_patterns ("

PrepositionPhraseModifier ", Preposition_Phrase_Modifier)
198 graph_patterns_checker . insert_patterns ("

SubsentenceAttachment ", Sub_attach)
199 graph_patterns_checker . insert_patterns ("

AdverbialPosition1 ", Adv_Pos_1)
200 graph_patterns_checker . insert_patterns ("

AdverbialPosition2 ", Adv_Pos_2)
201 graph_patterns_checker . insert_patterns ("

PresentparticiplevsAdjective ", PP_Adj)

B.3 tests.py

1 from graph_patterns_checker import Token , GraphPatternsChecker
2
3
4 def test_sentence1 ():
5 """ A test function to pass a sentence and check whether it

returns valid matched patterns or not """
6 sentence = [
7 Token("Each", "DT", "det"),
8 Token(" confirmation ", "NN", " compound "),
9 Token(" window ", "NN", "nsubj"),

10 Token("has", "AUX", None),
11 Token("a", "DT", "det"),
12 Token("close", "JJ", "amod"),
13 Token(" button ", "NN", "dobj"),
14 Token(".", ".", "punct")
15
16]
17
18 sentence [0]. head = sentence [2]
19 sentence [1]. head = sentence [2]
20 sentence [2]. head = sentence [3]
21 sentence [4]. head = sentence [6]
22 sentence [5]. head = sentence [6]
23 sentence [6]. head = sentence [3]

114

B.3. tests.py

24 sentence [7]. head = sentence [3]
25
26 graph_patterns_checker = GraphPatternsChecker ()
27 matched_patterns = graph_patterns_checker .

get_matched_patterns (sentence)
28
29 assert frozenset (matched_patterns) == frozenset (['pattern1 ',

'pattern3 ', 'pattern4 ', 'Query ', 'ClassAttribute '])
30
31
32 def test_sentence2 ():
33 sentence = [
34 Token("The", "DT", "det"),
35 Token(" rentable ", "JJ", "amod"),
36 Token("space", "NN", "nsubj"),
37 Token("is", "VB", "cop"),
38 Token(" either ", "CC", "cc: preconj "),
39 Token("a", "DT", "det"),
40 Token("hotel", "NN", " compound "),
41 Token("bed", "NN", None),
42 Token("or", "CC", "cc"),
43 Token("a", "DT", "det"),
44 Token(" meeting ", "NN", " compound "),
45 Token("room", "NN", "conj:or"),
46 Token(".", ".", "punct")
47]
48
49 sentence [0]. head = sentence [2]
50 sentence [1]. head = sentence [2]
51 sentence [2]. head = sentence [7]
52 sentence [3]. head = sentence [7]
53 sentence [4]. head = sentence [7]
54 sentence [5]. head = sentence [7]
55 sentence [6]. head = sentence [7]
56 sentence [8]. head = sentence [6]
57 sentence [9]. head = sentence [11]
58 sentence [10]. head = sentence [11]
59 sentence [11]. head = sentence [7]
60 sentence [12]. head = sentence [7]
61
62 graph_patterns_checker = GraphPatternsChecker ()
63 matched_patterns = graph_patterns_checker .

get_matched_patterns (sentence)
64
65 assert frozenset (matched_patterns) == frozenset (['pattern3 ',

'pattern4 ', 'Query ', 'ClassAttribute '])
66
67
68 def test_sentence3 ():
69 sentence = [
70 Token("On", "IN", "case"),
71 Token("the", "DT", "det"),
72 Token(" ground ", "NN", " compound "),
73 Token("floor", "NN", " nmodon "),

