
Instructions

Storage Costs Evaluator [1,2] is a web application used for estimating the costs of data storages [3]. 

There are many other areas where similar estimation applications would be highly beneficial; however, 

the calculations are hard-coded in the Evaluator. The goal of this thesis is to develop a web application 

with configurable inputs and calculations. 

 

- Analyze the Storage Costs Evaluator and set the requirements for the new configurable application. 

- Research existing solutions, methods, and technologies relevant to the topic (configurable 

computations, API design, spreadsheets imports and export, etc.). 

- Design the application with a focus on its versatility and maintainability. 

- Implement the application with the use of functional programming languages. 

- Discuss the benefits of the application and outline future development. 

 

[1]: https://github.com/ds-wizard/storage-costs-evaluator 

[2]: https://storage-costs-evaluator.ds-wizard.org 

[3]: https://doi.org/10.5281/zenodo.4033086

Electronically approved by Ing. Michal Valenta, Ph.D. on 11 March 2021 in Prague.

Assignment of master’s thesis

Title: Adaptable Costs Evaluator

Student: Bc. Tomáš Patro

Supervisor: Ing. Marek Suchánek

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Software Engineering

Department: Department of Software Engineering

Validity: until the end of winter semester 2022/2023





Master’s thesis

Adaptable Costs Evaluator

Bc. Tomáš Patro

Department of Software Engineering

Supervisor: Ing. Marek Suchánek

January 4, 2022





Acknowledgements

I would like to express my special thanks of gratitude to my supervisor Ing. Marek
Suchánek, who has always been helpful during the work on this thesis. Also, I would like
to thank my family and closest friends for their love and support that helped me finish
this project within the limited time.





Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources
of information in accordance with the Guideline for adhering to ethical principles when
elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the
Act No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Article 46 (6)
of the Act, I hereby grant a nonexclusive authorization (license) to utilize this thesis,
including any and all computer programs incorporated therein or attached thereto and
all corresponding documentation (hereinafter collectively referred to as the “Work”), to
any and all persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on January 4, 2022 . . .. . .. . .. . .. . .. . .. . .



Czech Technical University in Prague

Faculty of Information Technology

© 2022 Tomáš Patro. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic. It has been
submitted at Czech Technical University in Prague, Faculty of Information Technology.
The thesis is protected by the Copyright Act and its usage without author’s permission
is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis
Patro, Tomáš. Adaptable Costs Evaluator. Master’s thesis. Czech Technical University in
Prague, Faculty of Information Technology, 2022.



Abstrakt

Funkcionálne programovanie je paradigma, ktoré za posledných pár rokov narástlo na svo-
jej popularite. Veľa aspektov tohto programovacieho štýlu z neho robí vhodnú voľbu pre
softvérové projekty a webový vývoj. Diplomová práca aplikuje funkcionálne programova-
nie pri vývoji novej webovej aplikácie, ktorá umožňuje užívateľom adaptabilným spôso-
bom tvoriť vlastné výpočty, ukladať výsledky a zdieľať ich s kolegami v organizáciách.
Práca analyzuje existujúce riešenia a metódy danej problematiky, a získava, a vyhodno-
cuje spätnú väzbu od užívateľov aplikácie Storage Costs Evaluator. Taktiež poukazuje na
problémy, ktoré má implementácia tejto aplikácie a navrhuje nový dizajn, ktorý by bol
viac flexibilný, udržateľný a ktorý by riešil dané problémy. Implementácia novej aplikácie
je do detailu opísaná vrátane použitých technológií, metód a využitia funkcionálnych ja-
zykov. Práca nakoniec diskutuje výhody nového dizajnu a implementácie a podáva návrh
na budúci vývoj aplikácie.

Kľúčové slová funkcionálne, programovanie, výpočty, adaptabilné, softvér, dizajn, web,
vývoj

vii



Abstract

Functional programming is a paradigm that has gained popularity in the past few years.
Many aspects of this programming style make it suitable for software projects and web
development. This thesis applies functional programming to implement a new web appli-
cation that enables the users to create custom computations in an adaptable way, store
their results, and share them with colleagues in the organizations. It analyzes current
solutions and methods in the given field and gathers and evaluates feedback from the
users of the Storage Costs Evaluator application. The thesis points out the problems with
the implementation of the given application and proposes a new design that would be
more versatile, maintainable, and address the discussed problems. The implementation
of a new application is described in detail, including used technologies, methods, and
usage of functional programming languages. Lastly, the benefits of the new design and
implementation are discussed, and the proposal for future development is presented.

Keywords functional, programming, computations, adaptable, software, design, web,
development

viii



Contents

Introduction 1

Goals 3

1 Analysis 5
1.1 Storage Costs Evaluator (SCE) Features Analysis . . . . . . . . . . . . . . . 5

1.1.1 Features Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 SCE Architecture Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Architecture Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 SCE Users Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Survey Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Survey Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Users Survey Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.1 Demographics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Likert Scale Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.3 Textual Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.4 Overall Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Analysis of Existing Solutions, Methods, and Technologies . . . . . . . . . . 25
1.5.1 Spreadsheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5.2 Website Calculator Builders . . . . . . . . . . . . . . . . . . . . . . . 27
1.5.3 DSLs and Scripting Languages . . . . . . . . . . . . . . . . . . . . . 30
1.5.4 Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.6 Adaptable Costs Evaluator (ACE) Functional Requirements . . . . . . . . . 32
1.6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.6.2 Group No. 1 – Computation Functionalities . . . . . . . . . . . . . . 32
1.6.3 Group No. 2 – Supportive Functionalities . . . . . . . . . . . . . . . 33

ix



1.6.4 Group No. 3 – UX & UI Structure . . . . . . . . . . . . . . . . . . . 35
1.6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Application Design 37
2.1 High-level Architecture Design . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.1 Back-end Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.2 Front-end Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Back-end Functionalities & Database Design . . . . . . . . . . . . . . . . . 40
2.2.1 Users & Organizations . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Use of Functional Programming . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Implementation 47
3.1 Used Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Database Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.2 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.1 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Authorization & Role System . . . . . . . . . . . . . . . . . . . . . . 49
3.2.3 Simple Evaluator Implementation . . . . . . . . . . . . . . . . . . . . 50

3.3 Code Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 CI & Automatic Testing . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.1 Code Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.2 README File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.3 REST API Specification . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.4 Wiki Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Implemented Functional Requirements . . . . . . . . . . . . . . . . . . . . . 54
3.6 Future Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.7 Implementation Benefits Summary . . . . . . . . . . . . . . . . . . . . . . . 58

Conclusion 61

Bibliography 63

A Glossary 69

B Contents of Enclosed CD 71

x



List of Figures

1.1 SCE first screen [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 SCE second screen [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 SCE architecture design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Demographics question no. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Demographics question no. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Demographics question no. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.7 Demographics question no. 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.8 Demographics question no. 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.9 Likert scale question no. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.10 Likert scale question no. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.11 Likert scale question no. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.12 Likert scale question no. 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.13 Likert scale question no. 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.14 Likert scale question no. 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.15 Likert scale question no. 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.16 Likert scale question no. 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.17 Likert scale question no. 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.18 Likert scale question no. 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.19 LibreOffice Calc main window [22] . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.20 uCalc UI example [25] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.21 Embedded website calculator using Calconic App [27] . . . . . . . . . . . . . . 29
1.22 JSCalc JavaScript canvas [30] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.23 Common calculations flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1 ACE high-level architecture design . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Users & organizations database diagram . . . . . . . . . . . . . . . . . . . . . . 41
2.3 Computations database diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 An example of successfully passed GitHub Actions pipeline in the ACE repos-
itory [56] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xi



3.2 ACE README.md file in the root of the GitHub repository [3] . . . . . . . . . . . 53
3.3 ACE API specification visualized using Swagger UI [60] . . . . . . . . . . . . . 54
3.4 ACE Wiki Page [53] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xii



List of Tables

1.1 SCE FRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Likert scale for the questions in the first part of the survey . . . . . . . . . . . 13
1.3 Textual answers no. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4 Textual answers no. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5 Textual answers no. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.6 Textual answers no. 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.7 Examples of the Calc formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.8 FRs group no. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.9 FRs group no. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.10 FRs group no. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Implemented FRs from the group no. 1 . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Implemented FRs from the group no. 2 . . . . . . . . . . . . . . . . . . . . . . 57

xiii





List of Code Snippets

1.1 Example of writing data to the cell in Sheets API [24] using JavaScript client
library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Example of the Simple Evaluator expression . . . . . . . . . . . . . . . . . . . . 51

xv





Introduction

Functional programming is a paradigm that is often compared to imperative and object-
oriented programming. It comes with a specific programming style where the usage of the
pure function is the primary tool to structure the code. This approach tries to solve some
of the problems with the constructs commonly occurring in the imperative programming
like a variable mutability, side effects caused by the global state, etc. [1]

This thesis uses functional programming to implement a configurable web application
for adaptable computations. This new implementation enhances Storage Costs Evaluator
(SCE) application [2] that is a current solution for the computation of the storage costs.
The problem with the current solution is that the computations are hard-coded in the
implementation. This fact makes changes in the computation logic bounded to the re-
implementation of the application that can be a slow and inflexible process.

We propose an application design that addresses the mentioned problems. It points
to the inflexible parts of the existing application and proposes solutions that redesign
these parts in a more flexible and versatile manner. The new Adaptable Costs Evaluator
(ACE) web application [3] implements the created design allowing clients to manipulate
with the adaptable computations through the well-defined Representational State Transfer
(REST) [4] Application Programming Interface (API). We achieve this by using functional
programming technologies and following the best web development practices.

The first part of the thesis analyzes the current Storage Costs Evaluator (SCE) appli-
cation. It looks at its features, architecture but also gathers and evaluates feedback from
the existing users of the application. In the analysis, we also look at the existing solutions,
methods, and technologies in the field. Based on the conducted analysis, we set functional
requirements on the new application and divide them into several groups based on their
nature.

In the second part, we propose a new application design. We describe a high-level
architecture design that discusses the application’s front-end, back-end, and database

1



Introduction

parts and looks at the design in the context of functional programming.

The last part describes the conducted implementation. We look at the used technolo-
gies for the development and dig into the implementation details. We also discuss how
we approached additional aspects of the implementation like code testing, documenta-
tion, and Continuous Integration (CI) [5]. Lastly, we discuss the implemented functional
requirements, outline the future development, and analyze the benefits of the new imple-
mentation.

2



Goals

One of the goals of Chapter 1 is to take a look at the existing SCE application and point
out the problems this implementation has. Next, the goal is to gather and analyze the
feedback from the users of the given application. Then, it is to take a look and analyze
the existing solutions, methods, and technologies. Lastly, based on the previous analysis,
the goal is to set Functional Requirements (FRs) for the new Adaptable Costs Evaluator
(ACE) application.

The goal of Chapter 2 is to propose a new application design that would address
the problems and FRs set in the previous chapter. Lastly, the main goal of Chapter 3
and thesis is to develop a new ACE application based on the conducted analysis and new
design. The goal is also to discuss the implementation details, outline future development,
and look at the benefits of the new implementation.

3





Chapter 1
Analysis

This chapter contains the analysis that we later use in the design process of the ACE
application. The decisions made while designing the application are mostly derived from
the results of the analysis we present in the following chapter. It is broken down into the
following parts:

1. SCE Features Analysis – features and FRs analysis of the SCE application.

2. SCE Architecture Analysis – analysis of the technologies and architecture of the
SCE application.

3. SCE Users Survey – usage information and feedback from the existing users of
the SCE application.

4. Users Survey Results – feedback from the users currently using the SCE appli-
cation.

5. Analysis of Existing Solutions, Methods, and Technologies – analysis and
research of the existing solutions, methods, and technologies regarding the topic.

6. ACE Functional Requirements – FRs on the new ACE application based on the
previous analysis.

The order of the different parts of the analysis, as listed above, corresponds to the
order in which the analysis was conducted.

1.1 Storage Costs Evaluator (SCE) Features Analysis
This section contains an analysis of the basic features of the SCE application. It is an
analysis from the end-user perspective.

5



1. Analysis

The output of this analysis is a set of FRs which the SCE application currently im-
plements. Since the new proposed application should be an extended and generalized
version of the SCE, these FRs are to be taken into account in the design process of the
new application. The existing requirements do not need to be incorporated 1:1 in the
new application, but a fair portion of them should be included in some way in the design
process.

1.1.1 Features Overview
SCE provides functionality to calculate costs of (digital) storage. The calculations are
based on the spreadsheet created by Rob Hooft [6]. Let’s take a look at the implemented
FRs from the perspective of a whole application (fron-tend and back-end).

The application User Interface (UI) is in the form of a Single Page Application (SPA).
The application can be divided into two screens. Both screens share the header with the
total costs and yearly costs for the terabyte (TB) of storage.

The first screen from Figure 1.1 consists of multiple input fields of different kinds
(slider, text input, select box, etc.). These input fields correspond to the input cells
defined in Hooft’s spreadsheet.

