
Instructions

This thesis aims to create an algorithm for the automatic detection of vegetation encroachment in the 

power line corridors. The source images for the algorithm will be captured from the aerial perspective 

using an Unmanned Aerial Vehicle (UAV) and then further processed with methods of photogrammetry 

and computer vision.

1. Research existing solutions for automated power line corridor inspection.

2. Create a representative photogrammetric dataset with UAV.

3. From the captured images create a detailed 3D representation of the power line corridor.

4. Design and implement a robust power line detection algorithm and measurement of vegetation 

encroachment within the power line corridor.

5. Visualize the detected power lines and locations of problematic vegetation.

6. Evaluate the results and suggest future improvements.
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Abstrakt

Provozovatelé elektrických distribučních sítí vynakládají každoročně velké množství peněz a úsilí,
aby zajistili plynulou a bezpečnou dodávku elektřiny. Nejčastějším zdrojem výpadků proudu je
poškození drátů vysokého napětí zásahem vegetace, například spadaných stromů. Z toho důvodu
provozovatelé provádějí údržbu a pravidelné inspekce koridorů s elektrickým vedením, především
v lesích a hustě zarostlých oblastech. Tím vytváří poptávku po nenákladných a vysoce autom-
atizovaných metodách pro průzkum ochranných pásem elektrického vedení. Cílem této práce je
vytvořit robustní algoritmus pro automatickou detekci zásahů vegetace do ochranného pásma
elektrického vedení pomocí bezpilotních letadel (dronů), s využitím metod z fotogrammetrie a
počítačového vidění. Studie pokrývá celý pracovní postup pro inspekci ochranného pásma drátů
vysokého napětí, od obsáhlých pokynů pro sběr dat, přes 3D rekonstrukci elektrického vedení,
až po detekci zásahů vegetace a vizualizaci výsledků.

Klíčová slova dráty vysokého napětí, správa vegetace, UAV, fotogrammetrie, 3D rekonstrukce

Abstract

The electric utility companies spend large amounts of money and effort every year to ensure the
safe and uninterrupted operation of the electric power infrastructure. The most common source of
outages is vegetation damaging power lines, for example, fallen trees. For this reason, companies
perform regular inspections and maintenance of power line corridors, especially in forests and
densely vegetated areas, creating a high demand for inexpensive and highly automated methods of
power line corridor surveys. This work aims to create a robust algorithm for automatic detection
of vegetation encroachment in the power line corridor using an Unmanned Aerial Vehicle (UAV),
the techniques of photogrammetry, and computer vision. The study will cover the workflow for
power line corridor inspection from comprehensive guidelines for data acquisition through power
line 3D reconstruction to vegetation encroachment detection and visualization of the results.

Keywords power lines, vegetation management, UAV, photogrammetry, 3D reconstruction
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Chapter 1

Introduction

Power lines are omnipresent in our modern society and supply us with one of the essential utilities
we rely on heavily – electricity. The importance of electricity does not need to be emphasized,
as anyone can imagine, just how much of today’s critical infrastructure is built on it. Banks,
hospitals, even nuclear power plants have strategies for coping with power outages, usually diesel
generators or emergency batteries, that help them survive several hours with no electricity. For
example, if the Thames Barrier (a movable flood barrier on the river Thames) failed at the wrong
time, 125 square kilometers of central London would be flooded, causing a major disaster [1].

The uninterrupted supply of electricity is thus critical for modern civilization, which is why
the electric power industry makes great efforts to ensure it. One of the most common causes
for outages is vegetation coming into contact with exposed wires of the power lines. It can
be trees that fell during a thunderstorm or vegetation growing too close to the wires in an
unmaintained power line corridor. In the best-case scenario, this will only cause a power supply
failure. However, this may be much more dangerous during hot summer days, as it can cause a
grave wildfire, such as the Camp Fire in California. This wildfire was a major disaster in 2018
that cost 85 lives and burned more than 62 thousand hectares, making it the most destructive fire
in California history [2]. The company, Pacific Gas and Electricity (PG&E) that was operating
the power lines, later filed for bankruptcy and made a settlement of $13.5 billion going to the
victims, as it faced potential liabilities of $30 billion [3]. This is just one of many examples where
vegetation growing too close to the power lines caused severe damage and even casualties.

As a result, the electric power industry must actively prevent the danger by regularly mon-
itoring, inspecting, and maintaining the power lines, especially in densely vegetated areas and
forests. It is not easy, as the power lines often span hundreds of kilometers, sometimes in dif-
ficult or inaccessible terrain. Trimming the vegetation is time-consuming and expensive work,
involving human crews cutting trees or even a helicopter with enormous chainsaws hanging down
below (see Figure 1.1a). The high demands for resources created the need for precise and regular
assessment of the state of the vegetation in power line corridors.

As of today, various techniques are being applied for identifying vegetation risks around power
lines. These comprise human field inspections and remote sensing methods, including satellite
imagery or laser and optical scanning from helicopters. Recently, the improvements in Unmanned
Aerial Vehicles (UAV), especially multi-rotor and fixed-wing drones, allow for more efficient and
less expensive workflows. The UAVs are controlled remotely and can fly autonomous missions,
requiring a far lower level of expertise than flying a helicopter. Moreover, the equipment is much
cheaper than other methods, and its ability to fly closer to the power lines allows for a higher
level of detail, especially in difficult or inaccessible terrain.

The purpose of this work is to create a robust, highly automated algorithm for assessing
vegetation risks near power lines by providing a detailed 3D reconstruction of the power lines

1



2 Introduction

(a) Trimming vegetation using a big
chainsaw hanging from a helicopter.

(b) A multi-rotor UAV taking images of the power lines during our
experiments.

Figure 1.1 Power line vegetation management and corridor inspection.

and the surrounding terrain. We use a multi-rotor UAV with a high-end consumer camera (Figure
1.1b) and the science of photogrammetry, computer vision, and machine learning to achieve this
goal.

The work is organized as follows: a chapter summarizing all the theoretical background and
related knowledge required for this work, followed by a research of existing vegetation inspection
methods and power line detection algorithms. Afterward, we propose an integrated and highly
automated workflow covering the entire process from data acquisition to visualization of the
results. We conclude with experiments and evaluation of our solution on three representative
datasets created for this work.



Chapter 2

Theoretical Background

This chapter first introduces vegetation management near power lines, followed by a basic intro-
duction to computer vision and the tasks relevant for power line 3D reconstruction. After that,
we outline the science of photogrammetry, focusing on the mathematical model of a camera and
the basic theory of image projection. The chapter does not aim to be a comprehensive explana-
tion of all the topics, rather a brief overview comprising the knowledge necessary to understand
the rest of this work. We provide a mathematical basis only for a small subset of these topics,
mainly where mathematics is essential for implementation.

2.1 Vegetation management near power lines
Vegetation management has been a long-standing topic in the electric power industry. Its purpose
is to ensure the safe and uninterrupted operation of the outdoor electric power infrastructure. The
main focus of vegetation management is on forests or other densely vegetated areas containing
power lines, where nature could come into contact with an exposed wire and cause an outage or
even fire.

2.1.1 Power Line Corridor
For ensuring a safe distance between the wires and vegetation, the law establishes a power line
right of way. According to the regulations in the Czech Republic, it is defined as a continuous
space between two vertical planes on each side of the wires. The distance of the planes is
measured from the outermost wire and varies based on the voltage (Figure 2.1) [4]. Within this
area, plants are allowed to reach only a certain height – 1 to 4.5m far from the closest wire,
depending on the voltage and type of vegetation. It is typically defined by technical standards,
such as [5]. We will use the term power line corridor to refer to the definition above throughout
this work.

2.1.2 Physical Model of a Power Line
Cables, chains, ropes, and power lines form curves with a unique shape determined by the weight
and tension of the material. This curve is called catenary, and in 2D, the point [x, y]T ∈ R2 lies
on the curve if it satisfies Equation [6]:

y = c cosh
x

c
, (2.1)

3



4 Theoretical Background

1 kV to 35 kV 

35 kV to 110 kV

7m7m

12m 12m

110 kV to 220 kV 15m15m

220 kV to 400 kV 20m20m

over 400 kV 30m30m

Figure 2.1 Power line right of way based on voltage (upper bounds are inclusive) [4].

where c ∈ R is a scaling factor encompassing the weight and tension of the cable. This can be
further extended by shifting the catenary in space using two translation parameters a, b ∈ R [6]:

y = a+ c cosh
(x− b)

c
. (2.2)

2.2 Computer Vision
Computer vision emerged from the growing desire to mimic human vision. Since the beginning
of computers, humans strove to create a machine comparable to them in challenging tasks,
such as understanding the world around us. Computer vision aims to solve this problem by
understanding the images taken by the best approximation of human eyes yet – cameras [7].

This section outlines the essential tasks of computer vision applicable for power line 3D
reconstruction. The mathematical model of a camera and image projection theory, although
part of computer vision, is described in a Section 2.3. dedicated to photogrammetry.

2.2.1 Image
An image in computer vision is often defined as a continuous or discrete function, mapping the
(x, y) coordinate in the image plane to a brightness value, inherently modeling the image as a
signal [7]. We simplify the matter and define the image as pixel data in the spatial domain,
consistent with [8, 9]:



Computer Vision 5

(a) Input image. (b) Semantic segmentation. (c) Instance segmentation.

Figure 2.2 Input image and its semantic and instance segmentation masks [11].

▶ Definition 2.1. Image is a sensor data matrix indexed from zero, I ∈ {0, . . . , 255}h,w,c, where
h and w is the image height and width in pixels respectively, where Iijk ∀i ∈ {0, . . . , h− 1}, ∀j ∈
{0, . . . , w − 1}, ∀k ∈ {0, . . . , c− 1} represents the brightness value of the particular channel c.

For c = 3, the definition mirrors the output from a typical consumer digital camera – a
three-dimensional matrix comprising three 2D matrices, one for each color in the RGB (red,
green, blue) color representation.

For c = 1, we use the term grayscale image, which can be obtained either by a grayscale
camera or by averaging the color values of an RGB camera.

Without loss of generality, we limit the range of the brightness values to {0, 1, . . . , 255}, which
is the standard for most cameras. By pixel, we mean c brightness values (one for each channel)
Iij: with (sensor) coordinates [i, j]T .

2.2.2 Image Segmentation
Image segmentation is one of the key tasks in computer vision. The objective is to identify regions
in the image containing real-world objects of our interest. For this work, we only assume a single
class of objects – the power lines, although, in literature, authors often work with multiple classes
[10].

For single class problems, we distinguish between two types – semantic and instance segmen-
tation:

Semantic segmentation – given the input image I ∈ {0, . . . , 255}h,w,c, the semantic segmen-
tation task is to find a binary segmentation mask Msemantic ∈ {0, 1}h,w,1, where the value 1
corresponds to pixels containing the objects of interest and 0 is the background. An example
semantic segmentation mask is illustrated in Figure 2.2b.

Instance segmentation – compared to semantic segmentation, instance segmentation distin-
guishes between individual instances of the objects of interest – power lines in our case.
Given the input image I ∈ {0, . . . , 255}h,w,c, the instance segmentation task is to find a seg-
mentation mask Minstance ∈ Nh,w,1

0 , where the value 0 is the background and i ∈ N+ are
unique identifiers for each individual instance of the objects of interest. An example instance
segmentation mask is illustrated in Figure 2.2c.

2.2.3 Linear Filtering
Linear image filtering is one of the fundamental preprocessing techniques used in many computer
vision methods, and it is especially important for line detection in images. The cornerstone of
linear filtering is mathematical convolution with a special matrix called filter kernel.
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(a) Input image. (b) Vertical Prewitt. (c) Horizontal Prewitt. (d) Canny detector.

Figure 2.3 Input image, the result of convolution with Prewitt filters (normalized), and the result of
Canny edge detector.

Convolution of the grayscale image I ∈ {0, . . . , 255}h,w,c with a filter kernel F ∈ Rm,n,c, as
defined in [8, p. 328], generalized for c channels:

Oij0 =

m∑
p=−m

n∑
q=−n

c−1∑
k=0

Ii−p,j−q,k · Fp,q,k (2.3)

A careful reader will notice that we did not specify the domain for i and j in the definition above.
This is because for i ∈ {0, . . . , h − 1}, and j ∈ {0, . . . , w − 1}, the formula would be accessing
elements outside the image I. This is usually solved by defining padding, e.g., zero padding:
Ii,j,k := 0, ∀i ∈ Z \ {0, . . . , h− 1}, ∀j ∈ Z \ {0, . . . , w − 1}, ∀k ∈ {0, . . . , c− 1} [8, p. 328].

The output O has only one channel and is not technically an image by our Definition 2.1
because it contains real numbers. For that reason, O is usually normalized or further processed,
such that it fits into {0, . . . , 255}h,w,1.

Filtering is often used to extract features, such as edges, or perform other operations, e.g.,
blurring or sharpening. The kernel is usually square (m = n) with m equal to a small odd
number, i.e., F ∈ R3,3,c or F ∈ R5,5,c. Equation 2.4 shows example kernels for edge feature
extraction with the resulting images O after normalization in Figure 2.3b and 2.3c.

2.2.4 Edge Detection
An edge in an image is a pixel, where the brightness changes abruptly [7, p. 133]. Finding edges is
crucial for many computer vision algorithms, and can be utilized for an edge-based segmentation
and line detection.

One of the most common methods for detecting edges is linear filtering described above. An
example of an edge filter is the horizontal and vertical Prewitt filter kernel [7, p. 137]:

Fvertical =

−1 0 1
−1 0 1
−1 0 1

 Fhorizontal =

−1 −1 −1
0 0 0
1 1 1

 (2.4)

Figures 2.3c and 2.3b show the results of convolving the input image 2.3a with the Prewitt kernels
above.

Filter convolution is often immediately followed by image thresholding, which transforms the
output grayscale image into a binary segmentation mask keeping only the strongest edges. The
most basic binary thresholding methods simply replace all values of the input image I above
some specified threshold t with 1 and all the others with 0:
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Mij0 =

{
1 if Iij0 > t

0 otherwise
(2.5)

Other filters, e.g., Sobel or Laplace and more sophisticated preprocessing pipelines, combining
multiple steps and filters, are often utilized to achieve different results. One of the most popular
advanced methods is the Canny edge detector (output in Figure 2.3d). A detailed description of
these methods is out of scope of this work and can be found in [7, p. 116–173].

2.2.5 Neural Network Segmentation
An alternative to edge-based segmentation might be the use of the ever-so-popular neural net-
works. Just as computer vision was created to mirror human vision, the first neural networks
were inspired by their biological counterparts. The artificial neuron takes k weighted input sig-
nals, accumulates them, and passes them through a nonlinear activation function. The weight
of each signal determines its strength and therefore controls the contribution of the input. The
neurons are stacked in connected layers, the first layer takes the input, and the last layer out-
puts the prediction. The weights can be trained using gradient descent with training pairs of
input and output values. This way, neural networks are able to solve various regression and
classification tasks.

As this field progressed, neural networks became more complicated, and specialized neural
network architecture for solving computer vision tasks emerged, in particular the convolutional
neural network. This type of network was designed to work with images and utilizes convolution
with a filter kernel, as described in Section 2.2.3. The crucial difference is that the kernel does
not contain fixed values, like the Prewitt kernel (Equation 2.4), but trainable weights.

This work focuses on solving the semantic segmentation task using a neural network. This task
requires a complicated neural network architecture heavily based on convolution. The training
pairs consist of the input image and the output binary segmentation mask. The description of
this type of network is out of scope of this work. Instead, we refer to a particular implementation
[12] that describes the algorithm in detail.

Evaluation Metrics

If we take each pixel as a separate sample, we can reformulate the binary segmentation as a binary
classification task, assigning either positive (1) or negative (0) labels to data samples. For binary
classification, there are numerous metrics that measure different aspects of the performance.
Most of them use the following division of data samples by comparing the predicted label (ŷ) vs.
ground-truth (y):

True Positive (TP ) – number of samples, where ŷ = 1, and y = 1.

True Negative (TN) – number of samples, where ŷ = 0, and y = 0.

False Positive (FP ) – number of samples, where ŷ = 1, and y = 0.

False Negative (FN) – number of samples, where ŷ = 0, and y = 1.

This is often summarized to a so-called confusion matrix:

y = 1 y = 0

ŷ = 1 TP FP
ŷ = 0 FN TN
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For measuring the trained neural network performance, we use four metrics common for image
segmentation:

True Positive Rate (TPR) measures the ratio of correctly classified positive samples to all
positive samples: TP

TP+FN .