115

B. Code

74 Token(",", ",", "punct"),
75 Token("there", "EX", "expl"),
76 Token("is", "VB", None),
77 Token("a", "DT", "det"),
78 Token(" living ", "NN", " compound "),
79 Token("room", "NN", "nsubj"),
80 Token(".", ".", "punct")
81]
82
83 sentence [0]. head = sentence [3]
84 sentence [1]. head = sentence [3]
85 sentence [2]. head = sentence [3]
86 sentence [3]. head = sentence [6]
87 sentence [4]. head = sentence [6]
88 sentence [5]. head = sentence [6]
89 sentence [7]. head = sentence [9]
90 sentence [8]. head = sentence [9]
91 sentence [9]. head = sentence [6]
92 sentence [10]. head = sentence [6]
93
94 graph_patterns_checker = GraphPatternsChecker ()
95 matched_patterns = graph_patterns_checker .

get_matched_patterns (sentence)
96
97 assert frozenset (matched_patterns) == frozenset (['Query ', '

ClassAttribute '])
98
99

100 def test_sentence4 ():
101 sentence = [
102 Token("The", "DT", "det"),
103 Token(" rentable ", "JJ", "amod"),
104 Token("space", "NN", "nsubj"),
105 Token(" always ", "RB", " advmod "),
106 Token("has", "VB", None),
107 Token("a", "DT", "det"),
108 Token(" specified ", "VBN", "amod"),
109 Token("rent", "NN", " compound "),
110 Token("cost", "NN", "dobj"),
111 Token("and", "CC", "cc"),
112 Token("area", "NN", "dobj"),
113 Token("(", "(", "punct"),
114 Token(" measured ", "VBN", "dep"),
115 Token("in", "IN", "case"),
116 Token(" square ", "JJ", "amod"),
117 Token(" meters ", "NNS", None),
118 Token(")", ")", "punct"),
119 Token(".", ".", "punct")
120]
121
122 sentence [0]. head = sentence [2]
123 sentence [1]. head = sentence [2]
124 sentence [2]. head = sentence [4]
125 sentence [3]. head = sentence [4]

116

B.3. tests.py

126 sentence [5]. head = sentence [8]
127 sentence [6]. head = sentence [8]
128 sentence [7]. head = sentence [8]
129 sentence [8]. head = sentence [4]
130 sentence [9]. head = sentence [8]
131 sentence [10]. head = sentence [8]
132 sentence [10]. head = sentence [4]
133 sentence [11]. head = sentence [12]
134 sentence [12]. head = sentence [10]
135 sentence [13]. head = sentence [15]
136 sentence [14]. head = sentence [15]
137 sentence [16]. head = sentence [12]
138 sentence [17]. head = sentence [4]
139
140 graph_patterns_checker = GraphPatternsChecker ()
141 matched_patterns = graph_patterns_checker .

get_matched_patterns (sentence)
142
143 assert frozenset (matched_patterns) == frozenset (
144 ['pattern2 ', 'pattern3 ', 'pattern4 ', 'pattern5 ', 'Query ',

'Attributepattern1 ', 'ClassAttribute '])
145
146
147 def test_sentence5 ():
148 sentence = [
149 Token("He", "PRP", "nsubj"),
150 Token("saw", "VB", None),
151 Token("the", "DT", "det"),
152 Token("man", "NN", "dobj"),
153 Token("with", "IN", "prep"),
154 Token("field", "NN", " compound "),
155 Token("glass", "NN", "pobj"),
156 Token(".", ".", "punct")
157
158]
159 sentence [0]. head = sentence [1]
160 sentence [2]. head = sentence [3]
161 sentence [3]. head = sentence [1]
162 sentence [4]. head = sentence [3]
163 sentence [5]. head = sentence [6]
164 sentence [6]. head = sentence [4]
165
166 graph_patterns_checker = GraphPatternsChecker ()
167 matched_patterns = graph_patterns_checker .

get_matched_patterns (sentence)
168
169 assert frozenset (matched_patterns) == frozenset (['Query ', '

PrepositionPhraseModifier '])
170
171
172 def test_sentence6 ():
173 sentence = [
174 Token("The", "DT", "det"),
175 Token("door", "NN", "nsubj"),

