
1/5/22, 11:42 AM ProjectsFIT

https://projects.fit.cvut.cz/theses/3911/assignment-print 1/1

Instructions

The goal of this thesis is to extend the testing and mocking framework for C/C++ Cpputest with focus

on automation of mocks creation and usage. Thereafter the implementation shall be used to test

selected modules of the ETCS (European Train Control System) simulator project of the Faculty of

Transport of CTU partly developed at FIT CTU.

1. Analyse and describe the test process and its objectives in the software development process.

2. Analyse existing libraries and frameworks for software testing in C++.

3. Design extension of the framework Cpputest. Focus on automation of mocks creation, their usage

and data handling. Based on the previous analysis, suggest further possible improvements of the

Cpputest.

4. Implement a prototype of the Cpputest framework extension designed in the previous step.

5. Use the implementation from the previous step to test selected modules (DMI, EVC, RBC and Braking

curve) of the ETCS simulator project. Describe your approach and report the results.

Electronically approved by Ing. Michal Valenta, Ph.D. on 4 June 2021 in Prague.

Assignment of master’s thesis

Title: Extension of the Cpputest framework and its usage in the ETCS simulator

testing

Student: Bc. Kateřina Kasalická

Supervisor: Ing. Jiří Chludil

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Software Engineering

Department: Department of Software Engineering

Validity: until the end of winter semester 2022/2023

Master’s thesis

Extension of the CppUTest framework and
its usage in the ETCS simulator testing

Bc. Kateřina Kasalická

Department of Software Engineering
Supervisor: Ing. Jiří Chludil

January 5, 2022

Acknowledgements

I would like to thank my supervisor Jiří Chludil for his advice and guidance
through the whole process of this thesis creation and enabling me to pursue the
topic I wished. I also thank Martin Šmíd for giving me professional confidence
and Martin Šmíd for moral and psychic support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on January 5, 2022 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Kateřina Kasalická. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Kasalická, Kateřina. Extension of the CppUTest framework and its usage in
the ETCS simulator testing. Master’s thesis. Czech Technical University in
Prague, Faculty of Information Technology, 2022.

Abstrakt

Tato práce se předně zabývá návrhem a implementací rozšíření existujícího
testovacího C++ frameworku CppUTest. Framework CppUTest již obsahuje
střední podporu pro práci s mocky, nicméně tato práce navrhuje rozšíření již
existující funkcionality zaměřenou na rozšíření a automatizaci využití mocků.

Práce se nejdříve zabývá analýzou a shrnutím teorie softwarového testování
a testovacích technik. Následně se věnuje analýze existujících C++ testovacích
frameworků, získaná data jsou pak využita pro formulaci a návrh nových
funckcionalit pro framework CppUTest.

Posledním úkolem této práce je vyzkoušet využití vyvinutého rozšíření
implementováním sady testů zaměřené na projekt ETCS simulátoru.

Klíčová slova CppUtest, testování, ETCS, mock

vii

Abstract

This thesis is mainly concerned with design and implementation of extension
of the existing C++ testing framework CppUTest. The CppUTest already
includes moderate support for work with mocks, however this work suggests
extension of this support focused on s wider and more automatic usage of the
mocks.

First task of this thesis is to analyze and summarize software testing prin-
ciples and techniques. The following task is to analyze existing C++ testing
frameworks, the collected data from this analysis are then used to suggest and
form new features for the CppUTest.

The last task of this thesis is to examine usage of the developed extension
via implementing a set of tests for the ETCS simulator project.

Keywords CppUtest, testing, ETCS, mock

ix

Contents

Introduction 1
Goals of the Thesis . 1

1 Software testing 3
1.1 Goals of software testing . 3
1.2 Basic concepts and terms . 4
1.3 Functional and non-functional testing 5
1.4 Dynamic and static testing . 5
1.5 Black-box and white-box testing 6
1.6 Black-box testing techniques . 7
1.7 White-box testing techniques 11
1.8 Experience based testing techniques 12
1.9 Levels of testing . 13
1.10 Test environment . 17
1.11 Test doubles . 18

2 Analysis of C++ testing frameworks 21
2.1 xUnit . 21
2.2 Comparison criteria . 23
2.3 CppUnit . 24
2.4 Boost Test Library . 26
2.5 Google Test . 29
2.6 CppUTest . 33
2.7 Results overview . 35

3 Design of the CppUTest extension 37
3.1 Functional requirements . 37
3.2 Non-functional requirements . 41
3.3 Test double design . 42

xi

3.4 Desired behavior determination 44
3.5 Extension of the existing CppUMock API 45
3.6 Test double creation API . 46
3.7 Test driver API . 49
3.8 Test double API . 51