True Negative Rate (TNR) measures the ratio of correctly classified negative samples to all
negative samples: TN

TN+FP .

Intersection over Union (IoU) calculates the ratio of the intersection of the ground truth
and predicted segmentation masks (ŷ = 1 and y = 1) over a union of them (ŷ = 1 or y = 1) –

TP
TP+FN+FP . For image segmentation it can be visually interpreted as the overlapping areas
divided by the combined areas of the ground-truth and predicted segmentation masks.

Overall accuracy measures the ratio of correctly classified to all samples TP+TN
TP+TN+FP+FN .

This is however misleading for unbalanced datasets. In our case, the power lines form only a
small percentage of the image. If the model predicted ŷ = 0 for all pixels, it would achieve
great overall accuracy, but the model would be useless.

2.2.6 Line Detection
The need for line detection naturally appears in many problems, such as lane detection in the
automotive industry [13] and vanishing point detection for image rectification [14], to name a
few.

The input for line detection is typically a binary segmentation mask containing raw edges
from edge detection (described in Section 2.2.4) or objects of interest obtained by some additional
processing, e.g., using a neural network described above.

Hough Line Transform

The prevailing method for line detection is the Hough line transform. This algorithm works with
lines parametrized as ρ = x cos θ y sin θ, where ρ is the distance from the origin of the image, and
θ is the angle with the x-axis, as illustrated in Figure 2.4b. The pixel [x0, y0]

T corresponds to a
pencil of lines (outlined by lines 1–4 in Figure 2.4b). Figure 2.4c further shows that the pencil
of lines corresponding to a single pixel forms a curve in the ρ, θ parametric space. If we take
many pixels in the image corresponding to a real line, their curves in the parametric space will
intersect. The algorithm records a small contribution for each curve, and then simply returns
the local maxima in the ρ, θ plane [15].

There are multiple versions of this algorithm. In this work, we use a probabilistic Hough line
transform, which is more efficient and also retrieves the coordinates of the beginning and end of
each line.

2.3 Photogrammetry
The term photogrammetry comes from the three Greek words phot (light), gramma (something
drawn), and metrein (measure), which constitute the science of taking measurements from pho-
tographs. It is deeply rooted in computer vision, sharing most of the same concepts.

This section is a brief overview of the photogrammetric models and methods required for
this work, abstracting many details. We mostly follow [17], which provides a comprehensive
explanation of the theory.
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Figure 2.4 Hough line transform. A point [x0, y0]
T in (a) corresponds to a pencil of lines (for example

1–4) in (b). These lines form a sinus-like curve in the parametric ρ, θ space (c). If we sample many
pixels from the actual line 1, their curves in the parametric space will intersect [15]. (d) shows Hough
line transform applied on a sudoku image (after Canny edge detection) [16].

2.3.1 Homogeneous Coordinates
In photogrammetry, many entities, such as points, lines, and transformations, are often expressed
in so-called homogeneous coordinates. These particular coordinates make certain geometric
operations and transformations simpler and expressible by matrix-vector multiplication. These
include rotations, translations, projective transformations, finding the line intersections, etc. The
transformations, represented by matrices, can easily be chained to form compact representations
of a complex reality. More examples can be found in [17, p. 247–324] and the following sections.

▶ Definition 2.2 (J. Plücker 1829). Homogeneous coordinates x of a geometric entity x are
invariant with respect to multiplication by a scalar λ ̸= 0: thus x, and λx represent the same
entity x .

We can utilize this property to illustrate the relation between the homogeneous and commonly
used Euclidean coordinates. In [17, p. 199], the authors demonstrate this on a simple case of
a 2D point. The homogeneous coordinates of a 2D point x with inhomogeneous coordinates
x = [x, y]T ∈ R2 are defined as

x (x) =

[
x0

xh

]
=

u
v
w

 =

wxwy
w


where the factor w ̸= 0 can be chosen arbitrarily. The x0 is called the Euclidean part, whereas
xh is the homogeneous part. Consequently, given the homogeneous coordinates of a 2D point, we
can obtain the Euclidean coordinates simply by dividing by the third element and then taking
only the first two elements, i.e., following Euclidean normalization [17, p. 206]:

xe =
1

w

u
v
w

 =
1

w

wxwy
w

 =

xy
1


This relation is further visualized in Figure 2.5. Homogeneous coordinates are not limited to

2D points. In fact, many other entities such as 2D lines and 3D points and even transformations
(e.g., the essential or fundamental matrix discussed in the sections below) are homogeneous
entities as long as they conform to the invariance to multiplication by a scalar.
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Figure 2.5 Relation between homogeneous and Euclidean coordinates. If we embed the real plane
R2 into a 3D space (u, v, w) ∈ R3, with origin O3, a point with Euclidean coordinates x (xe) lying in the
plane w = 1 is represented in homogeneous coordinates by any point x on the line joining O3 and the
point x [17, p. 200].

As opposed to Euclidean space, which contains elements in inhomogeneous coordinates, the
homogeneous coordinates can be used to define a projective space Pn(R), as in [17, p. 215]:

▶ Definition 2.3. The projective space Pn(R) contains all (n + 1)-dimensional points x with
homogeneous real-valued coordinates x ∈ Rn+1 \ 0,

x (x) ∈ Pn(R) : x ∈ Rn+1 \ 0

with
x (x) ≡ y(y) ⇐⇒ x = λy, for some λ ̸= 0.

The projective space forms the basis of projective geometry, which is extensively used in
photogrammetry. As in [17], we will denote points in homogeneous coordinates by upright
letters and Euclidean by inclined, i.e., X vs. X. We will also use lowercase letters for 2D points
and uppercase for 3D points. In this summary, we only scratched the surface of this area of
mathematics. For more details on homogeneous coordinates and their use in various geometric
operations and transformations, we refer the reader to [17, p. 195–324].

2.3.2 Camera Model
The simplest model of a camera is a so-called pinhole camera. The term dates deep into history,
long before the invention of the digital camera. The principle is straightforward, take a dark
room with blinds over the windows with a tiny hole – the size of a pin. The light passes through
the hole and projects an upside-down image of the outside world on the wall. Such a setting is
called camera obscura and was first described in China in the 5th century BC. Figure 2.6a shows
how the camera obscura was used to observe the sun. Figure 2.6b describes the mathematical
model of the pinhole camera. It also highlights a few important terms:

Image plane I is the plane where the image is projected. This is where we would typically
place a sensor or a film to capture the image.

Principal point H is the center of the image plane.

Projection center O is the single point through which all the light rays pass.

Optical axis is the line passing through O and H ,

The problem with a pinhole camera is that the pinhole must be very small to get a sharp
image, limiting the amount of light passing through. For overcoming this issue, lenses were
invented. The model of a camera with a lens involves other parameters, such as focal length, and
introduces several optical defects like diffraction, vignetting, chromatic aberration, and nonlinear
distortion. For brevity, we omit the details and instead refer the reader to [17, p. 256, 461] and
[18], where the authors explain the geometry of thin and thick lenses and aberrations, respectively.
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(a) The first published picture of camera obscura [20].

x’

X

O H

I

(b) Pinhole camera model projecting a 3D point X into
the 2D image point x ′ [17, p. 469, simplified by author].

Figure 2.6 Camera obscura and the simplest model of a camera – the pinhole camera.

For power line 3D reconstruction, we use a perspective camera model with distortion, follow-
ing the authors of [17, p. 462] and [19], which is sufficient for this work and most photogrammetry
applications in general. The model assumes a thick lens geometry and accounts for lens distor-
tion. The process of capturing an image with this model is described in more detail in the next
section.

2.3.3 Projection of a 3D point into 2D pixel coordinate
For 3D reconstruction from images, we need to describe the image capture as a mapping from
a real-world point coordinate to the pixel coordinate in the resulting image. In mathematical
terms, we are looking for the transformation:

xy
1

 = P


X
Y
Z
1

 (2.6)

where [x, y]T ∈ R2,1 are the Euclidean pixel coordinates, [X,Y, Z]T ∈ R3,1 are Euclidean 3D
world (object) coordinates and P is the projection matrix.

Using the perspective camera model with distortion, we follow the authors of [17, p. 462] and
[19], who break down the process into several steps, using four coordinate systems:

Object coordinate system So is written as [X,Y, Z]T and is often also called world or scene
coordinate system. This usually represents the real-world 3D coordinates, either GPS position
or some arbitrary reference frame.

Camera coordinate system Sc is written as [cX,c Y,c Z]T and represents the view of the
world from the position of the camera, with the camera projection center being at the origin.

Image coordinate system Si is written as [ix,i y]T and describes the image plane. Its origin
is the principal point of the camera, and it is parallel to the camera coordinate system, only
shifted by the camera constant in the direction cZ.

Sensor coordinate system Ss is written as [sx,s y]T , and characterizes the pixel coordinates
as in the common image matrix produced by digital cameras with the origin at the top left
corner of the image (I0,0,: according to Definition 2.1).
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Figure 2.7 Perspective projection of a 3D point X into the 2D image point x ′. The four coordinate
system in Figure: [X,Y, Z]T – object coordinate system, [cX,c Y,c Z]T – camera coordinate system,
[ix,i y]T – image coordinate system, [sx,s y]T – sensor coordinate system. O and H are the camera
projection center and principal point, respectively [17, p. 462, simplified by author].

o c i s s

object to camera
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(a) Point projection focusing on coordinate systems.
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non-linear
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(b) Point projection focusing on transformations.

Figure 2.8 Different views on perspective projection [19, modified by author].

As a result, there are four steps in the mapping process (Figure 2.8a) [17, p. 459–475], [19]:

1. From object coordinates to camera coordinates – a rigid body transformation involving the
camera rotation and translation with respect to the origin of the object coordinate system.
In Euclidean coordinates, this reads cX = RX + T , where X is the original point in object
coordinates, cX is the point in camera coordinates, T is the translation vector [T0, T1, T2]

T

and R is the matrix rotating the camera coordinate system. R can be obtained from the three
rotation parameters (yaw, pitch, roll) using the Rodrigues formula [21]. In homogeneous
coordinates, this is represented as multiplying X (homogeneous representation of X) by two
matrices:

a rotation matrix
[
R 0
0T 1

]
, followed by translation matrix

[
I3 T
0T 1

]
,

where I3 is the 3× 3 identity matrix. Combined, we obtain:

cX =

[
I3 T
0T 1

] [
R 0
0T 1

]
X =

[
R T

]
X

▶ Note 2.4. Here we diverge from [17, p. 466] and instead follow the convention of [22, p. 24]
to describe the transformation. The difference is in the order of the operations, where [17,
p. 466] first translates the point and then rotates it to obtain the correct coordinates, whereas
we first apply rotation and then translation. This is consistent with the 3D reconstruction
algorithm we chose in Section 5.2.

2. From camera coordinates to image coordinates – as Figure 2.7 shows, the two coordinate
systems are parallel and the origins O and H are shifted by some distance in the cZ direction.
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This distance is called the camera constant and is typically denoted by f – as it represents
the camera’s focal length. This mapping is not invertible and in homogeneous coordinates is
expressed as:

ix =

f 0 0
0 f 0
0 0 1

 cX

After this step, we have arrived at a pinhole or ideal camera model.

3. From image coordinates to sensor coordinates – the image coordinates have their origin at
the center of the image – the principal point, whereas the sensor of a camera typically stores
the image as a matrix of pixels starting with pixel [0, 0]T at the top left corner of the image.
Therefore we shift the coordinates by xH and yH . We also take into account the scale
difference between the width and height m and often negligible sheer s. Put together, we get
a mapping:

sx =

1 s xH

0 1 +m yH
0 0 1

 ix

4. Correcting for nonlinear errors – this stage compensates for errors caused by lens distortion
and imperfections, for example, cushion or barrel distortion. As we cannot express this step
as a linear transformation, it is typically done separately as a so-called image undistortion.

Combining all the steps above, we arrive at the desired projection matrix P from Equation 2.6:

x =

1 s xH

0 1 +m yH
0 0 1

f 0 0
0 f 0
0 0 1

 [
R T

]
X

x =

f fs xH

0 f(1 +m) yH
0 0 1

 [
R T

]
X

x = K
[
R T

]
X (2.7)

x = PX

The projection matrix P = K
[
R T

]
is often also called camera matrix.

The matrix K in Equation 2.7 gathers all the linear intrinsic parameters. Together with the
distortion coefficients from step 4 of the process above, it determines the camera intrinsics, a
set of constant parameters that do not change from shot to shot. If these parameters are known
(i.e., obtained by camera calibration), we talk about a calibrated camera. Otherwise, we refer to
the camera as uncalibrated.

The rest of the parameters – the rotation and translation of the camera are called extrinsics,
and they vary between shots. The intrinsics and extrinsics in the context of perspective projection
are shown in Figure 2.8b.

2.3.4 Epipolar geometry
Now that we described the geometry of a single camera, we can define the geometric properties of
an image pair. In this section, we only state the essential characteristics without their derivation.
A detailed explanation can be found in [17, p. 547–620] and [23].

In this overview, we assume two cameras with the projection centers O′ and O′′, image planes
D′, D′′ and projection matrices P ′ and P ′′. We further define a relative rotation matrix R12

and translation vector T12 of the second camera with respect to the first camera (using the
camera coordinate system Sc′ of the first camera as defined in Section 2.3.3). Next, we describe
important geometric entities as in [17, p. 563]:
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Figure 2.9 Geometry of an image pair.

Epipolar axis is the line connecting the two projection centers O′ and O′′.

Epipolar plane is a plane defined by the two projection centers O′ and O′′ and a 3D point X
we chose to observe. That means that all the possible epipolar planes ”rotate“ around the
epipolar axis.

Epipoles are the camera projection centers projected to the image plane of the other camera.
The epipole e′ is the projection of P ′O′′, and similarly e′′ = P ′′O′.

Epipolar lines l ′(X ) and l ′′(X ) are the projections of the lines connecting X and O′′, and X

and O′ to the image planes D′ and D′′, respectively. Also, they are the intersections of the
epipolar plane with the image planes D′ and D′′.

Figure 2.9a illustrates that it is impossible to estimate scale given only a pair of images. In-
deed, cameras with projection centers O′ and O′′ from Figure 2.9a generate the exact same image
as cameras with projection centers O′ and O′′

1 if the scene is scaled appropriately. Consequently,
given a 2D point x ′ in the image plane, we cannot determine the location of the original 3D
point X because of the loss of information during step 2 of the perspective projection described
in Section 2.3.3. This is demonstrated in Figure 2.9b, where two different 3D points U and X

map to the same point x ′ = u′ in the D′ image plane.
Nevertheless, there are some important implications from the image pair geometry, which we

greatly exploit for the power line 3D reconstruction. Namely, from the coplanarity constraint
[17, p. 552–553]:

▶ Corollary 2.5. Given vectors O′x ′ and O′′x ′′ and using the fact that that vectors O′x ′,O′O′′

and O′′x ′′ all lie in the epipolar plane, we can express the coplanarity constraint as

det [O′x ′ O′O′′ O′′x ′′] = 0

After a few derivations (see [17, p. 552–553]), one can arrive at the form

x′TFx′′ = 0, (2.8)
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where x′ and x′′ are the homogeneous image coordinates of the projections x ′ and x ′′ (see Figure
2.9b), and F is called the fundamental matrix. Furthermore, following [23], we define an essential
matrix as:

E = [T12]×R12, (2.9)

where T12 is a skew-symmetric matrix realizing the cross product operation with T12. Finally,
assuming both images are taken with the intrinsic parameters K, the relationship between F and
E is given as

E = KTFK. (2.10)

▶ Note 2.6. Later, we use Equations 2.9 and 2.10 to reconstruct the fundamental matrix as:

F = K−T [T12]×R12K
−1 (2.11)

Given the two points x ′ and x ′′, we can use the fundamental matrix to obtain the corre-
sponding epipolar lines in the other image plane (l ′′(X ), and l ′′(X ), respectively). This can be
achieved by simply multiplying the points by F or FT . In homogeneous coordinates [17, p. 564]:

l′(X ) = Fx′′, and l′′(X ) = FTx′.