Figure 1.1: SCE first screen [2]

The input fields are logically divided by various categories – backup, recovery, servers,

6



1.1. Storage Costs Evaluator (SCE) Features Analysis

etc. There are also three levels of configuration – basic, detailed, and expert. By default,
only the first level is visible to the user on the page load. The application recalculates the
costs on every change of any of the input fields.

The second screen from Figure 1.2 provides result details. The overall costs are broken
down to several categories like storage drives, networking, incident response, etc. Each
category can also be expanded and a user can reveal a detailed breakdown of the needed
hardware/software components and services. Partial prices for the particular category are
also available in the expanded menu.

Figure 1.2: SCE second screen [2]

1.1.2 Functional Requirements

Based on the overview from the previous section, we can summarize the existing features
to the following FRs, in Table 1.1, which the application implements. Note that we
also add some implementation details to the table. Even though we haven’t covered the
architecture and code, FRs often include some implementation aspects.

The FRs summarized in the Table 1.1 give us a high-level view of what functionalities
the current application implements. We will later use this table as a foundation for the
FRs of the new application.

7



1. Analysis

FR No. FR Description
FR 1 The user can fill in all input fields as they are defined in Hooft’s spread-

sheet. [6]
FR 2 Total costs and TB costs per year are always visible to the user.
FR 3 All of the fields have default values on the page load.
FR 4 The input fields are logically divided into several categories based on their

characteristics (backup, security, etc.).
FR 5 The input fields are divided into three major categories based on the level

of configuration – basic, detailed, and expert.
FR 6 The application recalculates the costs on every change of an input field.
FR 7 The application offers detailed results where the price is decomposed to

the various categories and items – storage drives, networking, setup, etc.

Table 1.1: SCE FRs

1.2 SCE Architecture Analysis

The following section contains the analysis of the code, technologies, and architecture of
the SCE application. [2][7]

In the first section, we will look at the technologies analysis of the application. We
will mainly focus on the technical details of the application. In the second section, we will
look at the high-level architectural design of the code.

1.2.1 Technologies

We break down the used technologies into two major categories – front-end and back-
end. We take a closer look at the used technologies and how they relate to the used
programming languages.

1.2.1.1 Front-end Technologies

Front-end is a straightforward SPA that uses Embedded JavaScript (EJS) templating
engine [8] to render the content fetched from the webserver. The EJS templates are
combined with pure JavaScript to deliver dynamic content and proper rendering of the
fetched data from the webserver.

The EJS templates are enriched with Bootstrap framework [9], which is used to deliver
a better User Experience (UX), incorporate Saas CSS pre-processor, and offer a more
appealing design. The application also uses some other popular libraries like jQuery [10]
or Font Awesome [11]. The application uses Webpack [12] to build the front-end and
bundle different modules and assets together. To summarize the major used front-end
technologies:

8



1.2. SCE Architecture Analysis

• Embedded JavaScript (EJS) – HTML templating engine.

• Bootstrap – front-end toolkit to enhance design and UX.

• Webpack – modules and assets bundler.

1.2.1.2 Back-end Technologies

The back-end of the application is written purely using Haskell programming language.
It is a simple web application with two HTTP endpoints. SCE back-end uses Scotty web
framework [13] to implement the HTTP endpoints in a declarative way. The back-end
application uses Stack tool [14]. It is a cross-platform program for developing and building
Haskell projects. SCE uses it to compile and run the code. To summarize the major used
back-end technologies:

• Haskell – programming language for back-end.

• Scotty – web framework for the Haskell language.

• Stack – development and build tool for Haskell programs.

1.2.2 Architecture Design
In the following section, we will look at the high-level design of the SCE’s architecture.
Let’s start by looking at Figure 1.3 capturing the architecture design.

The diagram shows us how the different parts of the application communicate with
each other and with the client. In the context of SCE, the client is a web browser.

The first thing we want to discuss is the communication between the front-end and
back-end. From the Figure 1.3, it would seem that the back-end and front-end are two
separate applications. In fact, the application is written as a monolith. The diagram only
captures different parts of the monolith. We can relate the design of the application to
the Model-View-Controller (MVC) web frameworks like Ruby on Rails [15]. The MVC
web frameworks usually separate HTML templates (View) to the separate layer within
the application. It is also similar in the context of SCE.

The core of the application is back-end written using the Scotty web framework. We
could say that this part contains both Model and Controller parts if we compared it to
the traditional MVC applications. This comparison is not so obvious in the context of the
Functional Programming (FP) and web frameworks written using FP languages.

1.2.2.1 Back-end Architecture

Let’s look at the back-end design of the application. As mentioned before, this part con-
sists of the Model and Controller parts if we related it to the traditional MVC applications.

9



1. Analysis

SCE

Back-end (Haskell)

Application

Model.*

Model.JSON.*

Front-end (EJS)

POST /

EJS SPA
Calculated data

GET / Client 
(web browser)

Web page

Figure 1.3: SCE architecture design

However, we have to take a different approach and change our point of view when we are
talking about the FP design.

We will not talk about the concepts of the FP in this part. Let’s emphasize that every
programming construct of FP is a (pure) function. We can imagine complex programs
as a set of higher-order functions and their compositions. The back-end part of the
application is written using the Haskell programming language. One of the core constructs
of the language is a module. The module is a set of functions that can be exported and
reused in the other part of the program which imports this module. The module is also
a construct that helps us to achieve the Separation of Concerns (SoC).

The architecture of the SCE back-end is designed around these modules. We can
see the main modules and relations between them in the diagram above. The design
is quite simple. The Application is the main module that defines the application routing
– exposed HTTP API endpoints and their handlers.

Now, we can take a closer look at the other two modules from the diagram. The
Models.* modules consist of the business logic of the application. They define things like

10



1.2. SCE Architecture Analysis

input processing and particular computations. The computations in these modules are an
imprint of the equations which Hooft defined in his spreadsheet [6].

The scope and possible extension of the computations are limited by their definition in
the code. In order to add a new equation or change an existing one, we need to change the
program’s code. This is a limitation that has many implications. One of the implications
is the need to re-compile and re-deploy the application to the server every time we want
to make a change to the computations.

The second set of Model.JSON.* modules are serialization and deserialization defini-
tions of the JSON objects. To be precise, they contain functions to map incoming JSON
payload to the application data types and mapping of the data types to the response
JSON payload.

To summarize, if we tried to compare the design to the MVC design pattern, we could
say that the Application module plays the role of the Controller mixed with the routing
middleware. The Model.* and Model.JSON.* modules play the role of Models mixed with
some library business logic.

1.2.2.2 Front-end Architecture

As mentioned before, the front-end design of the application is based on the EJS templates.
We will not cover the details of different templates design since it is not necessary for the
sake of this analysis. Let’s just say that different templates represent different parts of
the SPA. The templates work as construction components of the whole webpage. The
JavaScript files orchestrate the construction itself. The whole design is straightforward,
and there is no complexity above average. The EJS templates can be seen as the View
part of the traditional MVC design pattern.

1.2.2.3 Communication Between Layers

The layers of the applications communicate with each other using the HTTP protocol.
There is only one published HTTP endpoint at the back-end side at the root path /. We
can send HTTP requests using either the GET or POST HTTP method. The POST method
is used by the front-end layer to send the current data from the forms and to receive the
recalculated results. The GET method is intended to be used by the web browser client to
fetch the webpage itself. As we can see from the Figure 1.3, there is no further complexity
in the communication between the layers.

1.2.3 Summary
We can summarize that the design of the application is quite simple. The current design
satisfies the needs for the particular mathematical model for computations. However, the
design does not offer any means of configuration and adjusting the current mathematical
model. It also does not offer the user to either save the results in the application or export

11



1. Analysis

them. The application’s business logic only offers the means of receiving the input data
and outputting the results after the computation.

The other weak part of the current solution is the public API. The application offers
only one HTTP endpoint. It is a satisfactory design for the current solution, but it does
not offer much flexibility for the possible extensions of the application and integrations
with the foreign systems.

The front-end of the application is a simple SPA that reflects the back-end solution and
its capabilities. However, it is not a design that would be suitable for further extensions
and new features since it does not offer the means of modern front-end web frameworks.

1.3 SCE Users Feedback
The following section contains the description of the methodology used to gather feedback
from the current users of the SCE application. As mentioned before, the SCE application
is a simple SPA. Therefore, we decided to gather the feedback using an online survey.

The survey was conducted using the Google Forms platform [16]. The advantage of
this platform is that it saves the results directly to the spreadsheet, which can be exported
in CSV format and programmatically processed.

1.3.1 Survey Structure
We designed the questions and format of the survey by following Sheinderman’s recom-
mendations from the book Designing User Interface [17]. The survey is split into two parts.
The survey begins by collecting some characteristics about the users. These characteristics
include the following items:

1. background demographics (age, gender, education, job),

2. experience with computers (scoped to the web applications),

3. and familiarity with the computations (storages, costs, mathematical models, etc.).

The users can answer the questions, or they can mark that they prefer not to say in
each question. We use the demographics data to understand better the users that use the
application. The demographics data can also be correlated with the results from the other
parts of the survey.

The first part consists of the series of statements where users are asked to respond
using the Likert scale described in Table 1.2.

The results are used to demonstrate the current applications’ strong and weak aspects.
We also use them to indicate whether the users find the characteristics of the proposed

12



1.3. SCE Users Feedback

Strongly Agree Agree Neutral Disagree Strongly Disagree

Table 1.2: Likert scale for the questions in the first part of the survey

extended application feasible and agree with them (Likert scale). The important charac-
teristic of the first part is the option to process the results statistically.

The second part is used as a set of recommendations from the users. These rec-
ommendations are later incorporated into the functional requirements, and we can take
advantage of them while designing the new application.

We gather the recommendations by letting the users freely answer the prepared ques-
tions and express their opinions about a particular aspect. The users are also able to leave
an extra comment about anything related to the topic.

1.3.2 Survey Questions
First, we have to emphasize that some questions are accompanied by a brief description,
so the user better understands them.

In the following section, we summarize the questions of the survey into the two lists.
The first list consists of the questions from the first part (Likert scale):

1. It is intuitive to work with the UI of the current application.
2. The application offers functionalities that satisfy my expectations.
3. I can effectively perform the tasks using the UI.
4. The input fields and results are placed where I expected to find them in the UI.
5. I would welcome the ability to adjust how the calculations are performed.
6. It would be convenient to create/import my own set of rules and conditions for the

calculations.
7. I would find it useful to be able to create an account and save the preferences,

calculation results, etc.
8. My colleagues and I would like to use the application together, save, and share the

calculations and results within the application.
9. It would be useful for me to have the ability to export the calculation results in the

given format (CSV, XML, etc.).
10. Me or my colleagues would use the web API to interact with the application and

integrate it into other systems.

The second list is a set of questions from the second part (textual):

13



1. Analysis

1. Write down 1–3 (or more) most important features you would welcome in the new
application.

2. State 1–3 (or more) aspects of the current application that prevent you from achiev-
ing your goals or do not let you work efficiently.

3. What are the most important features of the current application that you or your
colleagues find useful?

4. Write down any other ideas, recommendations, observations, or notes regarding the
new application.

1.4 Users Survey Results

In this section, we analyze the results from the users survey. We described the methodology
used to design the survey in the Section 1.3. We asked approximately 40–50 users of the
current application to fill in the survey. However, we gathered responses from overall 6
current users of the SCE application.

1.4.1 Demographics

For the purpose of correlating the results, we first take a look at the demographics of the
respondents.

Figure 1.4: Demographics question no. 1

The majority of the users identify themselves as male. Based on the Engineering
UK 2018 report [18], only 12.37% of all engineers are women in the UK. We can relate
these statistics to the results we got.

14



1.4. Users Survey Results

Figure 1.5: Demographics question no. 2

The majority of the respondents are 45+ years old. This can be related to the fact
that SCE is a domain-based application that requires some level of expertise to interpret
the results it computes.

Figure 1.6: Demographics question no. 3

The majority of the respondents completed a Ph.D. or higher education. Also, all
respondents completed at least a master’s degree. The SCE application is probably mainly
used within the academic environment or the people with completed higher education.
This fact also relates to the age ratio of the respondents who are 45+ years old, where there
is commonly a higher chance that the academics would have a higher level of education
as they are getting older.

15



1. Analysis

Figure 1.7: Demographics question no. 4

Most of the respondents are experienced users of computers and web applications. We
can relate this to the fact that the domain is related to the field of computer science.

Figure 1.8: Demographics question no. 5

The results of this question are various. We can observe that a portion of respondents
does not have extensive knowledge of the computation methods. It would be reasonable
to design a new application to be understandable also for the users without previous
expertise in the computation methods domain.

16



1.4. Users Survey Results

1.4.1.1 Summary

We can observe that most of the respondents are male who are 45+ years old with the
completed higher education. The most common level of education is Ph.D. or higher.
Based on this fact, we can conclude that the SCE application is mainly used by academics
or specialists in the given domain. The ratio of male respondents can relate to the fact
that the majority of the people working in engineering are male.