117

B. Code

176 Token("near", "IN", " advmod "),
177 Token("to", "IN", "prep"),
178 Token(" stairs ", "NN", "pobj"),
179 Token("with", "IN", "prep"),
180 Token("the", "DT", "det"),
181 Token(" Members ", "NN", "pobj"),
182 Token("Only", "RB", " advmod "),
183 Token("sign", "VB", None),
184 Token(".", ".", "punct"),
185 Token(".", ".", "punct"),
186 Token(".", ".", "punct")
187
188]
189
190 sentence [0]. head = sentence [1]
191 sentence [1]. head = sentence [9]
192 sentence [2]. head = sentence [1]
193 sentence [3]. head = sentence [2]
194 sentence [4]. head = sentence [3]
195 sentence [5]. head = sentence [4]
196 sentence [6]. head = sentence [7]
197 sentence [7]. head = sentence [5]
198 sentence [8]. head = sentence [9]
199
200 graph_patterns_checker = GraphPatternsChecker ()
201 matched_patterns = graph_patterns_checker .

get_matched_patterns (sentence)
202
203 assert frozenset (matched_patterns) == frozenset (['Query ', '

pattern6 ', 'PrepositionPhrase '])
204
205
206 def test_sentence7 ():
207 sentence = [
208 Token("He", "PRN", "nsubj"),
209 Token("said", "VB", None),
210 Token("that", "IN", "mark"),
211 Token("she", "PRN", "nsubj"),
212 Token("had", "VB", "aux"),
213 Token("done", "VB", "ccomp"),
214 Token("it", "PRN", "dobj"),
215 Token(" yesterday ", "NN", " npadvmod ")
216]
217
218 sentence [0]. head = sentence [1]
219 sentence [2]. head = sentence [5]
220 sentence [3]. head = sentence [5]
221 sentence [4]. head = sentence [5]
222 sentence [5]. head = sentence [1]
223 sentence [6]. head = sentence [5]
224 sentence [7]. head = sentence [5]
225
226 graph_patterns_checker = GraphPatternsChecker ()
227 matched_patterns = graph_patterns_checker .

118

B.3. tests.py

get_matched_patterns (sentence)
228
229 assert frozenset (matched_patterns) == frozenset (['Query ', '

SubsentenceAttachment '])
230
231
232 def test_sentence_8 ():
233 sentence = [
234 Token("The", "DT", "det"),
235 Token("lady", "NN", None),
236 Token("you", "PRN", "nsubj"),
237 Token("met", "VB", "relcl"),
238 Token("now", "RB", " advmod "),
239 Token("and", "CC", "cc"),
240 Token("then", "RB", " advmod "),
241 Token("came", "VB", "conj"),
242 Token("to", "TO", "aux"),
243 Token("visit", "VB", "advcl"),
244 Token("us", "PRN", "dobj"),
245 Token(".", ".", "punct")
246
247]
248
249 sentence [0]. head = sentence [1]
250 sentence [2]. head = sentence [3]
251 sentence [3]. head = sentence [1]
252 sentence [4]. head = sentence [3]
253 sentence [5]. head = sentence [3]
254 sentence [6]. head = sentence [7]
255 sentence [7]. head = sentence [3]
256 sentence [8]. head = sentence [9]
257 sentence [9]. head = sentence [7]
258 sentence [10]. head = sentence [9]
259
260 graph_patterns_checker = GraphPatternsChecker ()
261 matched_patterns = graph_patterns_checker .

get_matched_patterns (sentence)
262
263 assert frozenset (matched_patterns) == frozenset (['Query ', '

AdverbialPosition1 '])
264
265
266 def test_sentence9 ():
267 sentence = [
268 Token("A", "DT", "det"),
269 Token(" secretary ", "NN", "nsubj"),
270 Token("can", "VB", "aux"),
271 Token("type", "VB", None),
272 Token(" quickly ", "RB", " advmod "),
273 Token(" written ", "VB", "amod"),
274 Token(" reports ", "NN", "dobj")
275]
276 sentence [0]. head = sentence [1]
277 sentence [1]. head = sentence [3]