2.3.5 Typical 3D Reconstruction Process
Equipped with this simplified mathematical description of the basic photogrammetric concepts,
one can get a little insight into the typical process of 3D reconstruction from images.
Let {Ii|Ii ∈ {0, . . . , 255}h,w,3}ni=1 be the n input images. In this section, we provide a basic
overview of the steps necessary to produce the following outputs required for this work:

Intrinsic matrix K with the assumption that all the n images were taken by the same camera
and therefore share the same intrinsics. K can be obtained using camera calibration or
estimated during the 3D reconstruction.

Camera extrinsics for every image {(Ri,Ti)}ni=1 as defined in Section 2.3.3.

A dense 3D point cloud, which is in its most basic form simply a set of p colored points
{Xi |Xi := (Xi, Yi, Zi, ri, gi, bi)}pi=1, where (Xi, Yi, Zi) ∈ R3 are the Euclidean coordinates of
point Xi in the object coordinate system and (ri, gi, bi) ∈ {0, . . . , 255}3 are the red, green,
and blue color components of the point.

2.3.5.1 (Incremental) Structure from Motion
Structure from Motion (SfM) is the initial stage of the reconstruction process with the goal to
estimate the camera extrinsics {(Ri,Ti)}ni=1 and intrinsics K and provide an initial sparse 3D
point cloud. There are two main approaches to structure from motion, global SfM, which works
with the set of all images at once, and incremental, which adds the images to the reconstruction
one by one. In this work, we focus only on the most common incremental version. The algorithm
consists of multiple phases, most importantly [24]:

Feature extraction phase attempts to identify a set of distinctive key points in every image,
using a feature detector, most often SIFT (Scale-Invariant Feature Transform) [25]. For each
key point, it then computes its unique descriptor.

Feature Matching phase matches the key points extracted in the previous steps between im-
ages using their descriptors. It generates pairs of images that observe the same 3D points.
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Pose estimation and incremental reconstruction consist of several steps using the infor-
mation about overlapping images from before. During this phase, the images are incremen-
tally added to the reconstruction. Once a new image is registered, its rotation and translation
(extrinsics) in an object coordinate system are estimated using the corresponding 2D key
points and already reconstructed 3D points. Then new 3D points are reconstructed using
triangulation, and a following bundle adjustment step minimizes the accumulation of errors.

At the end of this stage, we get a reconstruction set of camera shots with estimated extrinsics and
a sparse 3D point cloud. The intrinsic parameters can also be estimated during the reconstruction
or provided by the user if the camera has been calibrated.

2.3.5.2 Dense Point Cloud Reconstruction
After SfM, we can use the estimated camera extrinsics, intrinsics, and the sparse 3D point cloud
to build a dense 3D reconstruction. This stage typically uses a method called Multi-View Stereo
(MVS) [26]. The detailed description of this process is out of scope of this work. This stage is
usually computationally expensive, and the output is a dense 3D point cloud.

2.3.5.3 Other stages
Throughout this work, we aim to create a 3D reconstruction of the power lines and the surround-
ing terrain to evaluate the distance between an exposed wire and vegetation. For this purpose, a
dense 3D point cloud of the terrain is sufficient. However, in other applications of photogramme-
try, more sophisticated outputs are required. We briefly summarize the stages typically following
dense reconstruction for completeness:

Meshing computes a 3D mesh consisting of polygons.

Texturing provides a color texture for the 3D mesh.

Orthophoto generation leverages the information about camera poses and provides a geo-
metrically rectified photograph composed from the input images, such that it can be used in
digital mapping to measure distances.

Generation of various elevation models computes a Digital Surface Model (DSM) or a Dig-
ital Elevation Model (DEM), which are later used in many applications ranging from land-
scape modeling to planetary science [27].

2.4 Machine learning methods
Machine learning is closely related to computer vision and photogrammetry, with significant
overlap. In this section, we collect a few methods and tools that are not specific to computer
vision or photogrammetry but are more general and applicable to many other tasks that obtain
knowledge from data.

2.4.1 Robust Estimation using Random Sample Consensus
Random sample consensus, or RANSAC in short, is a robust model estimation algorithm in the
context of robust statistics. It is a generic method and works with any model that we would
normally use with the input data, for example, a 2D line for 2D data points. The technique
works iteratively and, in each round, selects a subset of the input data points and fits the model
of choice. Then it classifies all the input points to inliers and outliers based on their distance to
the model. This is repeated for a fixed number of iterations. Finally, the model with the largest
amount of inliers is retrieved [8, p. 410–414].
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Figure 2.10 An example of random sample consensus (RANSAC) algorithm used for 2D line estima-
tion. The technique works by a) selecting a subset of input points and fitting the model (red points).
Then, distance to the model is calculated, and points are labeled as inliers (blue points) or outliers (pur-
ple points). This is repeated with different subsets of points b,c). The final model is then re-estimated
from the best fit, using only the inliers [8, p. 411].

Compared to regular model estimation, RANSAC was designed to be much less sensitive to
outliers, thus providing better results in noisy datasets. The algorithm is outlined in Figure 2.10.

RANSAC is used extensively throughout photogrammetry and computer vision because the
image data are inherently filled with outliers due to electronic noise and various lighting condi-
tions. In this work, we use RANSAC for merging Hough lines and catenary curve fitting.

2.4.2 Hierarchical Clustering
Clustering is an unsupervised machine learning task that aims to split input data into meaningful
clusters of related data points.

Hierarchical clustering algorithm solves this task by recursively merging or splitting the in-
put data, depending, whether the approach is ”bottom-up“ or ”top-down“. The agglomerative
hierarchical clustering represents the ”bottom-up“ way, starting with individual data points and
merging them using one of the available linkage criteria. Common linkage criteria for two clusters
include [28]:

Minimum or Single linkage computes the distance of two closest points for a pair of clusters.

Maximum or Complete linkage computes the distance of two farthest points for a pair of
clusters.

Average linkage computes the average distance of all pairs of points for a pair of clusters.

Ward linkage is a special criterion that minimizes the sum of squared differences within all
clusters.

Hierarchical clustering is often visualized in a dendrogram, as illustrated in Figure 2.11.
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Figure 2.11 Dendrogram after applying agglomerative hierarchical clustering on the iris flower dataset,
where each point comprises septal and petal length and width in centimeters [28, 29].



Chapter 3

Related Work

This chapter aims to provide thorough research of power line vegetation management approaches.
It begins by exploring the traditional surveying methods, including land-based mapping and
satellite imagery, and then focuses in depth on aerial mapping, especially with UAVs.

3.1 Traditional Approaches to Vegetation Management

For safe operation, the power line corridors must be inspected and cleared on a regular basis.
The traditional surveying methods include land-based mapping, where a person walks through
the corridor and scans the area or manually checks for issues. This is very laborious and time-
consuming, especially in difficult terrain. For this reason, numerous remote sensing methods
are often employed, ranging from satellite imagery to helicopter flights. The satellite images are
usually not suitable for detailed measurements due to their low resolution while using a helicopter
is very costly [30].

3.1.1 Land-based Mapping
In some cases, it is possible to perform a detailed, high-resolution mapping of the power line
corridor using land-based laser scanning. These devices can be attached to either an all-terrain
vehicle (ATV) or a backpack (Figure 3.1a). Hence, the methods are named Mobile Laser Scanning
(MLS) and Personal Laser Scanning (PLS), respectively. A static approach with a non-moving
laser scanner is called Terrestrial Laser Scanning (TLS). The accuracy of these methods highly
depends on the precision of the positioning system, so it is affected by satellite visibility. They
can achieve even sub-centimeter accuracy in the right conditions and with high-quality equipment
[30].

The authors of [31] explore both the use of an ATV and PLS (Figure 3.1b). While providing
great results, these methods have some clear disadvantages, namely the difficult inspection of
rough or inaccessible terrain, the cost of high-quality equipment, or the dependence on precise
positioning and satellite visibility. Another limitation might be that laser scanning directly
produces a 3D point cloud, meaning the power lines have to be extracted from the 3D points.
The point cloud is an irregular, unstructured set of points with a varying density and no particular
order, making the reconstruction more difficult. In photogrammetry, on the other hand, we have
the original images, so it is possible to apply a direct power line detection through computer
vision and a subsequent geometric approach for reconstruction.
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(a) A person scanning a power line corridor with a PLS
backpack [30].

(b) Reconstructed power lines from land-based laser
scanning [31]

Figure 3.1 Land-based approach to power line inspection.

While cameras can also be attached to an ATV or backpack [30], we argue that the UAV
is a better, more versatile platform for power line corridor inspections using photogrammetry,
especially in difficult terrain.

3.1.2 Satellite Imagery
Based on [30], the images obtained by satellites can be divided into two categories:

Synthetic Aperture Radar (SAR) images are taken by reflecting microwave radiation of
the earth’s surface. The advantage is that this sensor can penetrate clouds and is insensitive
to light, which means images can be taken under any weather conditions at any time of the
day. The maximum possible resolution is around 1m per pixel, but the results are distorted
by noise inherent to the sensor. Another disadvantage is the high cost of acquiring data
frequently. This method was used in [32] for disaster monitoring around power lines.

Optical satellite images are taken with a regular or near-infrared camera and therefore are
sensitive to weather and time of day. The highest possible resolution is around 0.46m
(GeoEye-1 satellite).

Overall, using satellite is cost-inefficient and, due to limited resources, also less available. Fur-
thermore, the practical resolution is too low for measuring distances between vegetation and
power lines, which are only a few centimeters thick. This method is useful mostly for a basic
overview of the desired area and rough estimates rather than detailed measurements. Figure 3.2
shows examples of SAR and optical satellite images [30].

3.1.3 Aerial Mapping
So far, we have covered two approaches on the opposite sides of the spectrum if viewed by
distance to the ground. The furthest possible, satellite imagery, has an insufficient resolution,
while the land-based laser scanning is limited to accessible terrain. Naturally, one may ask
whether the middle of the spectrum – the airspace, would not be more suitable for power line
corridor inspection.

As expected, the use of fixed-wing airplanes and helicopters has been thoroughly explored by
the industry and is being routinely utilized. For a traditional manned airplane, the resolution is
limited up to 5 cm due to the restricted range of achievable altitudes. As we explain in Section
4.2.1, this is not sufficient for a detailed power line corridor inspection using images. For the same
reason, the point density in laser-based approaches is also low in these high altitudes (dozens of
points per m2) [30].
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(a) SAR satellite image. (b) Optical satellite image.

Figure 3.2 Example SAR and optical satellite images [30].

Helicopters, on the other hand, can fly much closer and even hover in place for detailed
inspection. They can achieve a sufficient sub-centimeter accuracy from altitudes as high as
100m, but they can fly even lower [33]. Helicopters often perform multiple types of scanning,
optical – using a camera (possibly in multiple specters, such as near-infrared), and laser scanning
– using a LiDAR (Light Detection and Ranging) laser-based sensor. The major disadvantage of
using manned aircraft is the cost associated with the equipment and the technical skills required
for such surveys [30].

The high cost and time demands of traditional methods are pushing the industry towards new,
innovative approaches, such as using Unmanned Aerial Vehicles (UAVs). These include fixed-
wing and multi-rotor drones with two prevailing types of payloads, a camera, and LiDAR. UAVs
are also a step towards highly automated workflows since most data acquisition and processing
can be fully completed with no human intervention. This approach is the focus of our work, so
we discuss the research on this topic in a separate section below.

3.2 Vegetation management using UAV
Due to the increasing availability of relatively inexpensive UAV platforms in recent years, many
researchers and companies are discovering their potential and deploying them for numerous
different tasks with great success. UAVs have been immensely helpful in agriculture, geography,
cultural heritage, archaeology, mining, gaming industry, and (sometimes infamously) military. In
power line vegetation management, a lot of research on the use of UAVs has been done, too. This
is especially due to the UAV’s unique ability to fly close to the power lines, the improvements in
the battery endurance, and the emergence of lightweight sensors [30].

3.2.1 UAV with LiDAR
The prevailing sensor in literature used for collecting data has been an ordinary RGB camera.
While some studies [34, 35] and commercial solutions [36] use UAVs with the LiDAR sensor and
provide high-quality results, the equipment is relatively costly, and the data acquisition is highly
sensitive to errors, often requiring repeated flights [37]. Therefore, the research community mostly
opted for the methods of computer vision and photogrammetry to measure and reconstruct the
3D structure of the wires from multiple photographs.
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As a result, we focus on photogrammetric methods, and we will not further discuss UAVs
with the LiDAR sensor in this work.

3.2.2 UAV with Camera
Photogrammetry has been a standard tool for reconstructing 3D objects from photographs for
many years now, and in many applications, it works flawlessly. The critical part of the pho-
togrammetric 3D reconstruction is the Structure from Motion (SfM) algorithm, which detects
significant points in images (such as corners) and matches them across several images to calculate
the 3D geometry. However, in our case, the power lines are too thin and uniform to find distinct
points on them accurately. As a result, the standard methods are good at reconstructing the
vegetation and surroundings, but not the power lines themselves.

3.2.2.1 Reconstructing Power Lines from Point Cloud
Nevertheless, in 2015, the authors of [38] tried to model the power lines directly from the dense
point cloud obtained by the standard methods, using the catenary curve model. Their paper
concludes that it indeed is feasible if the appropriate conditions on data capture are met. Still,
the point cloud they are using for power line modeling is missing significant portions of the power
line, sometimes even more than half of the wire in each span. Consequently, their algorithm is
filling many gaps in the data, which might yield high errors and uncertainty.

3.2.2.2 Reconstructing Power Lines from Images
This is why nowadays, state-of-the-art methods are using specialized algorithms for first detecting
and then reconstructing the power line geometry. In fact, many studies focus exclusively on the
former – segmenting the power lines in images [39, 40, 41, 42]. These use advanced computer
vision and deep learning techniques to accurately detect the pixel location of wires in the images.
Other studies then build on this knowledge and use geometric models to reconstruct the 3D
location of those pixels while exploiting some specifics of this task, such as the catenary curve.

Early works attempting to solve the entire problem of vegetation management in the power
line corridor include [43], where the authors detect the occluding objects in near real-time and
also provide an offline report containing 3D information. However, the study fails to provide
sufficient experimental data and evaluation, so it is unclear how the algorithm performs in varying
conditions and background complexity.

The more recent article [44] proposes a relatively straightforward method based on first
detecting the 2D power line vector in images, selecting images corresponding to the same patch
of the corridor, and using epipolar geometry to reconstruct the 3D geometry. Their method
yields good results, yet there are several possible improvements. Firstly, they strictly require
two flight strips along the corridor to form a pair of left and right images. However, one could
argue that capturing more strips, possibly from an oblique perspective, could result in better
reconstruction. Further, during the 3D reconstruction, they require manual intervention to
correctly assign the corresponding power lines in the two images making the process only semi-
automatic. Moreover, they are not exploiting the catenary nature of the wires. Additionally, in
the 2D power line detection phase, they use operations based on the grey value profiles, which
may make it vulnerable to varying lighting conditions and background.

The work [45] again uses line-based 2D and 3D reconstruction methods. Their main contri-
bution is using sophisticated convolutional and recurrent neural networks to classify image pixels
into eight classes. They use this information to filter the dense point cloud as well as the recon-
structed power lines. Then they fuse all the information to obtain a clean dense reconstruction
and even semantic labels of the detected objects on top of that. To obtain the 3D points of the
power lines, they use an existing 3D line reconstruction algorithm [46]. However, they do not
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capture the individual instances of the power line, only reconstruct all of them as a group. This
makes it impossible to filter out the noise and improve the quality by fitting a catenary curve.

Another study [47] proposes an interesting approach that goes against the aforementioned
practices, that is, going from the 3D space back into the 2D image space. They generate a discrete
dense 3D grid along the corridor and back-project each point into the images. If the point aligns
with the segmented power lines in multiple images, it is kept. Otherwise, it is filtered out. Clearly,
this is limited by the resolution of the generated 3D grid, which they improve by interpolating
the points with a parabolic curve. This image-voting-based approach cleverly avoids the need for
matching the corresponding wires in the images, where [44] requires manual intervention. The
authors do not mention the processing time, which might be a disadvantage of this approach
since projecting every point of a dense grid onto many images seems computationally intensive.