The respondents are mostly skilled computer and web applications users. This prob-
ably relates to the domain, which is associated with the computer science field. On the
other hand, the respondents are not so skillful when it comes to the domain of computation
methods. We should consider this fact when designing the application.

1.4.2 Likert Scale Questions

In this part, we take a look at the results from the Likert scale questions. These are the
questions where the respondents marked how likely they agree or disagree with the given
question (statement) on the given scale.

Figure 1.9: Likert scale question no. 1

The users mostly agree that the UI of the current application is intuitive to work
with. We should take this fact into count when designing the new application. The UI
characteristics of the current application can serve as an inspiration when designing a new
application.

17



1. Analysis

Figure 1.10: Likert scale question no. 2

We can see that the respondents are divided when it comes to this question. Many
of them are not satisfied with the implemented functionalities and would welcome new
features in the app.

Figure 1.11: Likert scale question no. 3

Half of the respondents have a neutral opinion when it comes to the effectiveness while
performing the tasks in the UI. The other half agree that they can be effective while
performing these tasks. However, we should think about better usability when designing
the new application.

18



1.4. Users Survey Results

Figure 1.12: Likert scale question no. 4

This is an important question since the location of the input fields and corresponding
results of the computations can play an essential role in the overall feeling from using the
UI. Most of the respondents agree that these fields are placed where they would expect
them to be. We can design the new application and place the input fields in a similar
fashion as the current app.

Figure 1.13: Likert scale question no. 5

The respondents agree that they would welcome the functionality where they could
adjust the way that the calculations are performed. This is an important fact to consider
when setting the FRs for the new application.

19



1. Analysis

Figure 1.14: Likert scale question no. 6

Another important feature to include in the FRs. The ability to create or import
your own set of rules and conditions for the calculations is an important function of the
adaptability of the new app.

Figure 1.15: Likert scale question no. 7

This functionality would require implementing a system of users with proper authen-
tication and eventually authorization. However, most of the respondents agree that they
would welcome this functionality. It would enable the users to save their preferences,
results of the calculations, etc.

20



1.4. Users Survey Results

Figure 1.16: Likert scale question no. 8

Most of the respondents would also welcome this feature enabling a form of collabo-
ration. The implementation would be based on the system of users and organizations or
similar entities grouping these users together.

Figure 1.17: Likert scale question no. 9

This functionality would be helpful for the people who would like to take the results
of the computations and import them into a different system or application in the given
format. Most of the respondents marked that they would find this functionality useful.

21



1. Analysis

Figure 1.18: Likert scale question no. 10

The decision to implement a public web API for the application would enable the
third parties to integrate the application into the different systems and UIs. Half of the
respondents marked that they would use this type of API.

1.4.2.1 Summary

Most of the respondents agree that they can effectively work with the current applica-
tion. They also agree that the UI is well-designed, and the experience of working with it
is positive.

The respondents agree that they would find it useful if the application had extended
functionality. They positively responded to the proposed features and marked that they
would find them useful in the new application. Half of the users agree that they would
take advantage of the public web API to interact with the application and integrate it
into other systems.

1.4.3 Textual Questions
In the following section, we take a look at the textual answers to the questions. These
questions are aimed to gather the opinions and ideas from the respondents. These ques-
tions serve as valuable feedback to identify the strengths of the current application and
gather the ideas for the features to be included in the newly proposed application.

Note that the text of the answers is genuine and we only corrected the grammatical
mistakes and word order.

22



1.4. Users Survey Results

Write down 1–3 (or more) most important features you would welcome in
the new application.

Answers
• Customization of the rules and units.
• Account creation for sharing and collaborative work.
• Tuning the calculation with the cost of my infrastructure.
• Customize the calculation based on the local needs.

• Ability to export (esp. with an Excel compatible format) the results for further
processing.

• Save the calculation (in browser).
• Persistent configuration of the calculation.

• Although it might be difficult to incorporate, it would be useful to get more
accurate prices depending on the country you store the data in.

• Configure the calculations.

Table 1.3: Textual answers no. 1

We can summarize that the most wanted features are the ability to customize the
calculations and have an option to persist the configurations and preferences. The users
also suggested some more advanced functionalities like calculating the prices depending on
the country. However, if we look at this suggestion from a higher level, we can achieve it by
giving the user the freedom to configure their own calculations. However, the configuration
options would have to be general enough to achieve it.

State 1–3 (or more) aspects of the current application that prevent you
from achieving your goals or do not let you work efficiently.

Answers
• No possibility to export and no memory.
• Always need to fill in the values from scratch.
• No option to save the configuration of the variable.

Table 1.4: Textual answers no. 2

The negative aspects of the current application closely relate to the suggestions (for the
features of the new application) the respondents gave in the previous question. In sum-
mary, the respondents miss the option to export the results and to persist the calculation
definitions within the application.

23



1. Analysis

What are the most important features of the current application that you
or your colleagues find useful?

Answers
• The design of the UI is intuitive.
• The application is extremely useful to explain the cost of a service to new users.
• The intuitive calculation where the main power is in the formulas.
• Application has a logical structure.
• Price variation of the different types of storage is very useful.

Table 1.5: Textual answers no. 3

The users find the design of the application intuitive and useful. The logical structure
and division of the results into the categories make the application useful for explaining
how the calculation was conducted. The main message to take from this feedback is to
design the new application in a way where the calculations designer would be able to
define and show the end-user intermediate results with a possible explanation of how the
calculation was done.

Write down any other ideas, recommendations, observations, or notes
regarding the new application.

Answers

• It could also be nice to change the branding (mainly colors) of the app for the
specific institution when they deploy their own instance.

• Import of the estimated data volume from DMP (Data Management Platform).

Table 1.6: Textual answers no. 4

We can relate the first suggestion to the functionality where the user can create their
own account in the application and potentially be a part of the organization. This organi-
zation would probably be managed by a user with the role of owner. We can potentially
add functionality where the user would be able to change the colors of the UI or change
the style of different elements of the application (e.g., organization logo).

The second suggestion can be linked with the functionality to import and export data
to and from the application. We should think about different formats of the data we want
to support for import/export. If we design this functionality generally enough, it would
be no problem to add support for the new formats in the future dynamically.

1.4.3.1 Summary

We can summarize that the suggestions from the respondents are similar to the suggested
features we introduced in the Likert scale questions. The users would like to have an

24



1.5. Analysis of Existing Solutions, Methods, and Technologies

application that would enable them to adjust the computations according to their needs
and to have the ability to persist the configurations and preferences.

The respondents also stated that the UI of the current application is well-designed, and
they appreciate different aspects of it. We should take the current design into consideration
while designing a new application.

We also received a few custom recommendations from the respondents on how to
enhance the features of the current application.

1.4.4 Overall Summary

The survey gave us important insights from the users on how to properly design the new
application and what should be included in the new FRs. We also received positive feed-
back related to the new suggested features we would like to include in the new application.

The respondents also marked the features and aspects of the current application they
find positive and useful but also negative and missing. We should take this feedback and
use it in the design process of the new application by keeping the best from the current
application and implementing the missing parts.

The data from the survey will be the basis of the decisions we will make while con-
structing the new FRs. The feedback from the users is very important since it will also
be these users who will use the new application.

1.5 Analysis of Existing Solutions, Methods, and
Technologies

In this section, we will look at some of the existing methods and technologies regarding
configurable computations and the creation of custom calculations. We will go through
the particular solutions and analyze them.

1.5.1 Spreadsheets

One of the popular formats to define custom calculations is the usage of spreadsheets.
Nowadays, we have multiple providers of spreadsheet technologies. The most well-known
include Microsoft Excel [19], LibreOffice Calc [20], Google Sheets [21], and many more.

We will base our analysis on the LibreOffice Calc Guide [22], which offers basic and
advanced explanations of the LibreOffice spreadsheet technology. So, first of all, what
is Calc? The guide gives us this explanation:

“Calc is the spreadsheet component of LibreOffice. You can enter data (usually nu-
merical) in a spreadsheet and then manipulate this data to produce certain results.

25



1. Analysis

Alternatively, you can enter data and then use Calc in a ‘What if. . .’ manner by
changing some of the data and observing the results without having to retype the entire
spreadsheet or sheet.”

The spreadsheet has many various components. The main component is the main
window in which the spreadsheet resides as we can see in Figure 1.19.

Figure 1.19: LibreOffice Calc main window [22]

We will assume that you have a basic knowledge of spreadsheet technologies, so we
won’t define each particular component of the spreadsheet. Instead, we will analyze only
components of the technology relevant to the ACE application’s design process.

The spreadsheet is composed of rows and columns. Each combination of a row and
a column represents a single cell. If we simplified things, we could say that a cell can
either hold a value or/and represent a result.

The value can have multiple different formats like text, date, a boolean value, etc. The
cell can also be seen as an input field that expects a value from the user.

A formula represents the result. The formula is a composition of operators, values,
references to the cells, and other complex expressions. Table 1.7 shows us some examples
of the Calc formulas.

The result of the formula is stored in a cell where we define the formula. The formula
language is a type of Domain Specific Language (DSL). The spreadsheet is only one of the
possible ways to create and store the formulas. The Calc DSL could also be used using
different front-ends, e.g., web browser, and input/output HTML fields. We also emphasize

26



1.5. Analysis of Existing Solutions, Methods, and Technologies

Formula Description
=A1+10 Displays the contents of cell A1 plus 10.
=A1*16% Displays 16% of the contents of A1.
=ROUND(A1,1) Displays the contents of cell A1 rounded to one decimal place.
=SUM(B8,SUM(B10:B14)) Calculates the sum of cells B10 to B14 and adds the value to B8.

Table 1.7: Examples of the Calc formulas

that spreadsheet formula DSLs are quite similar across different spreadsheet technologies
(Microsoft Excel [19], Google Sheets [21], etc.) due to the simplicity of the syntax and
ability to define your own functions using macros.

1.5.1.1 Web APIs

Cloud spreadsheet technologies like Google Sheets [21] are implemented as Software as a ser-
vice (SaaS) [23]. These technologies often come with web APIs, so we can integrate them
with the other systems. Google offers Sheets API [24] to read and write data from/to
spreadsheets programmatically. We can, for example, write data to the cell:

var values = [
[

// Cell values ...
],
// Additional rows ...

];
var body = {

values: values
};
gapi.client.sheets.spreadsheets.values.update({

spreadsheetId: spreadsheetId,
range: range,
valueInputOption: valueInputOption,
resource: body

}).then((response) => {
var result = response.result;
console.log(`${result.updatedCells} cells updated.`);

});

Code Snippet 1.1: Example of writing data to the cell in Sheets API [24] using
JavaScript client library

1.5.2 Website Calculator Builders
Another example of adaptable/customizable computations technology is website calculator
builders. The builders usually offer the functionality to take advantage of an interactive
canvas and design your own calculator using custom input and output fields. We can see
an interactive canvas example using the uCalc [25] app in Figure 1.20.

27



1. Analysis

Figure 1.20: uCalc UI example [25]

Howard Steele summarizes some of the niches, in his article regarding website calculator
builders [26], where we can frequently find usage of this technology:

• logistics,

• insurance,

• loans,

• real estate,

• and construction industry.

Since these niche companies often come with their own websites, it is important to
have the ability to embed the calculator into the external system. It is mostly done by
including the JavaScript (JS) code generated using the website calculator builder app. We
can see an example in Figure 1.21.

The builders work similarly to the spreadsheets. You draw and design your input/out-
put fields, give them proper formatting, and bind the input fields to the output fields by
creating a formula for the computation or interactively describing it.

28



1.5. Analysis of Existing Solutions, Methods, and Technologies

Figure 1.21: Embedded website calculator using Calconic App [27]

There are a lot of other apps similar to uCalc. Some of the most well-known include
Calconic [27], Calculoid [28], or ConvertCalculator [29].

Another similar approach takes the JSCalc app [30]. This builder takes advantage of
the JavaScript programming language to define the mapping between input and output
fields as we can see in Figure 1.22. These fields are, on the other hand, interactively
defined using another part of JSCalc UI.

Figure 1.22: JSCalc JavaScript canvas [30]

29



1. Analysis

1.5.3 DSLs and Scripting Languages

DSL is a high-level programming language optimized for a specific class of problems.
A DSL uses the concepts and rules from the given field or domain. [31]

The canonical example of the DSL suitable for the computations is the formula lan-
guage used in the Calc we described in Section 1.5.1. DSL is a very general yet powerful
approach for expressing complex definitions, relations, and calculations conveniently that
can be programmatically processed.

Another powerful and popular technology is scripting languages. There are many dif-
ferent definitions of the scripting language. If we wanted to generalize them, we could say
that scripting language is a high-level and lightweight programming language that is in-
terpreted rather than compiled ahead of time. It is often a general-purpose programming
language, or it may be limited in a specific way. [32]

There are many different scripting languages out there. One of the most commonly
known is JS which is widely used in modern browsers. As mentioned above, JSCalc, for
example, uses JS to define mappings between input and output fields.