119

B. Code

278 sentence [2]. head = sentence [3]
279 sentence [4]. head = sentence [5]
280 sentence [5]. head = sentence [6]
281 sentence [6]. head = sentence [3]
282
283 graph_patterns_checker = GraphPatternsChecker ()
284 matched_patterns = graph_patterns_checker .

get_matched_patterns (sentence)
285
286 assert frozenset (matched_patterns) == frozenset (['Query ', '

Attributepattern1 ', 'pattern2 ', 'AdverbialPosition2 '])
287
288
289 def test_sentence10 ():
290 sentence = [
291 Token("We", "PRN", "nsubj"),
292 Token("are", "VB", "aux"),
293 Token(" writing ", "VBG", None),
294 Token("a", "DT", "det"),
295 Token(" letter ", "NN", "dobj")
296
297]
298
299 sentence [0]. head = sentence [2]
300 sentence [1]. head = sentence [2]
301 sentence [3]. head = sentence [4]
302 sentence [4]. head = sentence [2]
303
304 graph_patterns_checker = GraphPatternsChecker ()
305 matched_patterns = graph_patterns_checker .

get_matched_patterns (sentence)
306
307 assert frozenset (matched_patterns) == frozenset (['Query ', '

PresentparticiplevsAdjective '])

120

Appendix C
Contents of enclosed CD

readme.txt the file describes the contents of the CD
src.......................................the directory of source codes

implementation implementation source codes
thesis...........................source codes of the thesis in LATEX

text..............................the directory of thesis text document
DP Manoharan Vigneshwar 2022.pdf.... the thesis in a PDF format

121

	Introduction
	Motivation
	Why Graph Database and especially Neo4j is perfect to store linguistic patterns?

	Objectives
	Structure of Thesis

	State-of-the-art
	Natural Language Processing
	NLP Tasks
	Levels of NLP
	Tools and approaches

	Textual Requirements Specifications and Their Problems
	What is Requirements Specification?
	Problems in textual requirements
	Ambiguity
	Incompleteness
	Inconsistency

	Linguistic Patterns
	TEMOS tool and Defined linguistic patterns
	Defined Linguistic Patterns
	Linguistic patterns are used to identify the problems in a textual requirements:

	Graph Database and Neo4j
	Graph Database
	Why Graph Database is efficient?

	Neo4j
	Use Cases
	Neo4j vs RDF

	Cypher Query
	Why Cypher?
	Representation of Nodes and Relationships in Cypher
	CRUD(Create, Read, Update, and Delete) operations in Cypher query
	Cypher query vs SQL
	Procedures and Functions

	Summary

	ANALYSIS AND DESIGN
	How to create an interface with Neo4j?
	How the binary Bolt Protocol works in Neo4j Python driver?
	HTTP API

	Decision to use Py2neo community driver for Neo4j interface
	Py2Neo
	Connection
	Database Management

	Analysis of linguistic pattern matching in Neo4j
	How can I obtain the sentence from TEMOS as an entry in the Neo4j database?
	Finding a suitable way for pattern matching in Neo4j using a cypher query
	Analysis and design of dynamic execution

	Summary

	Configuration Stage
	Neo4j Database
	APOC Installation

	Python setup
	Pycharm IDE
	Py2neo driver installation
	Pytest

	Summary

	Implementation
	Design for Implementation
	Storing the predefined linguistic patterns in a Neo4j Database
	Direct way of storing patterns using Neo4j's GUI
	Storing patterns using Python code
	How the insert_patterns function behaves?

	Getting the Sentence as an Input to the Neo4j Database and perform pattern matching
	Matching the Query/Sentence graph with the predefined patterns
	Test Cases
	Overcoming the problems from the previous cypher query
	Dynamic way of checking
	Incorporating Cypher query inside the Python function
	Deletion of Query graph after pattern matching

	Summary

	Testing
	Testing in Pytest
	Summary

	CONCLUSION AND FUTURE WORK
	Conclusion
	Assignment completion

	Future Work

	Bibliography
	List of Acronyms
	Code
	graph_patterns_checker.py
	temos_graph_initializer
	tests.py

	Contents of enclosed CD