Lastly, the most recent work [48] improves on the previous by proposing a new technique for
segmenting power lines in images using modified traditional computer vision operations requiring
a minor manual intervention. Although they are proud of not using neural networks, it might be
worth comparing with deep learning methods, especially when they report exceptional accuracy
[42]. Moreover, they rely on the precise ordering of the images by acquisition time and assigning
them to flight strips, which seems unwieldy and lays unnecessary constraints on the acquisition
process. This can be automated by using the camera orientation and position obtained during
the photogrammetric processing.
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Chapter 4

Data Acquisition

Because the power lines are very thin structures, the accuracy of the 3D reconstruction highly
depends on the input data quality. We followed a set of photogrammetry best practices together
with insights from related research articles [18, 48] to form precise guidelines for image capture
specific to power line detection. The guidelines are separated into two sections – camera settings
and flight planning.

4.1 Camera Settings
Since we are using images as a primary source of data, the basic principles of photography apply.
The detailed explanations of those are out of scope of this work. Nonetheless, a few essential
parameters and settings related to photogrammetry from [18] are summarized below.

4.1.1 Exposure
The overall exposure is determined by three main settings, which together form a so-called
exposure triangle – ISO, aperture size, and shutter speed. Figure 4.1 indicates that all these
settings must be configured together to capture a well-exposed photograph.

Aperture describes the physical size of the lens opening. It is indicated as an f-number, where
the higher number means a smaller opening. The smaller the aperture, the closer we are to
an ideal pinhole camera, where the aperture is a single point. A small aperture results in a
sharper image, but setting the aperture too small in the real world will cause diffraction – a
kind of optical defect that causes losing the sharpness again. For missions with flight heights
over 20m, setting the aperture to medium settings (f/5.6 to f/11) is recommended [18].

Shutter speed determines the time during which the sensor is exposed. Larger values allow
more light to be captured at the cost of motion blur. For photogrammetry, the authors of [18]
recommend shutter speeds from 1/250 to 1/1000 s. Later we will describe how this affects
the flight velocity.

ISO represents the camera sensor sensitivity or signal gain. Increasing the ISO leads to brighter
images at the cost of more noise. The ISO should be set to the minimum possible value,
usually around 100-800 in daylight conditions.

25



26 Data Acquisition

Exposure
Triangle

Sensor gain
ISO

Ap
er

tu
re

Si
ze

 o
f o

pe
ni

ng

Shutter speed

Length of exposure

Lo
ng

 d
ep

th
 o

f fi
eld

,

m
or

e d
iff

ra
ct

io
n

Sh
or

t d
ep

th
 o

f fi
eld

,

les
s d

iff
ra

ct
io

n

M
ore m

otion blur

Less m
otion blur

Less noise More noise
In

cr
ea

sin
g

De
cr

ea
sin

g

Decreasing
Decreasing

Increasing

Increasing

Figure 4.1 The exposure triangle, indicating that the three crucial camera settings all depend on each
other and must be configured together [18].

4.1.2 Focal Length
The lenses in consumer cameras usually come in two types: fixed (prime lenses) or adjustable
focal length (zoom lenses). In photogrammetry and computer vision in general, the fixed focal
length is typically advised as there are no moving parts impairing the optics precision.

By combining the focal length and the physical size of the camera sensor, one can calculate
the effective focal length, which determines the camera’s field of view. That means that the
lens should be chosen based on the type of UAV and optimal flight height. For example, if a
fixed-wing UAV is used, the flight height must usually be higher, needing a larger effective focal
length to capture detailed information.

4.1.3 Camera Calibration
Lastly, for taking reliable measurements from images, it is necessary to know the camera intrin-
sics, i.e., the matrix K and the distortion coefficients (see Section 2.3.3). Traditionally, these are
obtained in a process called camera calibration. The most popular technique for camera calibra-
tion is Zhang’s method [49], which entails taking multiple pictures of a checkerboard pattern from
different angles and using a clever algorithm to estimate the intrinsics. However, in photogram-
metry, it is possible to skip this step entirely and perform a so-called self-calibration during the
bundle adjustment step [17, p. 674–686]. This approach estimates the camera intrinsics as part
of the optimization process. Although camera calibration using the dedicated Zhang’s method
should be more precise in theory, we observed no improvement in the reconstruction quality in
our experiments. Hence, we do not require a separate camera calibration step in our proposed
pipeline.

4.2 Flight Planning

The critical parameters for a successful mission comprise ground sample distance (GSD), flight
height, velocity, image overlap, and acquisition rate.
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4.2.1 Ground Sample Distance (GSD)
The ground sample distance represents the level of detail captured in the image. It is defined as
a ground distance in millimeters visible in one pixel of the image. The optimal value depends on
the smallest feature we need to detect, which in our case is the power line wire. As a consequence,
the GSD should be set independently for each survey depending on the actual wire diameter.
To simplify the matter, we will only consider power lines over 45 kV, where the smallest possible
diameter according to [50] is 15.5mm. The authors of [48] recommend the GSD to be no higher
than half the diameter of the wire leading to a GSD of 7.8mm.

It might be tempting to choose a smaller GSD to achieve an even greater level of detail, but
that is not without its trade-offs. A smaller GSD will result in a lower flight height, which in
turn leads to more flight strips and a higher acquisition rate to ensure a sufficient overlap. Thus,
it increases the overall flight time, data size, and processing time.

4.2.2 Flight Height
Once the GSD is set, we can compute the maximum flight height. The authors of [18] formulate
the relationship between GSD and flight height as:

GSD =
2H · arctan(Sdet)

2f
≈ H · Sdet

f
, (4.1)

where H is flight height, Sdet is the pixel pitch (the physical width of a pixel on the sensor) and
f is the effective focal length.

One can notice that the measured wires are usually several meters high. Therefore, we must
only ensure the GSD from the previous step at the height of the lowest wire. The power line sag
and uneven terrain should be taken into account, so let H0 be the height of the lowest wire at
the lowest point of the survey and GSDH0

the required sample distance at H0. The final height
can then be calculated as

H = H0 +
GSDH0

· f
arctan(Sdet)

≈ H0 +
GSDH0

· f
Sdet

.

This is then used to calculate the true ground sample distance using Equation 4.1.
It is recommended to use automatic flight planning tools that can follow terrain elevation

using a Digital Elevation Model (DEM) to make sure that the correct flight height is maintained
throughout the survey when the terrain is not perfectly flat.

4.2.3 Flight Velocity
The flight velocity mostly affects the overall flying time and thus the battery consumption of the
planned mission, meaning one could fly longer missions on a single charge. In the case of power
line inspection, this is crucial because the goal is to survey hundreds of kilometers of power lines
fast and regularly.

To optimize the velocity, we will again follow [18] and consider the major limiting factor –
motion blur b (in pixels), which is estimated by:

b =
v · t

GSDHmax

,

where v is the velocity and t is the shutter speed. To be absolutely precise and acquire sharp
images for all wires, GSDHmax should be the sample distance at the height of the highest wire
(Hmax) calculated by substituting Hmax into Equation 4.1. The paper [18] recommends a max-
imum motion blur of 1.5 pixels.
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4.2.4 Image Overlap
During the processing phase, the photogrammetry software requires a significant overlap between
images to identify common points and calculate their 3D position based on multiple views. In
the existing literature [38, 44, 48], the authors are using a side overlap anywhere from 70 to 80%
and a front overlap between 50 and 87%.

Various software tools provide certain recommendations. For example, Agisoft Metashape
recommends a side overlap of 60% and a front overlap of 80%. OpenDroneMap’s documentation
advises similar values in a practical example [51], where they additionally recommend increasing
the overlap when flying higher.

To keep things simple and independent of flight height, we generally recommend both overlaps
to be at least 80%. Although it may require more storage and processing time, the higher data
redundancy will improve the quality and precision of the reconstruction. In our experiments, we
used an 85% front overlap and a side overlap of 90%, although the latter is mainly controlled
by other requirements, such as sufficient GSD or the need for three flight strips with all wires
visible in the image.

4.2.5 Acquisition Rate
Usually, there are two options for automatic image capturing during the flight – by time or by
distance. Both options are equally valid, but we recommend using the latter because it might
be difficult to maintain a constant speed during the flight. The acquisition rate can be easily
calculated using the desired overlap and the physical area captured on the image.

For example, if we have a camera with a resolution 7952 × 5304px and a GSD of 1 cm, the
area captured on the image is 79.52×53.04 m. Assuming the shorter side of the image is aligned
with the UAV direction, and the desired front overlap is 80%, the UAV should move no more
than 10.6m between images. For the trigger based on time, one can simply divide this number
by the flight velocity.

It should be noted that every camera has a maximum acquisition rate, e.g., the Sony Alpha
7R II can capture at most five images per second. If the acquisition rate of the camera is not
sufficient for the desired overlap, we need to reduce the velocity, although modern cameras usually
have a high enough acquisition rate, and the velocity is rather limited by the motion blur.

4.2.6 Requirements Specific to Our Solution
For fully automatic reconstruction, we additionally require three other constraints:

Three parallel flight strips provide more data redundancy and increase the robustness of the
automatic power line matching, we will later propose, compared to two flight strips required
by the authors of [44, 48]. As a result, three parallel images will cover every place along the
power lines, which will allow our solution to sustain overlapping wires in one of them. We
should take this into consideration during flight planning and make sure that the power lines
are clearly separated in at least two out of the three images at all times.

Visibility of all power lines in each flight strip is also necessary for our automatic power line
matching. This means that the distance between flight strips controlled by side overlap should
be adjusted to fit all wires in the image. In our experiments, we used a side overlap of 90%
to satisfy this requirement.

Power lines should appear vertically in the images. We can leverage this to filter any hor-
izontal lines, such as trees or transmission towers.
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These requirements are easy to fulfill in practice and do not impede the quality of the photogram-
metric reconstruction, as we will later prove in our experiments. Additionally, all images should
be orthogonal to the ground, i.e., ”nadir“, with no oblique images necessary.

4.2.7 Georeferencing
Georeferencing means associating images with their position in the real world. The object coor-
dinate system is then characterized in some geographic coordinates, for example, GPS (Global
Positioning System) or WGS84 (World Geodetic System 1984). There are two main approaches
to georeferencing [52]:

Ground Control Points (GCPs) are points for which we know their precise geographic lo-
cations. Usually, they are measured over several hours and labeled with a checkerboard
pattern, so they are clearly visible in the images. Obtaining GCPs is an arduous process that
is especially hard in difficult terrain.

Direct positioning uses satellites to measure the position of each image. There are two prevailing
methods, RTK (Real-Time Kinematic) and PPK (Post-Processed Kinematic), both need an
additional base station. This approach does not require any prior measurements and is ideal
for rough or inaccessible terrain.

Our proposed method supports both approaches. In our experiments, we use the direct RTK
for its convenience, as it requires no additional measurements or processing. The positions are
written directly into the image metadata during the survey. The direct positioning is also more
suitable for surveys in difficult terrain, which is often the case around power lines. Generally, PPK
might be more accurate in situations with occlusions between the UAV and the base station.
However, we have not observed any loss of RTK signal during our experiments. A detailed
comparison of the different approaches can be found in [52].
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Chapter 5

Analysis and Design

This chapter provides an in-depth explanation of all the steps we propose to transform the input
UAV images to a 3D visualization of the site with highlighted vegetation encroachment. We
start by giving an overview of the architecture of our solution, followed by a detailed analysis
and design of the individual components.

5.1 Reconstruction Pipeline Architecture
Section 3.2.2 outlined two prevailing approaches for 3D power line reconstruction in the existing
literature:

From 2D images to 3D points using geometric triangulation – by applying epipolar ge-
ometry to overlapping images, we can precisely triangulate 3D points. This approach requires
knowing the camera extrinsics and intrinsics and pairs of corresponding power line pixels for
a given pair of overlapping images. The works [44, 48] implement this approach and use
image segmentation and power line detection, followed by geometric triangulation.
However, the authors of both papers claim that obtaining pairs of corresponding wires is
difficult and apply manual work to solve this problem.

From 3D points to 2D images using reprojection and voting – the authors of [45] and
[47] circumvent the issue by going in the opposite direction. They first obtain candidate 3D
points, either by an existing straight-line extractor, in case of [45] or by simply dividing the
3D volume into a cubic grid and treating the center of each cube as a candidate point [47].
Then they reproject the candidate 3D points into the images using the camera extrinsics and
intrinsics. For deciding whether a particular point belongs to a power line or not, multiple
images vote based on their segmentation masks.
This method loses the information about individual instances of the power lines, which pre-
vents fitting the catenary curve without complicated 3D point clustering. Also, we argue
that the time complexity is higher compared to the first approach. Extracting straight lines
using the algorithm from [46] is computationally comparable to extracting power lines geo-
metrically but is merely a subtask of [45]. In [47], the computational time directly depends
on the resolution of the 3D cubic grid. Obtaining results with comparable accuracy to the
first method would mean projecting every cm3 of the scene to multiple images.

We conclude that the first method is more efficient and straightforward, allowing for better pre-
cision, distinguishing the individual power line instances, and subsequent catenary curve fitting.
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Figure 5.1 Architecture of our solution. The algorithm consists of three main components, a standard
photogrammetric pipeline, a power line reconstruction pipeline, and a visualization module. In this work,
we focus primarily on the power line reconstruction pipeline and use third-party software for the other
components.

As a result, we use it as the basis for our solution. We mitigate the need for manual interven-
tion by introducing constraints on the data acquisition process (Section 4.2.6) and matching the
corresponding power lines automatically. The proposed constraints do not limit the applications
or feasibility, as we later prove by performing experiments in three different locations.

Main Components

The proposed solution consists of three main components. We compute the point clouds of
the terrain and power lines separately in the photogrammetric and power line reconstruction
pipelines. Afterward, we fuse them and calculate the distances between the power lines and
terrain in a visualization tool. Figure 5.1 gives a high-level overview of the reconstruction pipeline
architecture:

Georeferenced input images are n RGB UAV images {Ii}ni=1, as in Definition 2.1. For sim-
plicity, we assume that the images are accompanied by positioning information (latitude,
longitude, elevation) stored in the EXIF metadata of the image. Although, georeferencing
using Ground Control Points (GCP) is also possible.

Photogrammetric pipeline takes the input images and produces several outputs, mainly the
camera intrinsics K and extrinsics {(Ri,Ti)}ni=1, required for the power line 3D reconstruction
and a point cloud representation of the terrain. This is a part of the typical photogrammetric
workflow described in Section 2.3.5. Therefore, we use one of the many photogrammetry
software tools available. The options are carefully assessed in Section 5.2.
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Power line reconstruction pipeline is responsible for detecting the power lines in the images
and obtaining their 3D representation through epipolar geometry. The result is then enhanced
by catenary curve fitting. This component depends on the camera extrinsics, intrinsics, and
georeferencing information, obtained by the photogrammetric pipeline. The component is
further split into three separate steps: power line detection, power line segmentation, and
power line 3D reconstruction, which will be explained in detail as part of this chapter.

Visualization is performed by a third-party tool. It is an interactive application with a Graph-
ical User Interface (GUI), where we import the two point clouds and calculate the distance
between them. Then we are able to define a color scale in meters and highlight the vege-
tation encroachment. This is the only part of the solution that is not automated since the
interactive approach is much more configurable and enables additional postprocessing of the
point clouds.

It is important to say that even with high-quality equipment, it is impossible to reconstruct
the power lines using only the traditional photogrammetric pipeline since it was not designed
to reconstruct thin homogeneous objects. In our experiments, we were able to recreate a few
points at best (we estimate less than 10% in some cases) using the photogrammetric pipeline
only. Moreover, the point cloud would have to be accurately classified into power-line and non–
power-line points to effectively measure distances. This is why we reconstruct the power lines
separately in the power line reconstruction pipeline we propose.

The architecture described above allows for a fully automated workflow up to the visualization
part. The rest of this chapter presents the analysis and design of the aforementioned components
in more detail.

5.2 Photogrammetric Pipeline
Building photogrammetric models is a common use case in many industries, which created a
demand for high-quality automated software. Consequently, there are many tools on the market,
including both free and paid options. This section aims to analyze and select a third-party
photogrammetric software for estimating the camera intrinsics and extrinsics and reconstructing
a georeferenced 3D point cloud of the terrain.

5.2.1 Photogrammetric software selection
First, we select a few candidates, which we then score based on several criteria and requirements
specific to this work. The choice is mainly limited by the cost, as well as automation options
and the ability to run in a remote Linux environment.

We consider only software tools that allow for remote processing (using either a Python API
or a command-line interface) and provide all required exports. The selected candidates are the
three most popular paid options:

RealityCapture [53],

Agisoft Metashape [54],

PIX4Dmapper [55],

accompanied by free, open-source tools:

Meshroom [56],

OpenDroneMap [57],

MicMac [58].
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We do not have the resources to evaluate every option in this work experimentally, so we rely on
the existing literature and official documentation.