4 Implementation of the CppUTest extension 55
4.1 Manual . 55
4.2 Unit tests . 61
4.3 Requirements fulfillment . 62

5 ETCS simulator 65
5.1 ERTMS . 65
5.2 ETCS simulator . 68

6 Testing of the ETCS simulator 71
6.1 Testing utilities . 71
6.2 MQTT broker . 72
6.3 General tests structure . 72
6.4 RBC tests . 73
6.5 Future work . 77
6.6 Evaluation of the CppUTest extension usage 77

7 Conclusions 79

Bibliography 81

A Acronyms 87

B Contents of enclosed storage medium 89

xii

List of Figures

1.1 Example state transition diagram 9
1.2 V-Model . 14
1.3 Test environment . 17
1.4 Test double usage . 18

2.1 xUnit framework diagram . 22

3.1 Activity diagram of the test double 43
3.2 Domain diagram of CppUMock usage 45
3.3 Test driver API domain diagram 49
3.4 Test Double API domain diagram 52

5.1 ERTMS Level 1 with eurobalises without infill 66
5.2 ERTMS Level 1 with eurobalises with infill 67
5.3 ERTMS Level 2 . 67
5.4 ERTMS Level 3 . 68

6.1 Tests using MQTT broker domain diagram 72

xiii

List of Tables

1.1 Decision table definition . 9
1.2 Example state transition table . 10

2.1 Overview of C++ framework comparison results 35

4.1 Functional requirements fulfillment 62
4.2 Non-functional requirements fulfillment 63

xv

List of source codes

2.1 Simplest test example . 23
2.2 Simplest test example with fixtures 24
2.3 Simplest CppUnit test example 25
2.4 Simplest CppUnit test example with fixtures 25
2.5 Simplest Boost.Test test example 27
2.6 Simplest Boost.Test test example with fixtures 27
2.7 Simplest Boost.Test test example with test double 29
2.8 Simplest Google Test test example 30
2.9 Simplest Google Test test example with fixtures 30
2.10 Simplest Google Test test example with test double 32
2.11 Simplest CppUTest test example 33
2.12 Simplest CppUTest test example with fixtures 33
2.13 Simplest CppUTest test example with test double 34
3.1 Designed Test double creation API definition 47
3.2 Designed Test double creation API definition with original func-

tion/method reference parameter 48
3.3 Setting key-value return or output value API definition 50
3.4 Setting default return or output value API definition 50
3.5 Setting original function call API definition 51
3.6 Setting test double to invoke a side effect API definition 51
3.7 Determining test double return value API 53
3.8 Determining test double parameter type (input/output) API

definition . 53
3.9 Determining original function call desired behavior API definition 53
3.10 Determining desired behavior regarding invoking a side effect

API definition . 54
4.1 Setting test double return value list 56
4.2 Setting test double default return value 56
4.3 Setting test double output parameter 56
4.4 Setting desired side effect usage 57

xvii

LIST OF TABLES

4.5 Getting the desired side effect usage 57
4.6 Setting original function call usage 58
4.7 Test double creation support usage 59
4.8 Test double with original function reference creation support

usage . 60
4.9 Example default return value unit test 61

xviii

Introduction

Software development is a complex process, often accompanied by many chal-
lenges and drawbacks for software developers. One of the main aims of the
software development theories and recommended methods is to ensure the fi-
nal product quality. Especially for larger projects, it has been proved difficult
to ensure the developed software complies with the expected behavior and the
customer’s requirements.

Software testing is, or at least should be, inseparable part of a software
development process, since it is a useful tool to ensure the product qual-
ity. Many aspects of software testing still remain underrated by the software
development participants, since there is more to software testing than just
implementing test cases. One of the motivations of this work is to describe
the role of software testing, its goals and procedures, and demonstrate usage
of the provided theory in practice.

CppUTest is a C++ testing framework that provides many useful testing
tools that guide the tester and save their time. However, not all its features are
that practical and time saving as they could be. Especially the mock support
is currently limited and leads to unnecessary and tedious test development.

Goals of the Thesis

The main goal of this thesis is to extend the existing framework CppUTest
so it would provide better support for mocks, specifically by adding support for
better mock desired behavior setting and automation of the mocks creation.
One of the aims of this thesis is to create an analysis of the other existing
competitive testing frameworks as inspiration for the extension requirements
and design decisions.

Another objective of this work is to examine the usage of the extension
via implementing tests focused on the ETCS simulator project. The aim

1

Introduction

is also to summarize a testing theory and used techniques and demonstrate
their usage in practice.