One of the very specific usages of the scripting languages is their embedment into
other general-purpose programming languages. For example, there is an implementation
of JavaScript in the Java programming language called Rhino. Rhino contains JS com-
piler, shell, and debugger. This feature enables developers to store JS scripts in the Java
variables or files and execute them directly from the Java code. [33]

Another interesting lightweight scripting language is Lua [34]. There are also imple-
mentations into other programming languages like Lupa to CPython [35] or HsLua [36]
to Haskell programming language.

The main benefit of these embedment libraries is using an existing syntax in the given
computation use-case or domain. For example, we don’t need to define a whole new DSL
for computation formulas, but we can take advantage of the existing scripting language.
Users can afterward interactively define these formulas by using web UI, for example.
The JSCalc app uses a similar approach using JavaScript language. We can transport the
script using the HTTP protocol, evaluate the script using a given back-end (Java, Haskell,
etc.), and send back the results.

1.5.4 Analysis Results

The goal of the analysis was to research existing technologies. We analyzed how different
solutions use different types of methods to take input values of the calculations and trans-
form them into the output results based on the predefined rules. Namely, we discussed
three types of calculation technologies:

30



1.5. Analysis of Existing Solutions, Methods, and Technologies

1. spreadsheets,

2. website calculator builders,

3. DSLs, and scripting languages.

Each type of technology uses a slightly different approach to capture input values and
present them to the user. However, we can see a common pattern in the calculation flow
represented in Figure 1.23.

Producer

Input
I/O Mapping 

and
Calculation

Output

Consumer

Calculation system (application)

Figure 1.23: Common calculations flow

The given diagram is a simplified version of the common calculation flow. The impor-
tant thing for us is the realization that all of these technologies use the same principle or
very similar high-level approach on how to realize calculations. We can summarize it in
the following steps:

1. The producer provides the system with the input values.

a) It can be realized manually through UI or programmatically by another appli-
cation.

2. The application takes the input and represents it in the computer-readable format.

a) It can be, for example, parsing of text from the given format (JSON, XML,
etc.) to the applications’ type system.

3. The application takes predefined rules and calculates the result based on them. It
maps the input values to the output values in the process. The producer can provide
the definition of the rules.

4. The application transforms the results into a format readable by the consumer.

a) Results can be rendered to the UI or sent to another application.
b) The consumer and producer can be the same entity.

31



1. Analysis

5. The consumer reads the results.

This summary (process) can be used as a high-level guideline in the design process
of the calculation system similar to the ones we analyzed in this section. The particular
implementation decisions in each step should be carefully considered and designed to fit
best to the given domain.

1.6 Adaptable Costs Evaluator (ACE) Functional
Requirements

In this section, we set the FRs on the new ACE app. The requirements are based on the
analysis described in the previous sections.

1.6.1 Methodology

Each FR we include in this section has its own ID, definition, and basis. The basis
is a textual explanation describing the reason why we include this functional requirement
in the list. Most of the FRs are based on the previous analysis, as we described above.

Furthermore, FRs are divided into several groups based on their common character-
istics. We add a textual description of each of the groups, so the reader can better grasp
why we grouped the particular FRs together.

The FRs we present here are based on our preliminary analysis as described above.
It is worth mentioning that the quality of the application design is highly based on the
feedback from the users. Thus, these FRs may be updated during the next development
phases based on the feedback from the users.

1.6.2 Group No. 1 – Computation Functionalities

The FRs in the first group, in the Table 1.8, describe the computation capabilities and
functionalities of the application. They are related to the aspects like how to conduct
the computations, what are the results of the computations, or how we describe the
computations.

32



1.6. Adaptable Costs Evaluator (ACE) Functional Requirements

Group No. 1
FR No. FR Description FR Basis

FR 1.1

The user is able to adjust how
the calculations are performed.
This would mean implementing
a functionality where users
could create their own input
fields and corresponding
output fields and mapping
between them (calculation
definition).

Based on the survey, we can see that the
users (strongly) agree that they would
welcome the ability to adjust how the
calculations are performed. The
respondents also identified this need in
the textual answers.

We can also take some inspiration from
the existing solutions we described in
the previous analysis (e.g., website
calculator builders).

FR 1.2

The user is able to
create/import their own set of
rules and conditions for the
calculations. This FR is closely
related to FR 1.1. This FR
describes the need to have a
formal language to describe
the formulas, conditions, and
Input/Output (I/O) mappings
to produce the computation
results.

Again, based on the survey, the users
(strongly) agree that they would welcome
this functionality. Again, some
respondents also identified this need in
the textual answers.

Also, based on the demographics data,
this would probably be an acceptable
functionality in the means of learning to
use it. We base this assumption on the
fact that most of the respondents have
completed a Ph.D. or higher education
and are skilled with computers.

Most of the existing solutions also
implement some form of formal language
to describe the computations (either
textual or graphical). This is also an
important FR that should be considered
when designing the architecture of the
new application.

Table 1.8: FRs group no. 1

1.6.3 Group No. 2 – Supportive Functionalities
The supportive functionalities serve to enhance the experience and workflow when using
the app. These are functionalities like creating your own account or exporting the results
in the given format.

33



1. Analysis

Group No. 2
FR No. FR Description FR Basis

FR 2.1

User is able to create their own
account and save the
preferences, calculation results,
etc.

We base this FR on the feedback from
the survey. The respondents (strongly)
agree that they would welcome this
functionality. The respondents also
identified this need in the textual
answers.

FR 2.2

The user is able to create an
organization within the
application and invite other
users to it.

Again, this FR is based on the feedback
from the respondents. They would
welcome the ability to collaborate with
the other users within the
organization – share the calculation
definitions, results, etc.

This would require implementing a
logical unit within the application that
would group together multiple users –
it would be a form of multi-tenancy [37].

FR 2.3
There is a role system with the
admin, owner, and regular
roles (example names).

This FR is derived from 2.1 and 2.2. The
admin would be someone who is
responsible for maintaining the whole
instance of the application.

The owner would be a person responsible
for the given organization. They would
be able to invite other users to the
organization.

The regular would be a standard user
who uses the computation
functionalities of the app.

There would also be an option to set the
public visibility of the particular
computation. The users can encounter a
case where they would like to share a
particular computation with someone
who doesn’t use the application on a
regular basis. This external user would
have limited capabilities (no option to
save the results, edit the computations,
etc.).

34



1.6. Adaptable Costs Evaluator (ACE) Functional Requirements

FR 2.4
The user is able to export the
calculation results in the given
format (CSV, XML, etc.).

We base this FR on the feedback from
the respondents. They marked that it
would be useful for them to have the
ability to export the results for further
processing (e.g., MS Excel [19]).

FR 2.5
The user is able to interact
programmatically with the
application using the web API.

At least half of the respondents would
welcome this functionality. The web API
option is not entirely a FR. Still, we
include it here since the question in the
survey was formulated in the context of
the API being a functionality of the
application.

Table 1.9: FRs group no. 2

1.6.4 Group No. 3 – UX & UI Structure
The third group contains FRs that are related to how we should design and structure the
UI so the users have a good experience when using the app. It also relates to the fact that
proper UI design can enhance the effectiveness of the users while using the app.

Group No. 3
FR No. FR Description FR Basis

FR 3.1
User can set default values of
the custom fields defined by
them.

The current application fills in the
default values of the prepared
input fields on the page load. We
should let the users define the
default values of the
custom-prepared computation
fields. Some input fields may
never change their value, so it
would be faster to prepare a
particular computation using
the default values.

Also, one of the respondents
defined that the application is
extremely useful to explain the
cost of service to the new users.
This functionality can support
this aspect.

35



1. Analysis

FR 3.2
Let the user group the I/O
fields by the different
categories.

Also, the current implementation
logically divides the I/O fields into
several categories based on their
characteristics.

The respondents of the survey
defined that this is one of the
important features of the current
application.

FR 3.3
The application recalculates
the costs on every change
of an input field.

This is one of the features of the current
application. This FR closely relates to
the application architecture (e.g., SPA).
It would be convenient to implement this
FR since it allows the users to
dynamically see the impact of changing
one or more input fields.

The users also agree that it is intuitive
to work with the UI of the current
application, so we can assume that it
won’t be a problem to incorporate this
functionality to the new application.

Table 1.10: FRs group no. 3

1.6.5 Summary
The functional requirements we set here will be the base for the architecture design and
implementation of the new application. We covered UI & UX, computation, and sup-
portive FRs. Together, they cover the functionalities from the back-end to the front-end
of the new proposed ACE application. After the successful implementation of the new
application, we will summarize the implemented FRs from this list.

36



Chapter 2
Application Design

In the following chapter, we will take a look at the design of the new ACE application. We
will mainly focus on the proposed architecture and describe how the back-end functionality
works. We will also describe database design and the tables that the back-end of the
application uses.

2.1 High-level Architecture Design
This section describes a high-level architectural design of the proposed application. The
design is mainly based on the conducted analysis from the Chapter 1. We also tried to
follow the best practices in the given field.

Based on the results of the analysis, we decided that the main purpose of the newly
proposed application is the ability to create your own set of computations. This feature
is also enhanced by the ability to create these computations in a flexible or adaptable
manner where the user has full control over what are

1. the input fields to the computations,

2. defined computation rules,

3. and where and how the results should be stored.

Yet again, we can use the Figure 1.23 from the Chapter 1 to describe these 3 steps.
We mention this diagram because, from a high-level point of view, our new application
won’t be too different from the existing solutions and methods we described in the Chap-
ter 1. Nevertheless, it is important to design implementation details of each step properly
so the application works correctly as a whole. The implementation details will be further
discussed in the Chapter 3 describing the implementation decisions.

37



2. Application Design

We will now look at the high-level architecture and break it down to the back-end
and front-end parts. We will look at the design from the technical point of view using
language agnostic explanations.

2.1.1 Back-end Design

We decided to implement the solution as a web application. The back-end is accessible
using standard HTTP/HTTPS communication and methods. The decision to implement
the application using web technologies comes from the description of the assignment on
the one hand. However, we also believe that web technologies are a suitable decision
because of the ease of integrating the application to other systems and using it without
the necessity to install the application locally. Also, based on the results from the users
survey described in Section 1.4, half of the respondents agree that they would welcome the
option to integrate the application into their own internal systems. The HTTP protocol
is also widely used and standardized.

The interface to the back-end (API) is implemented by following the REST architecture
and its principles. The specification of the API will be specified in the Chapter 3. For
the transportation format of the data, we decided to use the JSON format. The REST
architecture has many advantages, including statelessness, caching, uniform interface, or
independence from the particular data format, which can benefit us in implementation
and further scalability. [4]

The REST API contains a set of standard endpoints for handling users, organizations,
and similar common resources. However, the core functionality of the API is enabled by
the resources representing the computations and other associated resources. We decided
that the computations will be represented through the formal language(s) that serve
as computation formulas mapping input to output. The back-end is able to read this
formal language(s), evaluate the formulas, store the definitions and results and return the
results to the client.

2.1.1.1 Web Service Aspects

The back-end of the application can be defined as a web service. It has a standard interface
that can be used independently of the hardware or software on which it is used. Another
important aspect of the back-end design is that it is completely independent of any front-
end(s). Many monolithic web application designs combine both back-end and front-end
in one codebase. [38]

We wanted to avoid the design combining all layers in one application and use a sepa-
rate back-end because of the cloud-native principles we want to follow. It enables us, for
example, to create multiple possible front-ends for the application and integrate it into
the different systems relatively quickly. [39]

38



2.1. High-level Architecture Design

2.1.2 Front-end Design

The front-end of the application enables users to interact with the functionality of the
back-end by using its web REST API. We decided to mainly focus on the implementation
of the back-end functionality, so we will not present a concrete front-end design here.

However, since the back-end is designed as a web application, it would be reasonable to
take advantage of the web technologies and implement the front-end using the existing web
development tools. Under the tools we mean the standard package of web development
technologies such as HTML, CSS, and JavaScript. Since the elements of such application
would most probably be interactive, it would also make sense to take advantage of the
modern front-end JavaScript frameworks such as React [40], Vue.js [41], Elm [42], etc.

2.1.3 Conclusion

We described a high-level design of the newly proposed application. We concluded that
we would follow cloud-native principles while designing and implementing the applica-
tion. The implementation model can also be described by a popular term SaaS [23]. In
Figure 2.1, we illustrate the design we talked about.

Back-end (REST API) Front-end Human

Foreign systems

Figure 2.1: ACE high-level architecture design

We can see that the resulting back-end is possible to use to implement a front-end
to be used by people. On the other hand, different foreign systems are also able to take
advantage of the API for integration purposes.

39



2. Application Design

2.2 Back-end Functionalities & Database Design
In the following section, we will conceptually describe the functionalities that we im-
plement in the back-end of the application. The concrete implementation details such
as chosen technologies and methods will be described in Chapter 3.