5.2.2 Methodology
We assign a subjective weight (importance) to each category, according to our use case, and give
every candidate a negative (−1), neutral (0), or positive (1) score. The final score is determined
as a weighted average of the individual scores.

The list of evaluation criteria (with the assigned weight in brackets):

Quality of reconstruction (2) – the density and accuracy of the 3D point cloud, subjectively
rated based on the available literature [59, 60, 61, 62, 63].

Computational time (1) – the overall processing time of structure from motion and dense
point cloud reconstruction, subjectively rated based on the available literature [59, 60, 61,
62, 63].

Price (2) – for-profit licensing, excluding educational and trial offers. If there are multiple tiers
available, we select the most sensible one for our work that allows for remote processing:

more than $3000 perpetual license or more than $1500 for a one year subscription (−1),
less expensive (0),
free (+1).

Ease of use (2) – a subjective evaluation of the usability of the software based on the output
formats and the amount of extra work required for setting up remote processing on a private
server. We are not interested in paid proprietary cloud solutions that some tools offer, as the
Faculty of Information Technology, Czech Technical University in Prague, provided powerful
Linux-based computational resources for this work. The criteria are:

difficult to use for our purposes or unnecessarily complicated (−1),
remote processing requires manual work or additional scripting (0),
easy to set up remote processing, and download the required exports (+1).

5.2.3 Evaluation
In the literature, RealityCapture and Agisoft Metashape have been observed to produce the
highest quality point clouds [59, 60]. However, they both provide only a command-line interface
for automation. The same is true for MicMac. OpenDroneMap and Pix4Dmapper, on the other
hand, enable easy deployment with remote processing API and automation tools integrated into
Python.

The full results of the evaluation are shown in Table 5.1. All things considered, we selected
the free, open-source OpenDroneMap software, which comes with a palette of easy-to-use remote
processing options while still producing good results. The advantages for our use case include
a simple local and remote deployment using docker, a web-based graphical user interface and
administration, and a Python library for easy integration into automated pipelines [57]. We then
conducted a UAV test flight and 3D terrain reconstruction to validate our choice.
▶ Note 5.1. Agisoft Metashape professional has a built-in proprietary image-based algorithm for
power line detection. As far as we know, there is no evaluation of their methods by the research
community. They only mention that the algorithm can struggle with other linear objects in the
scene, and manual correction may be required [64].
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Software Quality (2) Time (1) Price (2) Ease of use (2) Overall score
RealityCapture +1 +1 0 0 3
Agisoft Metashape +1 −1 −1 0 −1
PIX4Dmapper 0 0 −1 +1 0
Meshroom 0 0 +1 0 2
OpenDroneMap 0 0 +1 +1 4
MicMac 0 −1 +1 −1 −1

Table 5.1 Summary of photogrammetry software evaluation.

5.3 Power Line Reconstruction Pipeline
This part of the architecture is the core component of our work. The process is split into three
subsequent steps: power line segmentation, power line detection, and power line 3D reconstruc-
tion. In this section, we present a detailed analysis and design of those steps.

5.3.1 Power Line Segmentation
The first step in the reconstruction process is the power line segmentation. This module aims
to create a binary segmentation mask Msemantic ∈ {0, 1}h,w,1, with the value 1 at the pixel
locations of power lines and 0 everywhere else. The quality of this mask is crucial since it
directly affects the subsequent steps. In this section, we implement two common methods for
power line segmentation and discuss the differences. First, we attempt to replicate the algorithm
based on a modified Prewitt filter from [48]. Then we address its weaknesses by proposing a new
solution using an ”off-the-shelf“ pretrained neural network.

5.3.1.1 Input and Output
The input for this step consists of the original images without lens distortion. We can get rid of
some of the imperfections of the lens if we know the camera intrinsics – the matrix K and the
distortion coefficients, as explained in Section 2.3.3. This is called image undistortion. In this
work, we leverage the fact that the undistorted images are one of the photogrammetric pipeline
outputs, so there is no need for a separate undistortion step.

The output is a binary semantic segmentation mask of the power lines. Figure 5.2 shows an
example input and output of this step.

5.3.1.2 Filter-based Segmentation
The traditional methods for semantic segmentation of lines utilize linear filtering (Section 2.2.3).
The process typically consists of convolution with a filter kernel for edge detection, followed by
a thresholding operation to select the most prominent edges. Optionally, the input can also be
preprocessed by various techniques to increase the contrast and highlight the edges. We closely
follow [48], which has successfully applied the linear filtering methods on power lines. We obtain
the output segmentation masks in three stages:

Decorrelation stretch is a preprocessing technique to enhance the input image colors by

”stretching“ the saturation. Here we directly follow [48], which uses a method based on
a principal component analysis from [65]. The details of this algorithm are out of scope of
this work. The output is illustrated in Figure 5.3b.
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(a) Input – undistorted original image. (b) Output – binary segmentation mask

Figure 5.2 Input and output of the power line segmentation step.

Edge detection using a modified Prewitt kernel exploits the fact that the power lines are
linear structures and can be detected as edges in the image. Here, the authors of [48] modify
the traditional Prewitt kernel from Equation 2.4 by scaling and rotating it according to the
power line direction. This is where the authors apply manual work since finding the precise
angle of the power lines at this stage is difficult. We avoid this issue by assuming that the
power lines will always be vertical in the input image. It can be easily achieved during
the data acquisition process. Our experiments found that the vertical Prewitt kernel works
well even when the power lines are not strictly vertical (with up to ±20 degrees deviation).
Therefore, we detect the vertical edges by convolving with the following 31× 31 filter kernel:

Fvertical =


0 . . . 0 −1 0 1 0 . . . 0
0 . . . 0 −1 0 1 0 . . . 0
...

...
...

0 . . . 0 −1 0 1 0 . . . 0
0 . . . 0 −1 0 1 0 . . . 0

 ∈ R31,31 (5.1)

Figure 5.3c shows the real-valued output image of this operation.

Thresholding selects only the most prominent edges from the previous output. We use the
binary thresholding operation from Equation 2.5 and set the threshold as the 99-quantile of
the pixels. This means that the pixels are sorted by their value, and only the highest 1% are
kept. The result is a binary segmentation mask illustrated in Figure 5.3d.

5.3.1.3 Neural Network segmentation
Nowadays, neural networks hold a state-of-the-art performance in many computer vision prob-
lems. While we remain skeptical and think that many tasks can be solved efficiently with the
traditional methods, it is difficult to ignore them, as they were successfully used for power line
segmentation in the past (as discussed in Section 3.2.2).

Neural Network Architecture

Instead of inventing a custom neural network architecture or replicating one of the power line
segmentation networks used in the literature, we decided to take a different approach. We looked
at the state-of-the-art methods for the segmentation task in general and based our solution on
one of the best models – DeepLabv3+ from [66].
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(a) (b) (c) (d)

Figure 5.3 Filter-based power line segmentation. The undistorted input image (a) is first decorrelated
(b) and then convolved with a modified Prewitt filter (c). The most prominent edges are obtained by
quantile-based thresholding (d).

This has some advantages. Firstly, we found an open-source implementation in a general-
purpose semantic segmentation framework MMSegmentation [67] that provides a simple con-
figuration for an otherwise complex model. Secondly, there are pretrained weights available,
which we can reuse and dramatically reduce the required training time. And thirdly, since the
model achieved exceptional results on several complex datasets, we expect it to perform well for
power line segmentation too. Figure 5.4 illustrates the model architecture, although a detailed
description is out of scope of this work. Instead, we refer the reader to [66].

Training Data

Similar to other machine learning models, neural networks have parameters (weights) that must
be trained using a training dataset. For segmentation, the dataset usually consists of pairs of
images – the RGB input image and the target segmentation mask.

The complex state-of-the-art models, such as the one we selected above, require training
over a long period of time on a sufficiently large dataset. As a result, researchers often publish
the trained weights, so other people can use them to initialize their models and start training
from there. Such a process is called fine-tuning and often results in much faster training with
less data required because the model learned to generalize enough to be able to transfer the
knowledge between different tasks. As an example, computer vision models typically learn a set
of abstract features, such as lines, edges, corners, and other patterns, that are useful in multiple
tasks. A model that has been trained to segment street lights with thin grey poles might be
easily fine-tuned to segment power lines.

The DeepLabv3+ model described above has been trained on a popular dataset of urban
scenes – the Cityscapes dataset [68], consisting of 5000 annotated images with pixel-level seg-
mentation masks. The pretrained weights are publicly available, so we can use them to initialize
our model. A sample image from the Cityscapes dataset is shown in Figure 5.5a.

Finally, we still need a power line segmentation dataset to fine-tune the neural network.
Luckily, there is a public dataset TTPLA, consisting consists of 1231 images. The segmentation
masks contain pixel-level annotations of four classes, including power lines and three types of
transmission towers [11]. We are interested only in the power lines, so we removed the other
classes when transforming the dataset to the required format for training. A sample image from
the TTPLA dataset is shown in Figure 5.5b.
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Figure 5.4 DeepLabv3+ model architecture. One can notice the heavy utilization of the convolu-
tional layers (Conv) described in 2.2.5 common in neural networks that work with images. A detailed
description is out of scope of this work [66].

(a) A sample image from the Cityscapes dataset [68]. (b) A sample image from the TTPLA dataset [11].

Figure 5.5 Training data for the neural network segmentation.

Methodology

The standard methodology for training and evaluating models in machine learning is to shuffle
the dataset and split it into three parts – training, validation, and testing data.

Having multiple datasets is necessary to avoid a so-called over-fitting, which means that the
model adapts too well to the training data, including their noise, and does not generalize to
other data. This is why there is a validation dataset that allows observing the generalization
performance of a model.

Often, we are not happy with the first result we get from the model, so we try to change it
to get better performance. For example, we might alter the learning rate or regulate the model
expressive power by changing the number of trainable parameters. We then apply the same
framework again – fitting the model to the training data and observing the generalization on the
validation data. However, altering the model to get better validation results effectively biases
the model towards the validation data. This is the reason why there is a third part – the testing
data. These are samples from the dataset the model has never seen. We use the testing data at
the end to evaluate and report the final model performance.
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Figure 5.6 Training loss.

Training and Evaluation

We initialized the DeepLabv3+ neural network with the pretrained weights from the Cityscapes
dataset and then fine-tuned the model on the TTPLA dataset for 50 000 training iterations.
In conformity with the above, we randomly shuffled the dataset and split it into three parts:
training data (1025 images), validation data (102 images), and testing data (104 images).

During training, we observed several metrics, beginning with the model loss, which is the
objective function the model is minimizing. In the case of DeepLabv3+, the loss function is a
categorical cross-entropy, which captures the difference between the target segmentation masks
and the model’s output. In a healthy training process, the loss should have a decreasing trend,
suggesting that the model is learning from the training data. We measured the model per-
formance by three metrics common for image segmentation: True Positive Rate (TPR), True
Negative Rate (TNR), and Intersection over Union (IoU), described in Section 2.2.5. Figures
5.6 and 5.7 show the training loss and the validation performance observed throughout training,
respectively. The final performance evaluated on the test dataset is captured in Table 5.2.

5.3.1.4 Discussion
Using Figure 5.8 as an example, we can identify some advantages of neural network segmentation:

The model is better at filtering linear objects in the background. It learned a deeper un-
derstanding of the scene, and it ignores objects where the filter-based method failed, e.g.,
transmission towers, or a road in the same direction as the power lines, as illustrated in
Figure 5.8.

No direction of the power lines is assumed, contrary to the filter-based approach, which
assumes that the power lines appear vertical in the image.

Obtaining a cleaner mask overall with less noise coming from short edges in the background.

Metric value
TPR 97.86%
TNR 97.88%
IoU 50.35%

Table 5.2 Performance of neural network power line segmentation measured on the test dataset.
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Figure 5.7 Neural network performance on three different metrics throughout training. The perfor-
mance was evaluated on the validation dataset every 1000 training iterations.

(a) Input image. (b) Filter-based segmentation. (c) Neural network segmentation.

Figure 5.8 Comparison of binary segmentation masks obtained by two different methods.

The neural network approach has some disadvantages as well:

A high-quality manually annotated dataset is required. In our case, we were lucky there is a
public TTPLA dataset [11] that sufficiently aligns with our domain. For other similar tasks,
it might be necessary to create a new dataset, which is very time-consuming.

A GPU is necessary for both training and inference.

We provided two different methods for power line segmentation. In ideal conditions, both are
suitable for power line detection, but the neural network segmentation produces clearly better
results on average because of its more profound understanding of the scene and the resulting
ability to filter out other linear structures in the background.

5.3.2 Power Line Detection
The next step is to extract the power lines from the binary segmentation mask. The task is to
identify distinct power lines in the image and represent them as geometric entities rather than a
set of pixels. As simple as it may seem, we faced many challenges, i.e., missing portions of the
wire, noise and outliers, linear structures in the background, wire curvature, and closely recorded
or even overlapping wires.
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(a) Input – binary segmentation mask. (b) Output – detected power lines.

Figure 5.9 Input and output of the power line detection step. Each detected power line is represented
by a polyline.

In this section, we propose a domain-specific algorithm for power line detection based on
our knowledge and experiments. We give a brief overview of the process followed by a detailed
description of each step. When we refer to points, we mean their representation by Euclidean
sensor coordinates, as in Section 2.3.3, i.e., pixel coordinates in accordance with Definition 2.1.

5.3.2.1 Input and Output
The input is a binary segmentation mask obtained in the previous step, as described in Section
5.3.1. As an output, we chose to represent each power line as a polyline consisting of several
connected line segments. This is simpler than working with curves or polynomials yet sufficient for
capturing the line curvature. In addition, we think of the segments of the power line wire before
and after the transmission tower as two separate power lines. This allows us to fit individual
catenary curves later. The input mask and the detected power lines are visualized in Figure 5.9.

5.3.2.2 Overview of the Algorithm
We start by finding Hough lines in the binary segmentation map and filtering them. Then we
split the image into horizontal segments and apply two-level hierarchical clustering of the lines,
first by angle and then by distance. Next, we carefully merge the horizontal segments again
while matching corresponding clusters of lines to compose distinct power lines. We also count
how many segments each power line spans during this step and use this information to filter
the power lines. Finally, we merge all Hough lines corresponding to a power line into a simple
geometric shape, a polyline, by fitting RANSAC lines. The high-level overview of the algorithm
is illustrated in Listing 1.

5.3.2.3 Hough Line Detection (FindHoughLines)
We use the probabilistic version of the Hough line transform explained in Section 2.2.6 to extract
a set of h line segments from the input segmentation mask’s pixels. As illustrated in Figure 5.10a,
many parallel lines were found for each wire, as well as some noisy lines that do not belong to
the power lines.
▶ Note 5.2. Technically, the detected entities by the probabilistic Hough line transform are line
segments, not infinite lines. For simplicity, we do not distinguish between these two and refer to
both as Hough lines unless a clarification is necessary. In mathematical expressions, we denote
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function PowerLineDetection(segmentationMask)
lines← FindHoughLines(segmentationMask)
lines← FilterHoughLines(lines)
lineSegments← SplitLinesToSegments(lines)
for i← 1, |lineSegments| do

clusteredLines[i]← ClusterLines(lineSegments[i])
end for
powerLinesHough←MergeClusters(clusteredLines)
clusteredLines← FilterLineSegments(clusteredLines, powerLinesHough)
powerLinesHough←MergeClusters(clusteredLines)
powerLines←MergeLines(powerLinesHough)
return powerLines

end function

Listing 1 Power line detection algorithm.

(a) Detected Hough lines. Because of the thickness of
the wire, there are tens of parallel lines for every power
line.

(b) Splitting the detected Hough lines into horizontal
segments. The height of the segment determines the
model’s tolerance to power line curvature.

Figure 5.10 Detected Hough lines and their subsequent split into horizontal segments.

the detected Hough line segments as {li}hi=1 and the lines that arise by extending each line
segment to infinity as {Li}hi=1.

When we talk about the distance between a point x and a Hough line L, we mean the shortest
orthogonal distance between x and the infinite line L. We denote this distance as d(x, L).

5.3.2.4 Hough Line Filtering (FilterHoughLines)
As demonstrated in Section 5.3.1, sometimes, there can be linear objects, other than power lines,
incorrectly highlighted in the binary segmentation mask. These include, for example, roads,
trees, or transmission towers in the background (Figure 5.8b). As expected, they are picked up
by the Hough line transform as well and need to be filtered out.

At this stage, we have no understanding of the scene yet, but we can leverage one of the
constraints we set on the data capture process (Section 4.2.6). According to the guidelines, the
power lines should appear vertically in the images. Given a set of h Hough lines {Li}hi=1, we
calculate the positive angle θi ∈ [0°, 180°) between each line Li and the horizontal axis (x) of the
image. Then we filter out all the ”horizontal“ lines that do not satisfy: 45° ≤ θi ≤ 135°.
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5.3.2.5 Splitting into Horizontal Segments (SplitLinesToSegments)
The power lines do not always appear entirely straight in the images, and sometimes exhibit a
significant curvature. Because we want to apply a precise hierarchical clustering by line angle
and distance later, it is necessary to eliminate the influence of curvatures. We do this by splitting
the Hough lines into k horizontal segments bounded by k + 1 horizontal lines {si|y = i ·Hs}ki=0,
where Hs is the height of each segment. We define a new set of Hough lines for each segment
by cropping the existing lines to the segment area: Si = {lj ∩R× [si, si+1)}hj=1, ∀i ∈ {1, . . . , k}.
The segments are visualized in Figure 5.10b.

As a consequence, we also obtain a simple measure for quantifying the power line presence.
Later, in the FilterLineSegments step, we can expose a configuration to filter out power lines
that appear in less than l segments or have a gap of more than m segments.

5.3.2.6 Line Clustering (ClusterLines)
Line clustering is the core step of the proposed algorithm. We focus on a precise division of
Hough lines into groups corresponding to the actual power lines. We iterate over all segments
from the previous step and perform hierarchical clustering (as described in Section 2.4.2) on two
levels for each one:

Clustering by angle – we state that two Hough lines that differ in angle by more than θcluster
belong to a different power line. With this assumption, we are able to divide the lines
into groups by computing the angle of each line as in FilterHoughLines and applying
agglomerative clustering with a threshold θcluster. We expose the threshold as a configurable
parameter but suggest a value of θcluster = 1°, as shown in the dendrogram in Figure 5.11a.
We obtain ai distinct angle clusters {Cangle

ij ⊂ Si}ai
j=1, such that

∪ai

j=1 C
angle
ij = Si for the

current segment i.

Clustering by distance – it is apparent from Figure 5.11b that clustering by angle is not
sufficient to distinguish between all power lines. Hence, for each cluster of lines Cangle

ij

obtained so far, we apply a second level of clustering – by distance. We define the origin oi of
the current segment i as oi = [0, (si,si+1)

2 ]T and calculate the distance Dik = d(oi, Lk) from
oi to each Hough line Lk in the current angle cluster Cangle

ij . We then perform agglomerative
clustering with the average linkage over those distances with a threshold dcluster. The result
is visualized in Figure 5.11c.

After aggregating all groups of lines for each segment, we obtain the clusters {Cij ⊂ Si}pi

j=1,
such that

∪pi

j=1 Cij = Si for each segment i. The number of clusters pi represents the number of
power lines identified in segment i.

5.3.2.7 Merge Line Clusters across Segments (MergeClusters)
Once we have clustered the lines in all segments, we have local information about the power lines
in each segment. Now we need to merge the segments again while matching the corresponding
clusters that belong to the same power line. In other words, we want to find a mapping that
assigns each cluster Cij a unique identifier of the actual power line.

For that, we iterate over the segments and keep track of the power lines detected so far. We
declare a set of power lines P , which is initially empty P := ∅. For each power line, we store a
list of segment indices where the power line was detected: Isegments ⊂ {1, . . . , k} (where k is the
number of horizontal segments). We also store the cluster of Hough lines, which was assigned in
each segment: Csjs , ∀s ∈ Isegments.

When stepping into a new segment i, we attempt to match each cluster Cij , ∀j ∈ {1, . . . , pi}
with the closest power line based on the average distance to the segment origin oi. Technically, we
compare the average of the distances d(oi, Li) for Li ∈ Cij of the current cluster and the average
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(a) Dendrogram of Hough line clustering by angle.
We identified three clusters of lines with the threshold
θthr = 1 (black line). These are visualized in (b).

(b) Hough lines clustered by angle. For the current seg-
ment i, we can see three clusters {Cangle

ij ⊂ Si}3j=1 (red,
green, orange), as in the dendrogram in (a).

(c) Hough lines clustered by distance (blue horizontal
lines highlight the distance to the segment origin).

Figure 5.11 Hough line agglomerative clustering, first by angle (a), (b) and then by distance (c).

of the distances d(oi, Lm) for Lm ∈ Ckl, where Ckl is the last detected cluster of some power
line in P . The closest power line is the candidate match. We accept the match based on the
following conditions:

The gap between the current segment and the last detected segment of the power line is less
than gmerge segments.

The average angle of the last detected power line cluster Ckl and the current cluster Cij is
not different by more than θmerge.

The average distance to the segment origin from the last detected cluster Ckl and the current
cluster Cij is not different by more than dmerge.

If all of these conditions are met, the match is accepted, and the current cluster is assigned to
the power line. Otherwise, we create a new power line, initiate it with the current cluster, and
add it to P .

5.3.2.8 Filtering Power Lines(FilterLineSegments)
After the previous step, we have a much deeper understanding of the scene. We obtained a set
of power lines P , and for each one detailed information, in which horizontal segments it appears.
Now we can remove all ”power lines“ that appear in less than sfilter segments as noise.

We rely on the fact that the actual power lines always cover large portions of the image (many
horizontal segments), and other linear structures, for example, tree trunks or transmission towers,
are typically much shorter. If sfilter is too large, this may remove real power lines, especially in
the images containing a transmission tower. However, this might be an acceptable trade-off if we
have especially noisy segmentation masks. If the data acquisition process is followed correctly,
the redundancy of images will still allow us to reconstruct the power lines in 3D successfully.
▶ Note 5.3. Technically, rather than removing the power lines themselves, we remove all clus-
ters of Hough lines that belong to the power lines and perform MergeClusters again, as we
observed better performance with this approach.

5.3.2.9 Merging Hough Lines (MergeLines)
Finally, we represent each power line by a single polyline instead of clusters of Hough lines. We
make this transition in four steps:
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Figure 5.12 Transforming a set of Hough lines into a
polyline by sampling points (blue) and fitting a RANSAC
line (red). Figure 5.13 Example of unsuccessful (top)

and successful (bottom) detection of two
closely recorded wires.

1. Sample all the lines in all the clusters that belong to the power line. We collect points from
each Hough line by sampling it every 10 pixels.

2. Fit a single line through all the points using the RANSAC algorithm as explained in Section
2.4.1.

3. Slice the points along the line by projecting them onto the line and splitting them into groups
every p pixels.

4. Fit a RANSAC line segment to the points in each group and connect them into a polyline.

The procedure is illustrated in Figure 5.12.

5.3.2.10 Discussion
This section proposed a rather complex domain-specific algorithm for automatic power line de-
tection. We mentioned several parameters, i.e., θcluster, dcluster, gmerge, sfilter, which assure
a powerful configurability. For instance, they influence the model’s sensitivity to wire curva-
tures, gaps or noise in the segmentation masks, and the minimum distance between two wires.
The parameters should be set based on the choice of the segmentation method. We can afford
to set stricter thresholds for neural network segmentation because the output has less noise than
filter-based segmentation, leading to a better detection quality.

Figure 5.13 shows the limitations as well as strengths of this approach. While the algorithm
cannot deal with overlapping wires, in our experiments, it successfully detected power lines that
are as close as 10 pixels (with dcluster = 10).
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(a) Input – detected power lines. (b) Output – 3D point cloud of distinct power lines.

Figure 5.14 Input and output of the power line 3D reconstruction step. Each power line in the input
is represented by a polyline.

5.3.3 Power Line 3D Reconstruction
This is a critical step of our power line reconstruction pipeline and requires all the previous
outputs – the detected power lines, as well as the required results of the photogrammetric pipeline.
In this section, we will use photogrammetry and epipolar geometry to reconstruct the 3D power
lines. We will therefore use the entities and mathematical notation from 2.3.

5.3.3.1 Input and Output
As input, this step requires the detected power lines visualized in Figure 5.14a and the camera
intrinsics and extrinsics from the photogrammetric pipeline, as illustrated in Listing 2. The
output is a georeferenced 3D point cloud of distinct power lines, as visualized in Figure 5.14b.

5.3.3.2 Understanding the Output of the Photogrammetric Pipeline
Our photogrammetric pipeline of choice – OpenDroneMap, produces an output JSON (JavaScript
Object Notation) file with all necessary camera intrinsics and extrinsics. However, how the
parameters are represented may not be immediately clear from the example in Listing 2. It is
important to correctly interpret the output to create a high-quality reconstruction. We assume
that all the n input images were taken with the same resolution – height h and width w in pixels:
{Ii|Ii ∈ {0, . . . , 255}h,w,3}ni=1 .

Camera Intrinsics

At this point, the photogrammetric pipeline has already undistorted the images and the intrin-
sic parameters for us. Since we used the undistorted images for segmentation and subsequent
detection, we must use the corresponding undistorted camera intrinsics. These are a simplified
set of parameters from K after performing all nonlinear image corrections.

As a result, the distortion coefficients are now zero, as well as some parameters of the intrinsic
matrix, i.e., s and m from 2.3.3. Moreover, the image has been centered, and the principal point
[xH , yH ]T is assumed to be exactly at the center of the image. In the end, we are left only with
focal in the output (Listing 2), which is the focal length f from 2.3 normalized by max(h,w).
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{
"cameras":{

"v2 sony zeiss batis 2/25 7952 5304 brown 0.6944 rgb":{
"projection_type":"perspective",
"width":7952,
"height":5304,
"focal":0.6742461763542501,
"k1":0.0,
"k2":0.0

}
},
"shots":{

"_DSC4353.TIF.tif":{
"rotation":[-0.943152446085517,-2.98453285092054, -0.0463902852019688],
"translation":[-9.21832147611485, -63.4186131306435, 507.880054984430],
"camera":"v2 sony zeiss batis 2/25 7952 5304 brown 0.6944 rgb",
"gps_dop":10.0,
"gps_position":[18.69186778482931, 45.22068640713041, 509.798712238669],
...

},
"_DSC4379.TIF.tif":{ ... },
...

}
}

Listing 2 Example output from the structure from motion step of the photogrammetric pipeline.
Under cameras are the intrinsic parameters of the undistorted camera. Under shots, we obtain the
extrinsic parameters (rotation and translation).

Finally, we set: f := focal ·max(h,w), xH := w−1
2 , yH := h−1

2 and build the undistorted camera
intrinsic matrix K:

K =

f 0 xH

0 f yH
0 0 1

 (5.2)

Camera Extrinsics

In Listing 2, we can also find the extrinsic parameters rotation and translation for each image.
Consistently with Section 2.3.3, we create the rotation matrix R from the three parameters (yaw,
pitch, roll) in rotation using the Rodrigues formula [21]. The vector T is directly listed in the
translation field of the output. In summary, we obtain the extrinsic parameters for each image:
{(Ri,Ti)}ni=1, as explained in Section 2.3.3.

5.3.3.3 Overview of the Algorithm
Listing 3 gives a high-level overview of how we divided the power line reconstruction into smaller
steps. The algorithm begins by automatically assigning images to flight strips and forming groups
of parallel images (left, middle, right). Then we perform a simple power line matching, followed
by transfer matching in images where the simple matching failed. Next, we reconstruct the 3D
points from the 2D power lines by triangulation, and finally, we fit a catenary curve to reduce
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function PowerLineReconstruction(powerLines,K, {(Ri,Ti)}ni=1)
imageGroups← AssignImagesToGroups({(Ri,Ti)}ni=1)
simpleMatches← SimpleMatching(imageGroups, powerLines)
stereoPairs← TransferMatching(simpleMatches, imageGroups, powerLines,

K, {(Ri,Ti)}ni=1)
powerLine3DPoints← Reconstruct3DPoints(stereoPairs,K, {(Ri,Ti)}ni=1)
powerLine3DPoints← FitCatenaryCurve(powerLine3DPoints)
return powerLine3DPoints

end function

Listing 3 Power line 3D reconstruction algorithm.

noise and improve quality. The rest of this section will explain the individual steps in more
detail.

5.3.3.4 Assigning Images to Parallel Groups (AssignImagesToGroups)
In our data acquisition process, we strictly require three flight strips along the power lines, left,
middle, and right, with a side overlap of at least 80%. Compared to [48], we robustly sort the
images based on the location of their camera projection centers instead of sorting by acquisition
time. We automatically assign the images to their flight strips and form an ordered list of image
triplets (left, middle, right). We then choose two out of the three images to form a stereo pair
and perform the 3D reconstruction using epipolar geometry. The third image is crucial for extra
robustness, and we use it to disentangle the overlapping wires and compensate for errors in the
detection process.

First, we compute the object coordinates of the camera projection center Oi for each image.
Since the projection center is at the origin of the camera coordinate system cOi = [0, 0, 0]T , and
a transformation between the world and camera coordinate systems is given by: cX = RiX+Ti,
where cX are the Euclidean camera coordinates, and X are the Euclidean object coordinates,
we can simply perform the inverse transformation: X = RT

i (
cX − Ti). Applied to point cOi,

this yields the projection centers {Oi|Oi = −RT
i Ti}ni=1, which are visualized in Figure 5.15a.

Once we have the 3D object coordinates of the camera projection centers, we lose the Z
coordinate and fit a 2D polyline using the RANSAC algorithm similarly to Section 5.3.2.9.
Afterward, we calculate the signed distance from each projection center point to the polyline
(negative distance left of the polyline and positive right of the polyline) and perform hierarchical
clustering into three clusters using the average linkage. This classifies the points into the three
flight strips. Afterward, we sort all points along the direction of the polyline. Finally, we iterate
over the ordered images in the left strip and find the closest middle and right image to form groups
of three images along the polyline direction. The resulting groups are visualized in Figure 5.15b.

5.3.3.5 Simple Matching of the Power Lines (SimpleMatching)
To achieve a successful 3D reconstruction from two images, it is necessary to have pairs of sensor
coordinates in both images that correspond to the same 3D point in the scene. Traditionally,
these are obtained by running a feature detector followed by a point matcher, just like in the
photogrammetric pipeline described in Section 5.2. This is, however, inefficient for thin homo-
geneous structures. Hence, we leverage our understanding of the scene and detected power line
locations and derive the pairs of sensor coordinates purely geometrically, just like [44, 48].

For that, we must first match the corresponding power lines across images. As opposed to [44]
and [48], where the authors apply manual work, we are able to match the power lines automati-
cally by exploiting the constraints we set on the image acquisition. Namely, we require all power
lines to be visible in each image and three parallel flight strips for redundancy. Additionally, we
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(a) Camera projection centers {Oi}ni=1 in the object
coordinates, visualized by red points.
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(b) Groups of left (L), middle (M), and right (R) par-
allel images, formed by fitting a polyline through the
camera projection centers, hierarchical clustering, and
computing signed distances to the polyline.

Figure 5.15 Assigning camera projection centers to groups of parallel images.

Figure 5.16 Simple matching of the power lines in a valid pair of left and right parallel images. We
draw three horizontal lines (blue), record the intersection with the power lines, validate that they are
complete and consistent, and then match the power lines by sorting them according to the x coordinates
of their intersection points.
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need a user input – the number of power lines p in the scene. These are all easily achievable in
practice and give us the ability to perform what we call a simple matching of the power lines.

This straightforward process begins with a parallel group of left, middle, and right images.
We draw three horizontal lines across each image (one at the top, middle, and bottom) and
record the intersections with the detected power lines. If the image contains exactly p power
lines and all three horizontal lines register p intersections, we pronounce the image as valid for
simple matching. Otherwise, we skip the image and mark it as invalid.

For each parallel group, we select two valid images as a stereo pair for 3D reconstruction.
Since we know that there are exactly p power lines in both images, we can simply match them
according to their horizontal position left to right.

If all three images in the group are valid, we select the left and right images. Otherwise,
thanks to the third redundant strip, there is a high chance that at least the left and middle, or
right and middle images will be valid and selected. It is now apparent how the third flight strip
provides extra robustness to overlapping or undetected power lines. If there are no two valid
images, we skip this image group and mark it for transfer matching. Figure 5.16 demonstrates
a simple match of the power lines in a valid pair of left and right images.