The functionalities are based on the back-end functional requirements we set in the
Section 1.6. The main challenge here was to design a back-end that would mainly allow
us to have:

1. a system of users and organizations grouping the users (FR 2.1 & FR 2.2),

2. adaptable computations that the users can share with each other (FR 1.1 & FR 1.2),

3. and a role system that would define permissions for the resources of the users and
resources shared within the organizations (FR 2.3).

Beside the mentioned FRs, the architecture of the back-end also conforms to the FR
2.5 by enabling the clients to take advantage of the REST API as described in Section 2.1.

We decided to describe both the business logic (back-end functionalities) and database
design together. This decision is based on the nature of the application where it would be
redundant to, for example, first describe the business logic using a class diagram and then
use a similar diagram to describe the database design. We will use diagrams to describe
how the database is structured and how the associations between the different resources
(tables) conform to the application’s overall design.

Since the diagram with all resources (tables) would be too big to fit into the page and
described, we decided to split it into two parts:

1. users and organizations,

2. and computations resources (tables).

Note that all tables have two additional columns that are not shown in the diagrams –
inserted_at and updated_at. These columns are timestamps we use to track down when
the particular record was created and updated at. They are omitted from the diagrams
to save space. For clarification, we include the list of used symbols and abbreviations in
diagrams with the explanations:

• PK – primary key
• FK – foreign key

40



2.2. Back-end Functionalities & Database Design

• UN – unique index
• * – mandatory attribute
• o – optional attribute

2.2.1 Users & Organizations
We start with Figure 2.2 that describes users, organizations, their relationships, and role
system in our application.

0..*1

1

1

users

PK ID: BIGINT

o first_name: VARCHAR

o middle_name: VARCHAR

o last_name: VARCHAR

* admin: BOOLEAN

credentials

PK ID: BIGINT

FK, UN * user_id: BIGINT

UN * email: VARCHAR

* password_hash: VARCHAR

0..*

1

organizations

PK ID: BIGINT

* name: VARCHAR

UN * username: VARCHAR

memberships

PK ID: BIGINT

FK * user_id: BIGINT

FK * organization_id: BIGINT

1..*1

roles

PK ID: BIGINT

* type: VARCHAR

FK * membership_id: BIGINT

Figure 2.2: Users & organizations database diagram

The user is a core resource in the application. It represents an actual user using the
application. The user comes with a set of standard attributes like first and last name.
A user can be an admin – a special role within the system with full permissions over all
other resources. Each user has credentials which are used to authenticate the user within
the application. The authentication system is enabled by the combination of users and
credentials tables. We will talk more about this in Chapter 3.

Another important resource is the organization. The organization groups multiple
users together. This is an important feature of the organization because it enables the
database multi-tenancy model [37] and sharing other types of resources between the users
within the organization.

A user can be part of multiple organizations, and an organization can have multiple
users. This property is enabled through the memberships. Membership is a simple

41



2. Application Design

resource that defines the belonging of the particular user to the particular organization.
Another important connected resource is the role. Each role record is connected to the
particular membership. It defines the role of the user within the organization, and thus,
its permissions over the resources within the organization. A user can have multiple roles
through a single membership.

Different types of roles are defined by the type attribute. There should always be
a predefined enum of the role types that the application supports. However, this enum
can be gradually updated, and the role system can grow on its complexity. Yet again, we
will talk more about the roles in Chapter 3.

All of these described resources together form a design that can be used for the au-
thentication, authorization, role system, and enabling the multi-tenancy within the appli-
cation.

2.2.2 Computations

The computations and other connected resources and their associations are described in
Figure 2.3.

The main resource here is the computation. The main purpose of the computation
is to group other related resources together. It is always owned by the particular user,
which is defined by the creator_id attribute. The computation can also be shared within
an organization. It can be related to the spreadsheet in a classic office program.

The computation consists of the inputs, outputs, and formulas. The input is a resource
that describes an input value from the user that can be used in the computation process.
The format and value of the input are defined by the linked field schema. A field schema
record holds a valid JSON Schema [43] definition that can be used to validate the value of
the input. That is why the data type of the last_value attribute is JSONB. This way, the
values can have simple data types like string or integer but can also hold more complex
data types like arrays or user-defined objects.

The second important resource is the output. The value of the output is also defined
by the connected field schema. It describes the output of the evaluation of a particular
formula. The formula has a definition that can reference multiple inputs through the
unique labels of those inputs. The definition of the formula can be evaluated by using
the connected evaluator. The result is then written to all outputs that are linked to the
given formula.

The evaluator is an important resource that describes a particular formula evaluation
implementation. The application can implement multiple different evaluators. This prop-
erty enables us to use evaluation engines either that can be implemented directly in the
back-end, but that can also be in the form of foreign systems accessed through the foreign
APIs. In this way, the application and its evaluator engines can be easily extended. The

42



2.2. Back-end Functionalities & Database Design

1

0..*

inputs

PK id: BIGINT

* name: VARCHAR

* label: VARCHAR

FK * computation_id: BIGINT

FK * field_schema_id: BIGINT

o last_value: JSONB

UN computation_id, label

0..*

1

using0..* 0..*

formulas

PK id: BIGINT

* name: VARCHAR

* label: VARCHAR

o definition: TEXT

FK * computation_id: BIGINT

FK o evaluator_id: BIGINT

UN computation_id, label

0..1 0..*

1

0..*

1

0..*

computations

PK id: BIGINT

* name: VARCHAR

FK * creator_id: BIGINT

FK o organization_id: BIGINT

field_schemas

PK id: BIGINT

UN * name: VARCHAR

* definition: JSONB

outputs

PK id: BIGINT

* name: VARCHAR

* label: VARCHAR

FK * computation_id: BIGINT

FK * field_schema_id: BIGINT

FK o formula_id: BIGINT

o last_value: JSONB

UN computation_id, label

1

0..*

0..*

0..1

evaluators

PK id: BIGINT

UN * name: VARCHAR

o description: TEXT

* module: VARCHAR

Figure 2.3: Computations database diagram

definition of the formula has to have a compatible syntax with the linked evaluator.

The resources we described form an adaptable design that can be used to implement
a system of adaptable computations. To conclude, this aspect is mainly enabled through:

• I/O data types that can be dynamically added and removed to and from the appli-
cation using the JSON Schema technology,

• formulas that can hold computation definitions referencing the inputs through the

43



2. Application Design

unique labels,

• and most importantly through the usage of different implementations of the evalu-
ators that can be used to evaluate formulas and to bring support for the usage of
different evaluation techniques (using complex data types, etc.).

2.3 Use of Functional Programming
One of the thesis requirements is to use functional programming languages for the im-
plementation. Functional programming is a programming paradigm where developers use
functions as the primary way to organize the code. This programming style has certain
aspects like immutability, pure functions, higher-order functions, or treating functions
as first-class citizens. [1]

We will not dig too deep into the nuances of FP, but it is worth mentioning some of
the main benefits of the FP in the development:

1. Pure functions – these types of functions are one of the main concepts of FP.
A pure function is similar to a mathematical function where the same input always
results in the same output. It means that the pure function is not dependent on
a global state and doesn’t alter it. This fact makes the writing of tests much easier
because the tests are always deterministic.

2. Easy debugging and fewer bugs – The functions are a simple mapping of an
input to an output. This means that searching for a problem in the code means
looking at the stack trace and analyzing each level of the function call.

3. Function signatures – Pure functions depend on the input you provide them
with. The function signatures are thus more transparent and also serve as a form of
documentation for developers.

4. Safe concurrency – The pure functions do not depend on the shared state. The
isolation thus provides a safe way to run multi-threaded code.

5. Reasoning about the code – The main programming technique in FP is compos-
ing functions and creating higher-order functions. Reasoning about the code that
is a composition of functions is straightforward, and imagining the execution tree of
the code is much easier. [44]

These were just a few aspects and pros of FP. There are many more, and, of course,
there are also many functional programming languages. In fact, functional programming
is not restricted to functional languages. It is a coding style. It means that you can
also implement this style in some of the object-oriented languages like Java or Python.
However, some programming languages require you to use this style of programming.

44



2.4. Conclusion

Some of them are very strict in forcing this style, like Haskell, for example. Some of them
give you more freedom, like Elixir [45], for example. The decision of which language to
choose for your project always depends on your needs, the time you have for the project,
and the level of expertise you have with functional programming. In Section 3.1 we will
describe which functional programming language we chose and explain why we decided
so.

2.4 Conclusion
In this chapter, we looked at the high-level architectural design of the application. We
focused on the back-end part of the application and described why we chose to implement
the application as a web app with the implemented REST API.

In the second part, we talked about the back-end functionalities and database design.
Through the database diagrams, we described, from a high-level point of view, the business
logic the application implements. The goal was to show how we approached and solved
the problem of the adaptable computations and scalable design of the back-end in this
domain.

45





Chapter 3
Implementation

In this chapter, we will look at the back-end implementation of the ACE application. We
will focus on used technologies, dig into the important implementation details, go through
testing and documentation and look at the FRs from the Section 1.6 in the context of
the current implementation. The back-end code is part of the Appendix B but is also
accessible via GitHub [3].

3.1 Used Technologies
One of the parts of the thesis assignment was to develop the application with the use
of functional programming languages. The goal here was to choose the programming
language that would be suitable for the task as we designed it in Chapter 2. The number
of possible functional languages to choose for your project is quite big nowadays. We
have languages like Haskell, F#, Scala, Clojure, and many more. We were looking for
a functional language that would pass these requirements:

• Stable community – it is very important to have a stable community that pushes
the language forward and develops and maintains a wide spectrum of libraries.

• Mature tooling – since this attribute can make the development much more effi-
cient. We are talking about stuff like language servers, build tools, documentation,
IDE support, etc.

• Quick prototyping – this requirement was important for us because of the nature
of the application. Quick prototyping comes very handy in web development, where
developers make a lot of small changes in a short period of time.

• Mature web framework – we were looking for a language with an existing mature
web framework. This was very important because a mature framework with well-
defined best practices can eliminate a lot of implementation that doesn’t directly
relate to the original task.

47



3. Implementation

After some analysis, we decided to choose the Elixir programming language. Elixir
is a dynamic and functional language that is based on the Erlang programming language
and runs on the Erlang VM. We chose this language because it passes all requirements
we set before. It is a language with a wide community used by commercial companies. It
comes with a set of development tools for building, static code analysis, and many more.
It is also supported by IDEs we used for the development. Since the language features
dynamic typing, it is suitable for quick prototyping. [45]

Besides the language itself, there is the Phoenix Framework we used for the project.
Phoenix is a mature production-ready web framework that is used by a number of compa-
nies. It follows the principles of MVC but uses functional programming to keep the code
clean. It also comes with a set of scripts, enabled by the Elixirs’ mix build tool, that can
generate a lot of repetitive code for you, like defining the mapping between the database
tables and code data structures. Phoenix also defines a set of conventions for structuring
your code that help you to keep it maintainable and avoid unnecessary repetitions. The
framework puts its focus on your business domain. Another very important aspect is that
Phoenix comes with a number of guides that can help you with the initial development
but also with solving a lot of common web development problems like authentication,
authorization, etc. [46]

There are also companies like DockYard that offer expert consulting for the Elixir and
Phoenix projects. [47]

3.1.1 Database Engine

Based on the design from Chapter 2, we decided it would be most suitable to use a re-
lational database for our application. We picked PostgreSQL as Relational Database
Management System (RDBMS) we will use. It is an open source database system with
over 30 years of active development. We picked it mainly for its reliability, robustness,
and performance. We also take advantage of its complex data types like JSONB that we
used in the back-end design of the application as it can be seen in Figure 2.3. [48]

3.1.2 Docker

As we described in Section 2.1.1.1, the back-end of the application can be seen as a web
service. To fully take advantage of the cloud-native principles, we decided to virtualize
the application using Docker technology [49]. Since the application also uses PostgreSQL
database, we use Docker Compose [50] for building and running the application container
and connected services like the mentioned database engine.

Docker can be used for the development, testing, and also for production deployment.
The application image stays the same. The only difference is in the configuration, which
is manipulated using the environment variables.

48



3.2. Implementation Details

3.2 Implementation Details

The implementation of the back-end is based on the design we proposed in Section 2.2.
Most of the aspects of the implementation were already described in that section. However,
there are still some details/specifics that are worth mentioning and describing in greater
detail.

In this section, we will take a look at the implementation details like authentication,
role system, or a concrete implementation of the formula evaluator.

3.2.1 Authentication

Figure 2.2 shows us that the application implements authentication using email and pass-
word. This is a system that is used in the back-end to authenticate the particular user.
However, it would be inconvenient and potentially insecure to include email and password
in each HTTP request the back-end would receive. We decided to address this by using
JSON Web Token (JWT) to authenticate the API calls [51]. The token is then trans-
ported using HTTP Authorization header as the Bearer token as described in RFC 6750
[52].