5.3.3.6 Transfer Matching of the Power Lines (TransferMatching)
So far, we matched the power lines ”horizontally“ across images in the same group, where the
simple matching succeeded. However, for catenary curve fitting, we actually need to assign a
unique global identifier to each power line, in other words, match them also ”vertically“ across
parallel groups. When iterating over the groups, there are two possibilities:

An uninterrupted series of simple matches. This is normally the case for all the groups in
between transmission towers if the data acquisition constraints are satisfied. In this case,
we can simply unify all the power lines across the series and assign the same global identi-
fiers in each parallel group since we know that the images contain all p power lines ordered
horizontally from left to right.

We run into an unsuccessful match. This usually happens around transmission towers, where
a handful of images typically do not meet the conditions for a simple match. In this case, we
apply transfer matching to carry the global identifiers from the previous simple match and
continue carrying them for all consecutive unsuccessful matches (normally, these are three
to five groups of images around the transmission tower, depending on the front overlap).
Eventually, we encounter a simple match again and start assigning new global identifiers.

From 2D to 3D back to 2D

Transfer match works with two consecutive groups of parallel images: G1 = (I1L, I
1
M , I1R) and

G2 = (I2L, I
2
M , I2R). It further assumes that G1 was successfully matched, and a stereo pair S1 for

3D reconstruction was selected. Without loss of generality, let us assume that the power lines
in G1 were matched by simple matching, and the stereo pair was created from the valid left and
right images: S1 = (I1L, I

1
R). This means that for every power line in I1L, we know its location

in I1R. Furthermore, G2 did not satisfy the conditions for a simple match and was marked for
transfer matching. We select a stereo pair containing the left and right images S2 = (I2L, I

2
R) for

G2. The transfer match happens in three steps:

1. Reconstruction of 3D points for each power line in S1. This will be explained in more detail
in Section 5.3.3.7.

2. Reprojecting the 3D points to S2. We create the projection matrices P 2
L and P 2

R for the
images I2L and I2R, respectively. According to Section 2.3.3: P 2

L = K
[
R2

L T 2
L

]
, where K is

the intrinsic matrix, and R2
L,T

2
L are the rotation matrix and translation vector for I2L. The

matrix P 2
R for I2R is created analogously.
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Figure 5.17 Transfer match of the power line global identifiers between two stereo pairs of images
S1 = (I1L, I

1
R) and S2 = (I2L, I

2
R). The power lines in S1 were matched by simple matching (red, green,

blue). The point X is reconstructed from two matching points x ′ and x ′′ obtained using epipolar geometry
from the ”red“ power line in S1. The point X is then reprojected to I2L and I2R, yielding the 2D projections
x ′′′ and x ′′′′. As it happened, the 2D projections landed on one of the three power lines in I2L, and I2R,
and we can therefore assign it the ”red“ label. We call this a transfer match.

We then apply the matrices on the 3D points. As an example, we can apply it on the 3D
point X from Figure 5.17 expressed in homogeneous object coordinates (X) and obtain the
corresponding projections x′′′ = P 2

LX and x′′′′ = P 2
RX in I2L and I2R, respectively.

3. Matching the power lines in S2 based on their distance to the 2D projections.
Figure 5.17 shows an example of reconstructing the 3D point X from two corresponding 2D
points x ′ and x ′′ in I1L and I1R, respectively, and reprojecting it to I2L and I2R to find the power
line match in S2.

We perform two passes of the transfer matching algorithm – forward and backward pass
through all the groups to further increase the number of matches. Thanks to the data acquisition
constraints and the third flight strip, we are able to match the power lines fully automatically,
without any intervention from the user. Most power lines are matched during the simple matching
phase, and the ones in cluttered images around transmission towers are matched during the
transfer matching phase.

5.3.3.7 3D Reconstruction (Reconstruct3DPoints)
Finally, after the power lines are matched, we can reconstruct the 3D points from the stereo
pairs we selected (note that reconstructing the 3D points was also part of transfer matching). In
this section, we explain how we use epipolar geometry to find corresponding points that belong
to power lines in a pair of images and triangulate the location of the 3D point. We demonstrate
the process on a stereo pair S = (I1, I2).

Preparation

As outlined in Section 2.3.3, we can now build a fundamental matrix F12 that captures the
relationships between the two images I1 and I2, as in Equation 2.11:

F12 = K−T [T12]×R12K
−1.

From Equation 5.2, it is clear that our matrix K is invertible. Hence, K−1 and K−T always
exist. The relative rotation matrix R12 and translation vector T12 of the second camera with
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Figure 5.18 Given a stereo pair S = (I1, I2), we draw the epipolar lines {l ′′(Xi)}ki=1 corresponding to
k points {x ′

i }ki=1 sampled from the ”green“ power line in I1. For each x ′
i , we obtain the matching point

x ′′
i by taking the intersection of the corresponding epipolar line l ′′(Xi) with the ”green“ power line in the

image I2. Each pair of matching points x ′
i and x ′′

i is visualized by a unique color. These are projections
of the exact same 3D points in the scene and can be used for triangulation.

respect to the first camera must be explicitly derived from the extrinsics R1, R2,T1,T2. We do
so by going from the first camera through the object coordinates, to the second camera. In other
words, we transform the point in camera coordinates of the first camera c1X to its coordinates
in the object coordinate system X:

X = RT
1 (

c1X − T1),

and project it to the second camera c2X:
c2X = R2X + T2

c2X = R2(R
T
1 (

c1X − T1)) + T2

c2X = R2R
T
1
c1X −R2R

T
1 T1 + T2

c2X = R12
c1X − T12.

In the last step, we arrived at the relative rotation R12 = R2R
T
1 and the relative translation

T12 = −R2R
T
1 T1 + T2 = −R12T1 + T2. Finally, we can build the fundamental matrix F12 using

these parameters and proceed with the reconstruction.

Finding Matching Points

As Figure 5.17 shows, we need two corresponding points, x ′ and x ′′, for every reconstructed 3D
point X . Obtaining these points is now simple, given all the previous results. We choose one
image from a stereo pair S = (I1, I2), e.g., I1, sample a point x ′ on some power line and use the
fundamental matrix to calculate the corresponding epipolar line in the other image. As outlined
in Section 2.3.3, the line is given by

l′′(X ) = FT
12x

′.

To obtain the point x ′′, we calculate the intersection of l′′(X ) and the corresponding matched
power line in the other image. Figure 5.18 visualizes the process of 3D reconstruction of the
power lines from a stereo pair.

3D Point Triangulation

Finally, to find a 3D point X corresponding to a pair of matching 2D points x ′, and x ′′ in the
sensor coordinates, we use the least-squares triangulation method from [23, p. 312].
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(a) Power line points and fitted catenary viewed from
the x–z perspective.
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(b) Power line points and fitted catenary viewed from
the y–z perspective.
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(c) Power line points and fitted catenary in 3D.

Figure 5.19 An example of 3D power line points (blue) and a catenary curve (red) fitted using the
RANSAC algorithm. The 3D power line points keep the catenary shape when viewed in the x–z or y–z
planes.

5.3.3.8 Catenary Curve Fitting (FitCatenaryCurve)
As the last step of the power line reconstruction pipeline, we fit the catenary curve to the
individual 3D reconstructed power lines. This improves the reconstruction quality significantly
since we fit the curve robustly using the RANSAC algorithm. So far, each reconstructed power
line contains a set of p 3D points {Xi = [Xi, Yi, Zi]

T }pi=1. The catenary is fitted in three steps:

1. We fit a regular RANSAC line to the 2D points {xXY
i = [Xi, Yi]

T }pi=1 (dropping the Z
coordinate).

2. We leverage the fact that the 3D points keep the catenary shape even if we view them from
any side, e.g., the x–z or y–z plane [6]. This allows us to fit the 2D catenary curve from
Equation 2.2 to the 2D points {xXZ

i = [Xi, Zi]
T }pi=1 or {xY Z

i = [Yi, Zi]
T }pi=1. We decide

which ”side“ to use based on the length of the domain that the points occupy. In other
words, we use the points {xXZ

i }pi=1 if (maxpi=1 Xi − minpi=1 Xi) > (maxpi=1 Yi − minpi=1 Yi),
and {xY Z

i }
p
i=1 otherwise.

3. Lastly, we sample XY points from the line we got in step 1 and obtain their Z coordinates
using the 2D catenary model.

A real example of the fitted catenary curve is illustrated in Figure 5.19, which also highlights
the robustness to outliers as a result of using the RANSAC algorithm.

5.4 Visualization
This component is the last step of the whole pipeline, and it is the only interactive part that
involves a human operator. The goal is to calculate the distance between the terrain and power
lines and highlight areas of vegetation encroachment.
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(a) Input – georeferenced point cloud of the terrain. (b) Input – georeferenced point cloud of the power
lines.

Figure 5.20 Input of the visualization component.

5.4.1 Input and Output
The inputs of this component are two georeferenced point clouds:

1. Point cloud of the terrain from the photogrammetric pipeline (Figure 5.20a).

2. Point cloud of the power lines from the power line reconstruction pipeline (Figure 5.20b).

The output is an interactive visualization of vegetation encroachment in the power line corridor,
including its geographic coordinates (Figure 5.21).

5.4.2 Realization
We chose the open-source tool CloudCompare [69], because of its efficient manipulation with
large point clouds. We import the two point clouds illustrated in Figures 5.20a and 5.20b and
use the cloud-to-cloud distance feature of CloudCompare to calculate their distances. Then we
define a color scale based on the power line corridor right of way (see Figure 2.1) and examine
the results. An example output is shown in Figure 5.21.

These operations are done manually in a graphical user interface, which allows for a more
interactive approach. The user can, for example, adjust the color scale or define multiple color
scales, one for evaluating the vegetation encroachment from the side and another one from
underneath the power lines (as there are often different regulations for the minimum allowed
distance). It is also possible to manually edit the point cloud and combine the two different color
scales into a single point cloud 5.22. Other operations, such as manually removing points, sub-
sampling, or creating a mesh for the terrain point cloud, can further improve the visualization.
These are out of scope of this work.
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Figure 5.21 Output of the visualization component – the power line corridor with visualized distances
in meters between (a) and (b). The color scale is customizable, and in this example, the points closer
than 12m are displayed in red, 15m yellow, and 17m green, with continuous transitions between the
colors. There is, in fact, some vegetation closer than the allowed distance (15m) for this particular type
of power lines (220 kV), as illustrated by the highlighted point on the right. The actual distance from
the clutter to the power lines is directly available in the tooltip (13.574m), as well as the real object
coordinates (X, Y , Z), written in the WGS84 format (UTM zone 33N in this example), which can be
easily converted to GPS coordinates.

Figure 5.22 Advanced visualization of the power line corridor, created by manually segmenting the
point cloud, and combining two different color scales: one for vegetation hazard from the side, and a
second one for vegetation hazard underneath the power lines. Automation of this step is out of scope of
this work.
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Chapter 6

Implementation

This chapter focuses on the implementation of the proposed power line reconstruction pipeline
and the support tools for full automation encompassing the entire process of power line vegetation
management using UAV images. We chose the Python programming language for its abundance
of high-quality open-source libraries, not only for computer vision and machine learning.

The chapter begins with the list of essential libraries we used throughout the implementation,
followed by a basic structure of the application. Lastly, we give a brief example of the workflow,
including the setup and processing of a dataset.

6.1 Python Libraries
We used several popular Python libraries for various computer vision and machine learning
algorithms mentioned throughout this work. All software used for implementation is open-source,
with licensing allowing for-profit use. The list of essential libraries:

Poetry [70] is a modern package and dependency manager for Python. It automatically cre-
ates a virtual environment for each project and exposes a simple configuration that can be
versioned.

Poe the Poet [71] is a task runner for Poetry that allows us to write commands that always
execute code in the Poetry virtual environment with the correct versions of all packages. We
wrote Poe commands for installing dependencies, downloading the required files, and execut-
ing all parts of the pipeline. These commands are our main interface with the application.

OpenCV [72] is a popular highly-optimized computer vision library. It is written in the C++
programming language with Python bindings and offers implementation of the most known
computer vision algorithms, including some for photogrammetry. We used it mainly for
implementing filter-based segmentation (Section 5.3.1.2), finding Hough lines (Section 5.3.2),
and 3D point triangulation using the least-squares algorithm (Section 5.3.3.7).

MMSegmentation [67] is a deep learning segmentation framework based on PyTorch, which
implements the DeepLabv3+ model we used in the neural network segmentation (Section
5.3.1.3).

PyODM [57] is a Python API from the OpenDroneMap ecosystem. We used it to write a
small client for remote execution of the photogrammetric pipeline and automated download
of the outputs.

57
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scikit-learn [73], scikit-image [74] contain implementations of the RANSAC algorithm (Sec-
tion 2.4.1).

Shapely [75] is a planar geometry library that we used for various 2D geometric operations.

6.2 Application Structure
The application is structured into four main parts:

config collects all configuration files for both photogrammetric and power line reconstruction
pipelines. The main configuration file is called power_lines_cfg.yaml and holds all user
configuration, including parameters from the power line reconstruction pipeline described in
Section 5.2.

data contains the inputs and outputs of the application, and some other large files, such as the
trained segmentation weights.

powerline3d contains the source code of the power line reconstruction pipeline. It consists of
three modules – segmentation, detection, reconstruction, and shared utilities.

tools hold the scripts for executing individual steps from powerline3d, training and testing the
segmentation neural network, running the photogrammetric pipeline, and a few other tools,
e.g., for transforming the ttpla-voc dataset, flight planning, or camera calibration. We execute
the scripts in this folder through Poe.

The overview of the most important parts of the application:
config...................................................................configuration files

power_lines_cfg.yaml..........................................main configuration file
powerline3d..........................source code of the power line reconstruction pipeline

segmentation..........................................power line segmentation module
detection ................................................. power line detection module
reconstruction...................................power line 3d reconstruction module
geometry....................................................common geometric utilities
util.............................................................other common utilities

tools...........................various tools and Python scripts for executing the pipeline
data................................................... input and output of the application

images.......................................................place for the input images
odm.............................................................OpenDroneMap output
segmentation.....power line segmentation output (and trained neural network weights)
detection..................................................power line detection output
power_lines.ply......................................power line reconstruction output

6.3 Power Line Inspection Processing Workflow
In this section, we zoom in on the actual processing workflow. After obtaining all application files
and external system dependencies (e.g., Python, the complete list is part of the documentation),
we can start with the initialization.

Initialization

First, we must install all required Python packages using poe install and start the Open-
DroneMap server. We recommend running the photogrammetric pipeline remotely on a powerful
Linux server or cluster since OpenDroneMap is computationally heavy and can consume more
than 100GB of RAM (depending on the number of images and CPU cores).
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The next step is to check the main configuration file config/power_lines_cfg.yaml. If the
OpenDroneMap server is running remotely, we must configure its network address. We may
optionally change any of the other settings.

Processing

Once everything is ready, we can place the georeferenced UAV images in data/images and
run the pipeline by poe runall <number-of-power-lines>, which automatically executes all
processing steps and stores the output. We must supply the number of power lines in the
scene. After the process is completed, the georeferenced point cloud of the terrain can be found
in data/odm/odm_georeferencing/odm_georeferenced_model.laz and the point cloud of the
power lines in data/power_lines.ply.

For maximum efficiency, we can run the steps separately. Since the power line reconstruction
pipeline depends only on the output from the structure from motion (see Figure 5.1), it can
be executed in parallel with the dense point cloud reconstruction. We provide the individual
commands for more advanced usage:

poe runodm-opensfm – run the structure from motion part of OpenDroneMap pipeline,

poe runodm-pc – run the rest of the photogrammetric pipeline,

poe segmentation – run power line segmentation,

poe detection <number-of-power-lines> – run power line detection,

poe reconstruction <number-of-power-lines> – run power line reconstruction.

Each step can be run individually if all its input dependencies are satisfied (see Figure 5.1).
This enables a more interactive approach. For example, we can examine the output of any step,
change the configuration based on what we learned, and rerun the step only without executing
the entire pipeline (which typically takes hours).

Visualization

Lastly, we import the two aforementioned point clouds into CloudCompare and compute the
distances using its graphical user interface. The vegetation encroachment can be highlighted
using an arbitrary user-defined color scale.
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Chapter 7

Experiments

In this chapter, we report the experiments we conducted to verify the robustness of the proposed
solution. We created three representative datasets of the 220 kV power lines at various lighting
conditions and vegetation life cycle phases. The chapter begins with an overview of the hardware
and a brief section about flight planning and autonomous missions. Then, it continues to describe
each of the three datasets in detail. Lastly, we report the results of our proposed solution.