There are two ways to obtain the token for the particular user. Firstly, the token
is returned in the HTTP response for the endpoint that creates a new user. This is a con-
venience, so a new user can start using authentication for other endpoints right after it
is created. The second way is to use a special endpoint for signing in the user. The
sign-in request requires the client to send the users’ email and password in the body of
the request. The server responds with the newly generated token that can be used to
authenticate the user. The application should only be accessible through secured HTTPS
communication in the production to avoid leakage of emails and passwords of the users.

3.2.2 Authorization & Role System

Since we work with the users and organizations grouping the users in the application, we
needed to implement some form of authorization in the application. The design described
in Section 2.2 allowed us to implement a role-based system for the authorization.

This system consists of two important parts – authorizing resources owned by a user
and resources that are shared within the organization.

The first part is quite straightforward. The user is able to fully manipulate the resource
describing itself – user resource. It is also able to fully manipulate the computations which
the user created.

The second part involves the organizations. As we can see in Figure 2.2, the user can
have multiple roles connected to the particular membership in the particular organization.

49



3. Implementation

This system is quite flexible, and new roles can be introduced through the implementation
in the application. Currently, the application supports these three roles:

1. Regular – a user who is able to see other users in the organization and read and
manipulate the computations shared within the organization.

2. Maintainer – a user that can also invite other users to the organization and manage
users with the regular role.

3. Owner – owner of the organization that can manipulate the organization resource
itself and fully manage all other resources within the organization.

There is also a special role of a user, and that is the admin role. If a user is an admin,
they are able to fully manipulate all resources within the application. This role is intended
for the administrators of the application.

The system is not extensively complex but, by design, is open to being extended
by new roles and new authorization rules that can address more complex authorization
requirements in the future. More information about the authorization and role system
can be found in the Adaptable Costs Evaluator Wiki [53].

3.2.3 Simple Evaluator Implementation
As we discussed in Section 2.2, the application can be extended by the implementations
of the various types of formula evaluators. Since the application would be hardly usable
without at least one implementation, we decided to include the implementation of the
Simple Evaluator supporting multiple data types. This evaluator is based on the Abacus
script language [54].

Documentation and capabilities of this script language can be found in its documen-
tation at GitHub [54]. To mention a few of the capabilities, Abacus supports

• basic mathematical operators (+, -, *, /, ̂),

• boolean operators (&&, ||, not),

• factorial, and some of the other mathematical functions.

To enhance the implementation, the Simple Evaluator is also able to parse inputs
from the formula definition that are defined by the unique label attribute – variable
name in a sense. For example, we can see a valid formula definition that can be used and
evaluated in Code Snippet 3.1 where input1, input3, and input4 are labels of the actual
input records defined by the user.

50



3.3. Code Testing

((input1 + input3) ^ 42) / input4

Code Snippet 3.1: Example of the Simple Evaluator expression

3.3 Code Testing

Code testing is important during the development and maintenance of an application. It
ensures that the bugs in the new code are found during the development and not released
to the production. It also ensures that new changes do not break the old code covered
with the tests.

We used unit testing to cover the code with the tests. Since the application is self-
contained in its current state, we didn’t find it necessary to create complex integration
tests. This might change in the future if, for example, a new formula evaluator calling
foreign services would be added to the application.

We mostly followed Test Driven Development (TDD) [55] principles during the de-
velopment, which led us to high test coverage of 87.33%. This number was obtained by
calling mix test --cover command which runs the Elixir tests and also calculates how
much percent of the code is covered by tests.

To add to the advantages of the testing, we also believe that good tests can serve
as a form of documentation and help new contributors/developers to understand the
codebase.

3.3.1 CI & Automatic Testing

“CI is the practice of automating the integration of code changes from multiple contributors
into a single software project. It’s a primary DevOps best practice, allowing developers to
frequently merge code changes into a central repository where builds and tests then run.
Automated tools are used to assert the new code’s correctness before integration.” [5]

CI is enabled for our project through the GitHub Actions [56] which is an automation
environment you can use in your GitHub repository. We use Actions to automatically
build & test the code when a new Pull Request is being made. Merging code to the
master branch is protected and allowed only once all checks pass. We use it not only to
run the tests but also to check the code formatting and run static code analysis that might
find possible vulnerabilities and bugs in the code. This way, we make sure that the code
in the master branch is always properly formatted and tested. An example of successfully
passed CI pipeline can be seen in Figure 3.1.

51



3. Implementation

Code Comments (#31) Tests & Static Code Analysis #63

Summary

Jobs

OTP 24 / Elixir 1.13.0 Set up job

Initialize containers

Check Out Repository

Setup Beam

Install Dependencies

Run Tests

Check Formatting

Typecheck With Dialyzer

Post Check Out Repository

Stop containers

Complete job

OTP 24 / Elixir 1.13.0
succeeded 14 hours ago in 10m 48s

Figure 3.1: An example of successfully passed GitHub Actions pipeline in the ACE
repository [56]

3.4 Documentation

Documentation is an important part of most software projects. It helps to understand
how the given application works. In our context, it also gives instructions on installing,
developing, and using the application. We included different types of documentation for
the ACE application.

3.4.1 Code Comments

Comments in the code are the most basic documentation our application includes. We
commented on the most important parts of the business logic. The comments are intended
to help new developers better understand the code. They also serve as documentation for
the public API parts of our code. The useful thing about the comments in Elixir is that
the language treats the comments as first-class citizens. It means that the language offers
various functions to access and also generate documentation for the project.

52



3.4. Documentation

3.4.2 README File
README file is another handy way of writing documentation. We include this file in the
root of the GitHub repository [3]. The file is written using Markdown [57] syntax and
automatically rendered in the GitHub UI. The header of the file can be seen in Figure 3.2.
The file contains a description of the project, how to install and develop it, and other
information like licensing, contact, etc. It also contains technical information about the
project like the state of the CI pipelines, number of opened issues, etc.

patrotom / adaptable-costs-evaluator Public

Code Issues 2 Pull requests Actions Projects 1 Wiki Security Insights Settings

 2 branches  0 tags

T E S T S  &  S TAT I C  C O D E  A N A LY S I S PA SS I N G  I S S U E S 2 OPEN  L I C E N S E M I T  F O R K S 0  S TA R S 0

Adaptable Costs Evaluator (ACE)
This repository contains the back-end of the ACE application. It is implemented as a web service with the REST API. 

Explore the REST API specification »

Table of Contents
1. About The Project

Built With

2. Getting Started
Prerequisites

Installation

3. Usage

4. Development

5. Contributing
Versioning

6. License

7. Contact

8. Acknowledgments

About The Project

The project is based on the DSW Storage Costs Evaluator project. This project enables the users to dynamically
compute storage costs based on the given input parameters. However, the computations are hard-coded in the back-
end, and it is difficult to implement new changes. The intention behind the ACE was to create a REST API that would
enable the clients to create, run, and store the computations in an adaptable and scalable manner. Alongside these
features, ACE also supports a user system enabling authentication and authorization. It also brings an organization
system that enables the application to implement database multi-tenancy.

Built With

Elixir

Phoenix Framework

PostgreSQL

(back to top)

Getting Started

To install and run the application, you need to install a few prerequisites and follow a couple of steps.

Prerequisites

Install the following programs:

About

The back-end of the Adaptable Costs
Evaluator (ACE) application.

 Readme

 MIT License

Releases

No releases published
Create a new release

Packages

No packages published  
Publish your first package

Environments 1

 github-pages Active

Languages

Elixir 99.7%  Other 0.3%

 master Go to file Add file Code

patrotom Code Comments (#31) be427c3 13 hours ago  68 commits

.github/workflows Update Elixir to 13.0.0 (#30) 20 hours ago

config Review Implementation and Tests (#24) 25 days ago

docs Code Comments (#31) 13 hours ago

lib Code Comments (#31) 13 hours ago

priv Review Implementation and Tests (#24) 25 days ago

scripts Dockerize Application for Development and Test (#23) 25 days ago

test OpenAPI 3 Documentation (#28) 11 days ago

.dockerignore Dockerize Application for Development and Test (#23) 25 days ago

.formatter.exs OpenAPI 3 Documentation (#28) 11 days ago

.gitignore Initial commit 3 months ago

Dockerfile Update Elixir to 13.0.0 (#30) 20 hours ago

LICENSE Add Proper README.md (#29) 2 days ago

README.md Readme fix yesterday

VERSION OpenAPI 3 Documentation (#28) 11 days ago

docker-compose.yml Dockerize Application for Development and Test (#23) 25 days ago

mix.exs Update Elixir to 13.0.0 (#30) 20 hours ago

mix.lock OpenAPI 3 Documentation (#28) 11 days ago

README.md

Figure 3.2: ACE README.md file in the root of the GitHub repository [3]

3.4.3 REST API Specification
REST API specification is an important type of documentation for the developers seeking
to integrate the back-end into the other systems or applications. It can also help the
contributors to better understand how the application works and how different parts
(resources) of the application depend on each other. We use OpenAPI Specification [58]
for our application. It is a machine-readable specification for describing, producing, and
visualizing RESTful web services.

We use OpenAPI through the Open API Spex [59] Elixir package that enables us to

53



3. Implementation

automatically generate a lot of parts of the specification from the code. This package
is able to generate a JSON file containing the whole specification. To visualize the specifi-
cation, we use Swagger UI [60] tool. An example of how the visualized specification looks
like can be seen in Figure 3.3.

POSTPOST /api/v1/computations/{computation_id}/formulas/{id}/evaluate Run the evaluation of the Formula

Runs the evaluation of the Formula and returns the result of the evaluation. It also returns the list of affected Outputs. An affected Output is an Output where the evaluation wrote the result to the last_value attribute.

If the given Output was not affected (even though the formula_id is set), it means that the validation of the result value against the linked FieldSchema failed.

Callbacks Try it out

Name Description

computation_id *
integer

(path)

ID of the Computation

Example : 42

42

Parameters

required

Figure 3.3: ACE API specification visualized using Swagger UI [60]

The visualized OpenAPI specification using Swagger UI is also accessible online and
hosted using GitHub Pages [61]. It is automatically built every time the specification file,
which is located in the repository, is updated and pushed/merged to the GitHub master
branch.

3.4.4 Wiki Pages
Another practical type of documentation is Wiki pages. We use GitHub Wiki [53] to host
our Wiki pages. The pages contain information intended for the developers who wish to
contribute to the application code or integrate it with foreign systems. We can find pages
describing the role system, authorization, or example application setup. A preview of one
of the pages can be seen in Figure 3.4.

3.5 Implemented Functional Requirements
To summarize the conducted implementation, we will look at the FRs we implemented in
the back-end application. We defined the FRs in Section 1.6. Since we didn’t implement
a front-end part of the application, we will take a look only at groups no. 1 and 2. We
will describe the implemented FRs on a similar table like the one where we defined them.
For clarity, we include the same short description next to each FR. On top of that, we add
an explanation of how we implemented the given FR and what it enables the client/user
to do or why the implementation was omitted.

The first Table 3.1 describes implementation of the FRs from Table 1.8. The second
Table 3.2 then describes implementation of the FRs from Table 1.9.

54



3.5. Implemented Functional Requirements

Example Application Setup
Tomáš Patro edited this page 6 minutes ago · 1 revision

Pages 3

Find a Page…

Home

Example Application Setup

Role System & Resources

Add a custom sidebar

Clone this wiki locally

The example application setup can be created through the DB seeding located in the seeds.exs file.

The DB seeding creates the following structure:

1. User with the admin role.

2. Organization where the user is the owner.

3. Different FieldSchemas for the inputs and outputs.

4. Record for the Simple Evaluator.

5. Computation, Inputs, Outputs, and Formula to calculate Body Mass Index (BMI).

The database seeding is automatically run when running the application, using Docker Compose, for

the first time. If you wish to run the seeding manually, run the following command from the root of the

project:

Home | App Repo | API Specification | License

Edit New Page

https://github.com/patroto

mix run priv/repo/seeds.exs

Figure 3.4: ACE Wiki Page [53]

Group No. 1
FR No. FR Description Implementation

FR 1.1

The user is able to adjust how
the calculations are performed.
This would mean implementing
a functionality where users
could create their own input
fields and corresponding
output fields and mapping
between them (calculation
definition).

The user is able to create their own
computation, which is a form of a
spreadsheet that can contain
user-defined input and output fields. The
fields can be of various data types
defined by the linked JSON schemas
describing them. This way, the client can
define simple data types like numbers or
strings and more complex ones like
arrays or objects.

The mapping between the input and
output fields is enabled through the
formulas that can reference input fields,
evaluate the given formula definition,
and write the result to the output fields.

55



3. Implementation

FR 1.2

The user is able to
create/import their own set of
rules and conditions for the
calculations. This FR is closely
related to FR 1.1. This FR
describes the need to have a
formal language to describe the
formulas, conditions, and I/O
mappings to produce the
computation results.

The computation process is enabled
through the formulas that contain
definitions. These definitions are written
in a formula language that is readable by
the linked evaluator. The application can
be extended with the new evaluator
implementations that can use different
strategies for the evaluation, define more
complex data types and even call the
external services.

We also implemented a simple evaluator
that is able to use basic mathematical
and logical operators and some of the
common mathematical functions.

Table 3.1: Implemented FRs from the group no. 1

Group No. 2
FR No. FR Description Implementation

FR 2.1

User is able to create their own
account and save the
preferences, calculation results,
etc.

Each user can create and have their own
account that can be used to create new
computations, evaluate them, and save
the results. The user can sign in to their
account using the email and password.

FR 2.2

The user is able to create an
organization within the
application and invite other
users to it.

The user can create multiple
organizations and can be part of
multiple organizations. They can invite
other users to the organization and
share the computations and other
resources with each other.

56



3.6. Future Development

FR 2.3
There is a role system with the
admin, owner, and regular
roles (example names).

We implemented a role system that
enables authorization within the
organization. One specific role is a user
that can manipulate their own resources.
Then there is a role system within each
organization that defines permissions for
the users in the organization. The
current implementation comes with
regular, maintainer, and owner roles.

There is also a special admin role that is
meant for the application administrators
and that enables the user to manipulate
all resources.

FR 2.4
The user is able to export the
calculation results in the given
format (CSV, XML, etc.).

This is the one FR we didn’t include in
the implementation. It would require
further research and feedback from the
users to identify in which formats they
would like to export the computations
(calculations) and how should the
exported data look like.

This FR is, however, a good candidate
for future development.

FR 2.5
The user is able to interact
programmatically with the
application using the web API.

The whole back-end is implemented as
a web service with the REST API. The
ability to programmatically interact with
it comes from the nature of the
implementation.

Table 3.2: Implemented FRs from the group no. 2

To summarize, we were able to implement most of the back-end related FRs except the
ability to export the computations in the custom format. This feature can be considered
as a candidate for future development. We didn’t implement FRs from Table 1.10 since
we didn’t implement the front-end of the application as described in previous sections.

3.6 Future Development
In this chapter, we described and dag into the existing implementation of the ACE appli-
cation. Many of the initially set FRs in Section 1.6 were implemented, and the back-end
as a web service is ready for usage. However, there are still new features that can be de-

57



3. Implementation

veloped and existing features that can be enhanced. We prepared a list of these features
with a brief explanation:

1. Front-end – An important thing to do in the future. We should either develop
a new front-end or integrate the back-end to an existing front-end.

2. Refactoring of the inputs and outputs tables – The current implementation
divides input and output representations into two tables. However, these two re-
sources have a lot of similarities, and they could be united under one table (e.g.,
fields table). This would enable us to treat the two resources interchangeably and
let us write formulas more flexibly, referencing the result of the evaluation of one
formula (some output) in another formula. We would have to solve the problem with
the order of evaluations, so a referenced output is already evaluated before starting
the evaluation of the formula referencing it (recursive evaluation).

3. Enhancement of roles system – The current role system can be enhanced by
new roles that would enable more flexible authorization. On the other hand, this
system can also be replaced by a classic read/write permissions system. Users would
be able to assign permissions for a particular resource in the context of other users
or in the context of organizations (e.g., a resource within the organization with the
read permission would enable all users in the organization to read it).

4. Import/export computations from/to the specific format(s) – The feature
which was also set as the FR 2.4 in Section 1.6. It would require designing and
implementing special connectors for each format to import/export the computations.
We should design the connectors using a unified interface, so implementation of a new
connector would, for example, require creating a new module implementing import
and export functions.

5. API keys – These keys would be used by the foreign systems integrating our ap-
plication. They would be used for the authentication instead of the JWTs issued
for the users that have a limited lifetime. This would also require implementing
a mechanism for controlling the scope of the API keys.

6. Using OpenAPI specification to validate request bodies – The API specifi-
cation contains JSON schemas describing the request bodies for different resources.
These schemas can be used to enhance the validation of the request bodies.

3.7 Implementation Benefits Summary
In this section, we would like to take a look at some of the development and implementation
decisions that might be beneficial for the future development and usage of the application.

The initial goal that was set was to develop an application that would be able to define
computations in a flexible manner. The initiative arose from the fact that the existing

58



3.7. Implementation Benefits Summary

SCE application [2] is constrained with the computations being hard-coded. We designed
the new ACE application [3] to solve this problem on one side but on the other side to
also be easily extendable and maintainable.

The first important thing enabling this was the decision to use the FP technologies.
We discussed some of the benefits of FP in Section 2.3. In the context of ACE, the FP
allowed us to write a clean code consisting of the composition of short functions. The
benefits of this approach enabled us to cover most of the code with the unit tests since
testing the functions proved to be straightforward and effective. Short functions with
the proper names and clear function signatures are also self-documenting and enable new
contributors to better understand the code. In addition, the Elixir programming language
[45] alongside the Phoenix Framework [46] proved to be the right decision for functional
web development. We also took advantage of the PostgreSQL database [48] and mainly
of its JSONB data type that fit our needs for storing JSON schemas [43].

Secondly, we designed the application to be extendable and flexible. The design enables
the clients to define their own computations with the input and output fields. However,
the main benefit is the ability to define any data types for these fields as long they can
be described by a JSON schema. We combined this feature with an option to develop
an arbitrary number of evaluators that can be used to evaluate formula definitions. The
combination of these two aspects is the key attribute that makes the application versatile
and adaptable.

The last thing we want to highlight is the supportive technologies around the appli-
cation. The most important part here is the documentation. We included different types
of documentations – Swagger UI [60] for the API specification, installation manual in the
form of README, Wiki pages as a documentation for the developers, and we also doc-
umented the main functionalities in the code. In addition, the code is covered with the
unit tests that also serve as a form of documentation for the new contributors. To add to
this, we set up automatic CI pipelines using GitHub Actions [56] to build & test the code,
check the formatting, and conduct a static code analysis to look for the vulnerabilities
and potential bugs.

The application back-end is ready to be used and integrated. However, there are still
things that should be done as we described in Section 3.6. The future development should
be eased by the fact that the process is already defined and supported by the existing
documentation, automatic CI pipelines, and the code that is mostly covered by the tests.

59





Conclusion

In the thesis, we presented different parts of the Software Development Life Cycle (SDLC)
[62] we went through when developing the Adaptable Costs Evaluator (ACE) application.
The goal was to describe what steps we took in order to design and develop a new web
application for the adaptable computations using functional programming technologies.

We started by describing the analysis that we conducted prior to designing and im-
plementing the new ACE application. In this analysis, we presented the current Storage
Costs Evaluator (SCE) application that we used as a base for the new and improved ap-
plication. We went through its architecture to understand how the current solution works
and how we could improve it. We gathered and analyzed the feedback from the current
users. Afterward, we looked at the other existing solutions, methods, and technologies in
this field. Based on this analysis, we created a set of FRs for the new application.

We continued by creating and describing a new application design for the ACE applica-
tion. We went through the high-level design of the architecture and described the desired
back-end functionalities and database design. We also looked at the use of functional
programming in the context of the new application.

In the last part, we dug into the implementation of the ACE application. We described
the used technologies and some of the implementation details. We also looked at the
supporting aspects of the development, like code testing and documentation.

In the end, we summarized the implementation by describing the implemented FRs
and by talking about the benefits of the current implementation. We also outlined the
future development by looking at the features that would be beneficial to include in the
next development phase.

61





Bibliography

1. TYSON, Matthew. What is functional programming? A practical guide. InfoWorld
[online]. 2021 [visited on 2021-12-15]. Available from: https://www.infoworld.
com/article/3613715/what-is-functional-programming-a-practical-guide.
html.

2. SUCHÁNEK, Marek. Storage Costs Evaluator [online]. Data Stewardship Wizard, ©
2019 [visited on 2021-12-15]. Available from: https://storage-costs-evaluator.
ds-wizard.org/.

3. PATRO, Tomáš. Adaptable Costs Evaluator (ACE) [online]. GitHub, Inc., © 2021 [vis-
ited on 2021-12-15]. Available from: https://github.com/patrotom/adaptable-
costs-evaluator.

4. FIELDING, Roy Thomas. Architectural styles and the design of network-based soft-
ware architectures. University of California, Irvine, 2000.

5. REHKOPF, Max. What is Continuous Integration? Atlassian [online]. © 2021 [vis-
ited on 2021-12-15]. Available from: https://www.atlassian.com/continuous-
delivery/continuous-integration.

6. HOOFT, Rob W.W. Calculation model for costs of (digital) storage [online]. Zenodo,
2020. 2020-09-16 [visited on 2021-12-15]. Available from DOI: 10.5281/zenodo.
4033087.

7. SUCHÁNEK, Marek. Storage Costs Evaluator [online]. GitHub, Inc., © 2019 [visited
on 2021-12-15]. Available from: https://github.com/ds-wizard/storage-costs-
evaluator.

8. EERNISSE, Matthew. Embedded JavaScript [online]. © 2012 [visited on 2021-12-15].
Available from: https://ejs.co/.

9. Bootstrap [online]. Twitter, Inc., © 2011–2021 [visited on 2021-12-15]. Available from:
https://getbootstrap.com/.

63

https://www.infoworld.com/article/3613715/what-is-functional-programming-a-practical-guide.html
https://www.infoworld.com/article/3613715/what-is-functional-programming-a-practical-guide.html
https://www.infoworld.com/article/3613715/what-is-functional-programming-a-practical-guide.html
https://storage-costs-evaluator.ds-wizard.org/
https://storage-costs-evaluator.ds-wizard.org/
https://github.com/patrotom/adaptable-costs-evaluator
https://github.com/patrotom/adaptable-costs-evaluator
https://www.atlassian.com/continuous-delivery/continuous-integration
https://www.atlassian.com/continuous-delivery/continuous-integration
https://doi.org/10.5281/zenodo.4033087
https://doi.org/10.5281/zenodo.4033087
https://github.com/ds-wizard/storage-costs-evaluator
https://github.com/ds-wizard/storage-costs-evaluator
https://ejs.co/
https://getbootstrap.com/


Bibliography

10. JQUERY CONTRIBUTORS. jQuery [online]. OpenJS Foundation, © 2021 [visited
on 2021-12-15]. Available from: https://jquery.com/.

11. Font Awesome [online]. Fonticons, Inc, © 2021 [visited on 2021-12-15]. Available from:
https://fontawesome.com/.

12. Webpack [online]. JS Foundation and other contributors, © 2021 [visited on 2021-12-
15]. Available from: https://fontawesome.com/.

13. FARMER, Andrew. Scotty [online]. GitHub, Inc., © 2012–2017 [visited on 2021-12-
15]. Available from: https://github.com/scotty-web/scotty.

14. STACK CONTRIBUTORS. The Haskell Tool Stack [online]. © 2015–2021 [visited
on 2021-12-15]. Available from: https://docs.haskellstack.org/en/stable/
README/.

15. HANSSON, David Heinemeier. Ruby on Rails [online]. © 2005–2021 [visited on 2021-
12-15]. Available from: https://rubyonrails.org/.

16. Google Forms [online]. Google LLC, © 2021 [visited on 2021-12-15]. Available from:
https://www.google.com/forms/about/.

17. SHNEIDERMAN, Ben; PLAISANT, Catherine; COHEN, Maxine S; JACOBS,
Steven; ELMQVIST, Niklas; DIAKOPOULOS, Nicholas. Designing the user inter-
face: strategies for effective human-computer interaction. Pearson, 2016.

18. Engineering UK Useful Statistics [online]. Women’s Engineering Society, © 2021
[visited on 2021-12-15]. Available from: https : / / www . wes . org . uk / content /
wesstatistics.

19. Microsoft Excel [online]. Microsoft Corporation, © 2021 [visited on 2021-12-15]. Avail-
able from: https://www.microsoft.com/en-us/microsoft-365/excel.

20. LibreOffice Calc [online]. The Document Foundation, © 2021 [visited on 2021-12-15].
Available from: https://www.libreoffice.org/discover/calc/.

21. Google Sheets [online]. Google LLC, © 2021 [visited on 2021-12-15]. Available from:
https://www.google.com/sheets/about/.

22. LIBREOFFICE DOCUMENTATION TEAM. Calc Guide [online]. © 2021 [visited
on 2021-12-15]. Available from: https://books.libreoffice.org/en/CG71/CG71.
html.

23. CHAI, Wesley; CASEY, Kathleen. Software as a Service (SaaS). TechTar-
get [online]. © 2010–2021 [visited on 2021-12-15]. Available from: https : / /
searchcloudcomputing.techtarget.com/definition/Software-as-a-Service.

24. Sheets API [online]. Google LLC, © 2021 [visited on 2021-12-15]. Available from:
https://developers.google.com/sheets/api.

25. uCalc [online]. WebTechRazrabotka LLC, © 2021 [visited on 2021-12-15]. Available
from: https://ucalc.pro/en.