7.1 Hardware
The UAV platform of choice was DJI Matrice 600 (Figure 7.1a), a hexa-rotor drone capable of
lifting 6 kg of additional weight. Its stability, as well as georeferencing precision, was improved
by DJI D-RTK GNSS mobile station (Figure 7.1b).

The payload consisted of SONY Alpha 7R II full-frame camera with a ZEISS Batis 25mm
lens and Air Commander ENTIRE r3, which allows for the remote camera trigger as well as
writing accurate GPS coordinates in the image EXIF metadata. The camera was stabilized with
the GREMSY H3 gimbal. Additionally, we used Air Commander LINK v2 to control the camera
exposure settings remotely (Figure 7.2).

(a) DJI Matrice 600 hexa-rotor UAV with payload. (b) DJI D-RTK GNSS mobile station.

Figure 7.1 Hardware equipment.
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Figure 7.2 UAV Payload. The images were captured with a SONY Alpha A7R II camera combined
with a ZEISS Batis 25mm lens mounted on a GREMSY H3 gimbal. We used two additional devices, AIR
Commander ENTIRE r3 for triggering the camera and writing GPS coordinates to the EXIF metadata
and AIR Commander LINK v2 for controlling camera exposure settings during flight.

7.2 Flight Planning
For planning autonomous missions, we used the UgCS PRO planner [76], which includes support
for digital elevation models to follow the terrain height. This feature is essential to keep the
flight height constant throughout the whole mission, especially in difficult terrain with hills.
This allowed us to plan and execute a fully autonomous flight exactly according to the plan in
Section 4.2. UgCS PRO is the only paid software we used in this work. Nonetheless, we found
it was the best option for our purpose during our research. Its main benefits are the already
mentioned support for terrain elevation, importing the location of power lines, and a highly
configurable corridor mapping mode (Figure 7.3).

As discussed in Section 4.2, many of the mission parameters are interconnected, for example,
the maximum speed of the UAV depends on the exposure settings, flight height on GSD, and
everything depends on the camera and lens. As a result, we created a simple utility for calculating
the optimal flight height, speed, GSD, and the resulting diffraction. Moreover, it provides a useful
summary of the relevant parameters of the equipment, according to Section 4.2. The output of
the utility is illustrated in Listing 4, where one can also find the relevant parameters of the
camera hardware we used in our experiments.

7.3 Datasets
To verify the robustness of the proposed algorithm, we created three datasets under different
lighting conditions and vegetation life cycle phases. The datasets were captured at three different
locations along a single line of 220 kV wires. This line has 5 power lines (three transferring
electricity and two communication wires). All three datasets contain a single span of wires
between two transmission towers, with a small overlap on each side.

Dataset 1 was created on October 10, before the leaf fall, and datasets 2 and 3 were both
created on November 20, with significantly fewer leaves and under cloudy weather. We have
already shown examples from dataset 1 throughout Chapter 5, in Figures 5.20, 5.21, and 5.22.
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Figure 7.3 Example of an autonomous mission planned in UGCS. This mission, in particular, was
used to capture dataset 3 (see Table 7.2). Notice especially the three parallel flight strips and the orange
line, which is the power line center location imported from the OpenStreetMap [77] data.

Command:

poe flightplanner sony_a7r2 --lens batis_25 \
--gsd 1.0 \
--aperture 5.6 \
--shutter 0.01

Output:

Camera: Sony Alpha A7R II
Image size: 7952 x 5304
Sensor size: 36mm x 24mm
Crop factor: 1.0
Pixel pitch: 0.0045249mm
------------------------------------------
Lens: Zeiss Batis 25mm
Focal length: 25mm
------------------------------------------
Equiv. focal length: 25.00mm
Shutter speed: 0.01s
Aperture size: f/5.6
------------------------------------------
GSD: 1.00cm
Flight height: 55.2m
Max speed: 2m/s ~ 5km/h
Diffraction: 0.0075152mm

Listing 4 Example output of the flight planner utility. Given the hardware specifications, target GSD,
and exposure settings, the utility calculates the optimal flight height, maximum speed, and diffraction.
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Photogrammetric Pipeline Dataset 1 Dataset 2 Dataset 3
Structure from Motion 14 hrs. 25 min. 1 hr. 49 min. 3 hrs. 53 min.
Dense Point Cloud Reconstruction 7 hrs. 37 min. 5 hrs. 12 min. 6 hrs. 48 min.
Power Line Reconstruction
Power Line Segmentation 50min. 49min. 55min.
Power Line Detection 27min. 18min. 30min.
Power Line Reconstruction 1min. 1min 1min
Total Processing time 23 hrs. 20 min. 8 hrs. 9 min. 12 hrs. 7 min

Table 7.1 Processing time of each stage.

Figures 7.4 and 7.5 show datasets 2 and 3, respectively. The mission details for each dataset are
summarized in Table 7.2.

The datasets were processed on a powerful Linux compute cluster with 64 cores of Intel(R)
Xeon(R) Gold 6254 CPU @ 3.10GHz, 314GB of RAM, and a Tesla V100 32GB GPU. Table
7.1 shows the processing times of each dataset. We can see that the structure from motion step
of dataset 1 took very long compared to the other two datasets. Since all parameters between
flights were held mostly constant (see Table 7.2), we suspect it is because dataset 1 was created
during a sunny day, resulting in sharp shadows moving throughout the data capture, causing
noise during the incremental reconstruction. Naturally, the processing time depends on the
server load and other running processes. However, each dataset was processed several times with
similar results. The time of neural network and filter-based segmentation was almost exactly
the same (± 2min.). Thus, we report them both as the time of segmentation. Training of the
segmentation neural network took 8 hrs. 10 min.

7.4 Evaluation
Unfortunately, we found that evaluating the power line 3D reconstruction accuracy by measuring
the ground truth data is immensely difficult. For example, the authors of [48] tried to capture
the ground truth data using a stationary Terrestrial Laser Scanner (TLS). However, even then,
the results are only indicative due to wind and temperature changes resulting in different sag
and location of the wires. Moreover, this option is out of our reach because of the high cost
of the TLS scanner and the lack of expertise for operating it. As a result, we mostly rely on a
visual evaluation to estimate the power line completeness and relative comparison of the terrain
and power line point clouds to measure the reconstruction accuracy.

7.4.1 Evaluating Completeness
For the reasons mentioned above, we have no precise measure for evaluating what portion of the
power line was actually reconstructed. However, we can at least estimate it using the visualiza-
tion. Figure 7.6 shows the top view of the reconstructed power lines in each dataset for both our
proposed segmentation methods.

As expected, the neural network segmentation better handles the difficult background and
lighting conditions, especially in dataset 3, where the filter-based segmentation missed a signifi-
cant portion of the power lines (Figure 7.6c). Overall, the power line reconstruction pipeline with
neural network segmentation reconstructed all power lines in all three datasets. From Figure
7.6, we estimate that the overall reconstructed portion of the wires was at least 95%.
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(a) Photo of the location. (b) Terrain and power lines. (c) Basic visualization of distances.

Figure 7.4 Dataset 2.

(a) Photo of the location. (b) Terrain and power lines. (c) Basic visualization of distances.

Figure 7.5 Dataset 3.

Mission Details Dataset 1 Dataset 2 Dataset 3
Number of Images 187 135 197
Ground Sample Distance 1 cm 1.12 cm 1 cm
Flight Height 55m 62m 55m
Flight Velocity 3m/s 2m/s 2m/s
Front Image Overlap 85% 85% 85%
Side Image Overlap 90% 90% 90%
Scanned Area 4.29 ha 3.84 ha 4.61 ha
Scanned Area Length 476m 384m 511m
Scanned Area Width 90m 100m 90m
Capture Date October 10 November 20 November 20
Capture Time 1:00 p.m. 12:00 p.m. 1:30 p.m.
Duration 8min. 10min. 13min.
Exposure Settings
Lighting Conditions Sunny, lot of light Cloudy, lot of light Cloudy, less light
ISO 200 640 1000
Shutter Speed 1/250 s 1/100 s 1/100 s
F Number f/6.3 f/8 f/5.6

Table 7.2 Mission details for each dataset.
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Metric [cm] Dataset 1 Dataset 2 Dataset 3
Neural Network Segmentation
Average Distance 55.6 7.7 18.4
Median Distance 19.6 4.7 9.7
95-quantile 162 18 50.1
Standard Deviation 58.1 12.8 17.4
Filter-based Segmentation
Average Distance 90.5 12.8 176
Median Distance 54.7 7.7 50.4
95-quantile 349 55.2 699
Standard Deviation 106 16.1 226

Table 7.3 Evaluation results based on the distances between the reconstructed power line points from
the photogrammetric pipeline and the power line reconstruction pipeline (in centimeters).

7.4.2 Evaluating Accuracy
To evaluate the accuracy of the power line reconstruction, we manually extracted the power
line points (Figure 7.7a) from the terrain point cloud and compared them with the result of
the power line reconstruction pipeline. We can see that OpenDroneMap reconstructed only a
small portion of the wires. Some power lines were missing entirely, emphasizing the need for a
specialized algorithm for power line reconstruction, such as our proposed method. Nonetheless,
it is a sufficient sample for evaluating the accuracy relative to the points created by verified,
industry-standard algorithms in the photogrammetric pipeline.

In addition to manually extracting the power lines from the terrain point cloud, we removed
a small fraction of the points from areas around the transmission towers, begging and end of the
corridor. We reasoned that the power lines were sometimes incomplete in those challenging areas
(as shown in Figure 7.6), and the goal of this evaluation is to measure the relative accuracy, not
completeness, which we already evaluated in Section 7.4.1.

It is important to say that the terrain point cloud contains numerous sources of errors and
cannot be taken as the actual ground truth data, which would be best approximated by precise
laser scanning. For the reasons mentioned above, this is difficult and out of scope of this work.
The most obvious issue is the lack of enough points along all power lines, with some wires
completely missing. Moreover, the power line point cloud is a result of sampling 1000 points
from each catenary curve fitted during the reconstruction phase (Section 5.3.3.8), which means
that in the longest span, there is one point roughly every 10–20 cm. Consequently, the calculated
distances are not orthogonal projections and could be lower if we chose a different sampling rate.

Nevertheless, our proposed method with neural network segmentation achieved outstanding
results, with an average distance of 7.7 cm in dataset 2, 18.4 cm in dataset 3, and acceptable
results with an average distance of 55 cm in dataset 1. We investigated the higher average error
in dataset 1 and found that it was mostly caused by the imprecise fitting of two catenary curves
due to many outliers around the transmission tower (Figure 7.9a). The error was mostly in the
altitude, so the accuracy of vegetation management from the side was not affected by much. The
filter-based segmentation achieved worse results in all cases, but especially in dataset 3 (Figure
7.9b), where it failed in areas with a difficult background (Figure 7.9c).

The detailed distribution of the distances for each dataset and segmentation method is visu-
alized in the histograms in Figure 7.8. Table 7.3 further supplements the histograms with some
statistical metrics.
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(a) Dataset 1. (b) Dataset 2. (c) Dataset 3.

Figure 7.6 Top view of the reconstructed power lines. For each dataset, the result of reconstruction
with neural network segmentation is on the left, and filter-based segmentation is on the right. We can
see that a significant part of the power lines in dataset 3 is missing when using filter-based segmentation.

(a) Power line points reconstructed by photogrammet-
ric pipeline.

(b) Comparison of (a) and points reconstructed by
power line reconstruction pipeline.

Figure 7.7 Comparison of photogrammetric and power line reconstruction pipeline points. The pho-
togrammetric pipeline points (a) were manually segmented from the terrain point cloud.
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(a) Dataset 1. Neural net segmentation (left), and filter-based segmentation (right).

0 20 40 60 80 100 120 140 160
Point cloud distance [cm]

0

5000

10000

15000

20000

Co
un

t

Dataset 2 distance histogram (187217 points)

0 100 200 300 400 500
Point cloud distance [cm]

0
2000
4000
6000
8000

10000
12000
14000

Co
un

t
Dataset 2 distance histogram (187217 points)

(b) Dataset 2. Neural net segmentation (left), and filter-based segmentation (right).
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(c) Dataset 3. Neural net segmentation (left), and filter-based segmentation (right).

Figure 7.8 Histograms of the distances between the reconstructed power line points from the pho-
togrammetric pipeline and the power line reconstruction pipeline (in centimeters).



Evaluation 69

(a) In dataset 1, some errors were caused by an imprecise fitting of the catenary curve due to many outliers around
the transmission towers. As a result, these errors are mainly in the altitude, so it should not impede the accuracy
of vegetation management from the side too much. Moreover, the catenary curve fitting can be disabled, which
would give more accurate results, albeit with some noise and outliers that would have to be filtered manually.

(b) The filter-based segmentation was unable to cope with the dif-
ficult background and around a transmission tower, causing signif-
icant errors in the reconstruction.

(c) Difficult background containing thin
grey tree stems in dataset 3.

Figure 7.9 Errors in reconstruction.
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7.5 Summary
Overall, through this work, we conducted many flights and experiments. Over the period of five
months, we executed around 20 autonomous missions at 5 different locations, collecting more than
2500 images. We created three representative datasets of 220 kV power lines, which prove that our
algorithm is robust even under difficult lighting conditions and with a complicated background.
The proposed method with the neural network segmentation successfully reconstructed all power
lines in all datasets with great coverage of the wires. The filter-based segmentation method
resulted in good reconstruction in two out of the three datasets and failed in areas with a
difficult background in the third dataset.

7.6 Future Improvements
We are confident from our experiments that the proposed method provides good results for
vegetation management around similar power lines to those in our datasets. We expect it will
achieve good results even with more than five power lines, as the algorithm has a tolerance
for wire overlaps in one of the three images in each parallel group. However, it remains to
be seen how the method performs on different layouts or types of wires. Before the method
becomes routinely used in practice, it might be necessary to investigate the issue with outliers
during catenary curve-fitting that manifested in dataset 1 to improve the vertical accuracy of
the algorithm. One possibility would be to enhance the 3D reconstruction step with smart
outlier filtering methods other than RANSAC. Additionally, a comparative evaluation with data
obtained by laser scanning would help to increase the confidence in the results further.

Another interesting study would be to adapt the algorithm for inspection with a fixed-wing
UAV, which can cover larger distances on a single charge. The power lines usually extend over
tens or hundreds of kilometers, but a multi-rotor UAV can cover at most one kilometer before it
is necessary to swap batteries.
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Conclusion

The goal of this work was to create a robust, fully automated algorithm for power line vegetation
management using UAV images. As part of this work, we conducted thorough research of the
related literature and state of the art and proposed a new method with several improvements.
We built the architecture of our solution on two pipelines, combining the industry standard es-
tablished software for terrain reconstruction and our proposed pipeline for 3D power line recon-
struction. The cornerstones of our method are three steps – power line segmentation, detection,
and 3D reconstruction. All three steps were equally difficult and involved many challenges we
had to overcome. Lastly, we visualize the distance between the power lines and vegetation to
allow for a simple assessment of the risks by a human operator.

In our analysis, we compared the filter-based and neural network segmentation methods and
concluded that the latter is more suitable for the purpose of power line 3D reconstruction.

In the end, we were able to fully automate the process of power line vegetation management up
to the visualization part. During 3D reconstruction, we attained automated power line matching
by imposing constraints on the data acquisition process. Mainly, we require an extra third flight
strip for more data redundancy and robustness. Ultimately, the implementation allows for fine
control and configurability of the process, as well as fully automatic reconstruction using a single
command.

Moreover, we used autonomous missions during data acquisition to capture consistent data
with minimal human intervention. We created three datasets of 220 kV power lines going through
densely vegetated areas. The proposed algorithm was able to successfully reconstruct all power
lines in all three datasets with great coverage of the wires.
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SD Card Contents

readme.txt......................................a brief description of the SD card contents
guide.pdf............................................. software installation and user guide
src...............................................................directory of source codes

app...................................................application source code in Python
thesis......................................................thesis source code in LATEX

datasets................................................directory of the captured datasets
dataset1…3....................................................... images in raw format

example-output..........................................results of processing datasets 1–3
thesis.pdf.........................................................the thesis text in PDF
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