64

https://jquery.com/
https://fontawesome.com/
https://fontawesome.com/
https://github.com/scotty-web/scotty
https://docs.haskellstack.org/en/stable/README/
https://docs.haskellstack.org/en/stable/README/
https://rubyonrails.org/
https://www.google.com/forms/about/
https://www.wes.org.uk/content/wesstatistics
https://www.wes.org.uk/content/wesstatistics
https://www.microsoft.com/en-us/microsoft-365/excel
https://www.libreoffice.org/discover/calc/
https://www.google.com/sheets/about/
https://books.libreoffice.org/en/CG71/CG71.html
https://books.libreoffice.org/en/CG71/CG71.html
https://searchcloudcomputing.techtarget.com/definition/Software-as-a-Service
https://searchcloudcomputing.techtarget.com/definition/Software-as-a-Service
https://developers.google.com/sheets/api
https://ucalc.pro/en


Bibliography

26. STEELE, Howard. Building an Online Calculator. SuperbWebsiteBuilders.com
[online]. © 2021 [visited on 2021-12-15]. Available from: https : / /
superbwebsitebuilders . com / how - to - create - a - calculator - for - your -
website/.

27. Calconic App [online]. MB Lumius, © 2017–2021 [visited on 2021-12-15]. Available
from: https://www.calconic.com/.

28. Calculoid [online]. Easy Software Ltd., © 2021 [visited on 2021-12-15]. Available from:
https://www.calculoid.com/.

29. ConvertCalculator [online]. ConvertCalculator, © 2021 [visited on 2021-12-15]. Avail-
able from: https://www.convertcalculator.co/.

30. JSCalc [online]. OLAPHASE SDN. BHD., © 2021 [visited on 2021-12-15]. Available
from: https://jscalc.io/.

31. JETBRAINS S.R.O. Domain-Specific Languages [online]. © 2000–2021 [visited on
2021-12-15]. Available from: https://www.jetbrains.com/mps/concepts/domain-
specific-languages/.

32. PCMAG. scripting language [online]. © 1996-2021 [visited on 2021-12-15]. Available
from: https://www.pcmag.com/encyclopedia/term/scripting-language.

33. Rhino: JavaScript in Java [online]. GitHub, Inc., © 2021 [visited on 2021-12-15].
Available from: https://github.com/mozilla/rhino.

34. Lua [online]. Lua.org, PUC-Rio, © 1994–2021 [visited on 2021-12-15]. Available from:
http://www.lua.org/home.html.

35. BEHNEL, Stefan. Lupa [online]. GitHub, Inc., © 2010–2017 [visited on 2021-12-15].
Available from: https://github.com/scoder/lupa.

36. POLAK, Gracjan; AĞACAN, Ömer Sinan; KREWINKEL, Albert. HsLua [online].
GitHub, Inc., © 2007–2021 [visited on 2021-12-15]. Available from: https://github.
com/hslua/hslua.github.io.

37. Multi-tenant SaaS database tenancy patterns. Microsoft Corporation [online]. © 2021
[visited on 2021-12-15]. Available from: https://docs.microsoft.com/en-us/
azure/azure-sql/database/saas-tenancy-app-design-patterns.

38. What is a web service? IBM Corporation [online]. © 2014–2021 [visited on 2021-
12-15]. Available from: https://www.ibm.com/docs/en/cics-ts/5.2?topic=
services-what-is-web-service.

39. What is Cloud Native? Microsoft Corporation [online]. © 2021 [visited on 2021-12-
15]. Available from: https://docs.microsoft.com/en-us/dotnet/architecture/
cloud-native/definition.

40. React [online]. Facebook Inc., © 2021 [visited on 2021-12-15]. Available from: https:
//reactjs.org/.

41. YOU, Evan. Vue.js [online]. © 2014–2021 [visited on 2021-12-15]. Available from:
https://vuejs.org/.

65

https://superbwebsitebuilders.com/how-to-create-a-calculator-for-your-website/
https://superbwebsitebuilders.com/how-to-create-a-calculator-for-your-website/
https://superbwebsitebuilders.com/how-to-create-a-calculator-for-your-website/
https://www.calconic.com/
https://www.calculoid.com/
https://www.convertcalculator.co/
https://jscalc.io/
https://www.jetbrains.com/mps/concepts/domain-specific-languages/
https://www.jetbrains.com/mps/concepts/domain-specific-languages/
https://www.pcmag.com/encyclopedia/term/scripting-language
https://github.com/mozilla/rhino
http://www.lua.org/home.html
https://github.com/scoder/lupa
https://github.com/hslua/hslua.github.io
https://github.com/hslua/hslua.github.io
https://docs.microsoft.com/en-us/azure/azure-sql/database/saas-tenancy-app-design-patterns
https://docs.microsoft.com/en-us/azure/azure-sql/database/saas-tenancy-app-design-patterns
https://www.ibm.com/docs/en/cics-ts/5.2?topic=services-what-is-web-service
https://www.ibm.com/docs/en/cics-ts/5.2?topic=services-what-is-web-service
https://docs.microsoft.com/en-us/dotnet/architecture/cloud-native/definition
https://docs.microsoft.com/en-us/dotnet/architecture/cloud-native/definition
https://reactjs.org/
https://reactjs.org/
https://vuejs.org/


Bibliography

42. CZAPLICKI, Evan. Elm [online]. © 2012–2021 [visited on 2021-12-15]. Available
from: https://elm-lang.org/.

43. JSON SCHEMA TEAM. JSON Schema [online]. © 2021 [visited on 2021-12-15].
Available from: https://json-schema.org/.

44. WAGNER, Lane. Top 8 Benefits of Functional Programming. Qvault [online]. 2021
[visited on 2021-12-15]. Available from: https : / / qvault . io / clean - code /
benefits-of-functional-programming/.

45. Elixir [online]. The Elixir Team, © 2012–2021 [visited on 2021-12-15]. Available from:
https://elixir-lang.org/.

46. MCCORD, Chris. Phoenix Framework [online]. © 2020 [visited on 2021-12-15]. Avail-
able from: https://www.phoenixframework.org/.

47. DOCKYARD, INC. The preeminent Elixir consultancy [online]. © 2017 [visited on
2021-12-15]. Available from: https : / / dockyard . com / capabilities / elixir -
consulting.

48. PostgreSQL [online]. The PostgreSQL Global Development Group, © 1996–2021 [vis-
ited on 2021-12-15]. Available from: https://www.postgresql.org/.

49. Docker [online]. Docker, Inc., © 2020 [visited on 2021-12-15]. Available from: https:
//www.docker.com/.

50. Docker Compose [online]. Docker, Inc., © 2020 [visited on 2021-12-15]. Available from:
https://docs.docker.com/compose/.

51. JONES, M.; BRADLEY, J.; SAKIMURA, N. JSON Web Token (JWT) [Internet
Requests for Comments]. RFC Editor, 2015 [visited on 2021-12-15]. ISSN 2070-1721.
Available from: http://www.rfc- editor.org/rfc/rfc7519.txt. RFC. RFC
Editor.

52. JONES, M.; HARDT, D. The OAuth 2.0 Authorization Framework: Bearer Token
Usage [Internet Requests for Comments]. RFC Editor, 2012 [visited on 2021-12-15].
ISSN 2070-1721. Available from: http://www.rfc-editor.org/rfc/rfc6750.txt.
RFC. RFC Editor.

53. PATRO, Tomáš. Adaptable Costs Evaluator Wiki [online]. © 2021 [visited on 2021-
12-23]. Available from: https : / / github . com / patrotom / adaptable - costs -
evaluator/wiki.

54. SCHMALE, Moritz. Abacus [online]. GitHub, Inc., © 2016 [visited on 2021-12-15].
Available from: https://github.com/narrowtux/abacus.

55. HAMILTON, Thomas. Unit Testing Tutorial: What is, Types, Tools & Test EXAM-
PLE. Guru99 [online]. 2021 [visited on 2021-12-15]. Available from: https://www.
guru99.com/unit-testing-guide.html.

56. GitHub Actions [online]. GitHub, Inc., © 2021 [visited on 2021-12-15]. Available from:
https://github.com/features/actions.

66

https://elm-lang.org/
https://json-schema.org/
https://qvault.io/clean-code/benefits-of-functional-programming/
https://qvault.io/clean-code/benefits-of-functional-programming/
https://elixir-lang.org/
https://www.phoenixframework.org/
https://dockyard.com/capabilities/elixir-consulting
https://dockyard.com/capabilities/elixir-consulting
https://www.postgresql.org/
https://www.docker.com/
https://www.docker.com/
https://docs.docker.com/compose/
http://www.rfc-editor.org/rfc/rfc7519.txt
http://www.rfc-editor.org/rfc/rfc6750.txt
https://github.com/patrotom/adaptable-costs-evaluator/wiki
https://github.com/patrotom/adaptable-costs-evaluator/wiki
https://github.com/narrowtux/abacus
https://www.guru99.com/unit-testing-guide.html
https://www.guru99.com/unit-testing-guide.html
https://github.com/features/actions


Bibliography

57. GRUBER, John. Markdown [online]. The Daring Fireball Company LLC, © 2002–
2021 [visited on 2021-12-15]. Available from: https : / / daringfireball . net /
projects/markdown/.

58. OpenAPI Specification [online]. The Linux Foundation®, © 2021 [visited on 2021-12-
15]. Available from: https://www.openapis.org/.

59. BUHOT, Michael. Open API Spex [online]. GitHub, Inc., © 2017 [visited on 2021-
12-15]. Available from: https://github.com/open-api-spex/open_api_spex.

60. Swagger UI [online]. SmartBear Software, © 2021 [visited on 2021-12-15]. Available
from: https://swagger.io/tools/swagger-ui/.

61. Adaptable Costs Evaluator Swagger UI [online]. GitHub, Inc., © 2021 [visited on
2021-12-15]. Available from: https://patrotom.github.io/adaptable-costs-
evaluator/.

62. Software Development Life Cycle (SDLC). Synopsys, Inc. [online]. © 2021 [visited
on 2021-12-15]. Available from: https://www.synopsys.com/glossary/what-is-
sdlc.html.

67

https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/
https://www.openapis.org/
https://github.com/open-api-spex/open_api_spex
https://swagger.io/tools/swagger-ui/
https://patrotom.github.io/adaptable-costs-evaluator/
https://patrotom.github.io/adaptable-costs-evaluator/
https://www.synopsys.com/glossary/what-is-sdlc.html
https://www.synopsys.com/glossary/what-is-sdlc.html




Appendix A
Glossary

ACE Adaptable Costs Evaluator.

API Application Programming Interface.

CI Continuous Integration.

CSS Cascading Style Sheets.

CSV Comma-separated values.

DSL Domain Specific Language.

EJS Embedded JavaScript.

FP Functional Programming.

FR Functional Requirement.

HTML HyperText Markup Language.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

I/O Input/Output.

ID Identifier.

IDE Integrated Development Environment.

JS JavaScript.

69



Glossary

JSON JavaScript Object Notation.

JWT JSON Web Token.

MVC Model-View-Controller.

RDBMS Relational Database Management System.

REST Representational State Transfer.

SaaS Software as a service.

Saas Syntactically Awesome Style Sheets.

SCE Storage Costs Evaluator.

SDLC Software Development Life Cycle.

SoC Separation of Concerns.

SPA Single Page Application.

TB terabyte.

TDD Test Driven Development.

UI User Interface.

UK United Kingdom.

UX User Experience.

VM Virtual Machine.

XML Extensible Markup Language.

70



Appendix B
Contents of Enclosed CD

README.md......................................the file with CD contents description
adaptable-costs-evaluator.zip..ZIP archive with the Adaptable Costs Evaluator
application source code
DP_Patro_Tomas_2022.pdf ........................... the thesis text in PDF format
DP_Patro_Tomas_2022.zip............ZIP archive with the thesis LATEX source files

71


	Introduction
	Goals
	Analysis
	SCE Features Analysis
	Features Overview
	Functional Requirements

	SCE Architecture Analysis
	Technologies
	Architecture Design
	Summary

	SCE Users Feedback
	Survey Structure
	Survey Questions

	Users Survey Results
	Demographics
	Likert Scale Questions
	Textual Questions
	Overall Summary

	Analysis of Existing Solutions, Methods, and Technologies
	Spreadsheets
	Website Calculator Builders
	DSL and Scripting Languages
	Analysis Results

	ACE Functional Requirements
	Methodology
	Group No. 1 – Computation Functionalities
	Group No. 2 – Supportive Functionalities
	Group No. 3 – UX & UI Structure
	Summary


	Application Design
	High-level Architecture Design
	Back-end Design
	Front-end Design
	Conclusion

	Back-end Functionalities & Database Design
	Users & Organizations
	Computations

	Use of Functional Programming
	Conclusion

	Implementation
	Used Technologies
	Database Engine
	Docker

	Implementation Details
	Authentication
	Authorization & Role System
	Simple Evaluator Implementation

	Code Testing
	CI & Automatic Testing

	Documentation
	Code Comments
	README File
	REST API Specification
	Wiki Pages

	Implemented FR
	Future Development
	Implementation Benefits Summary

	Conclusion
	Bibliography
	Glossary
	Contents of Enclosed CD