2

Chapter 1
Software testing

The goal of this chapter is to describe the basics of software testing and to
demonstrate to the reader the different aspects of testing that shall be con-
sidered by a tester. This chapter does not aim to describe every aspect of the
testing process, since software testing is very extensive subject and this thesis
does not aspire to cover every detail of this process, but rather explain the
basic concepts used throughout the following chapters.

1.1 Goals of software testing
Software testing is a process that aims to verify and validate that the tested
software works correctly and as expected according to the provided require-
ments. This process contains many different activities — planning of the tests,
designing and implementing tests, analyzing, reporting test progress and re-
sults, and assessing quality of the test object. [1] [2]

The objectives of a software testing usually contain the following:

• Evaluate work products such as requirements, user stories, design, and
code to prevent defects.

• Verify whether the developed software fulfills the provided requirements.

• Check whether the developed software is complete and works as expected
by users or customers.

• Assure sufficient quality of the product.

• Detect defects and errors and prevent software malfunctioning.

• Verify the test object compliance with contractual, legal, or regulatory
requirements or standards. [2] [3] [1]

3

1. Software testing

In general it is a tool to answer questions about the tested product. The
process of testing leads to answering questions concerning quality of the prod-
uct and also questions of the customers and users — whether the product
meets the customer’s requirements, if the developed software works correctly
and does not contain selected defects, to name but a few.

1.2 Basic concepts and terms
Software testing field uses its specific concepts and terminology, The purpose
of this section is not only to explain the basic concepts, but to also show
several aspects of software testing process:

Verification is an activity that aims to confirm whether the concerned object
works correctly. In other words, this activity tries to answer the question
”Are we building the system right?” [4]. The IEEE standard [5] defines
verification as ”Confirmation by examination and provisions of objective
evidence that specified requirements have been fulfilled.”

Validation is an activity that focuses on evaluating whether the concerned
object meets its intended use. In other words, this activity tries to an-
swer the question ”Are we building the right system?” [4]. The IEEE
standard [5] defines verification as ”Confirmation by examination and
provisions of objective evidence that the particular requirements for
a specific intended use are fulfilled.”

Test object / Subject under testing is the tested object. Test object can
be a whole system, a module, or just a function.

Test case can be easily defined as a pair of some input and expected re-
sults. An input can include a set of inputs and executions conditions,
expected results can represent an output or outcome (for example change
of a state). Test case can be also described as a sequence of steps and
a set of requirements that should be fulfilled by the test object. [6] [1]

Test driver is defined by the IEEE standard [6] as ”a software module used
to invoke a module under test and, often, provide test inputs, control and
monitor execution, and report test results”. In other words, it executes
the test cases, handles all that is necessary for its execution and checks
the test object behavior towards the expectations.

Error is a mistake that can be made by a person. The IEEE standard [6]
defines error as ”a human action that produces an incorrect result, such
as software containing a fault”.

Defect is a result of a human error, for example a bug or a fault in the
software code. [2]

4

1.3. Functional and non-functional testing

Failure is an external behavior of the software that does not conform to
the expected behavior. Failure is usually a consequence of a defect in
the software, but it can be also caused by a defect in the definition of
expectations. [1]

Coverage is defined by the IEEE standard [6] as ”the degree to which a given
test or set of tests addresses all specified requirements for a given system
or component”. In other words, it measures how much the certain test
object is actually covered by the executed tests. There exist several
methods and definitions for measuring the coverage, some of them will
be described in the following sections).

1.3 Functional and non-functional testing
The requirements that are put on the developed software can be divided in
two categories – functional and non-functional. Based on which of the two
categories is tested, the tests can be also split accordingly.

Functional testing aims to evaluate the software against the functional re-
quirements. The functional requirements specify ”what” the software
should do. Such requirements can be related to communication sys-
tems, modules, logging, security, features, user interface, to name but
a few. In other words, functional testing involves tests that focus on
functions the software should perform. For example, a functional test
can verify output value of a function. [1] [2]

Non-functional testing evaluates the software against the non-functional
requirements. The non-functional requirements specify ”how well” the
software should perform. To name a few, such requirements can be
related to usability, reliability, performance or maintainability. In other
words, non-functional testing focuses on how the software behaves. For
example, a non-functional test can measure the time the software takes
to perform some specific action. [2]

1.4 Dynamic and static testing
When considering how to test some aspect (functional or non-functional) of
the software, there are two possible approaches to choose from – dynamic or
static testing approach. Each of the approaches has some pros and cons and it
is up to the tester to choose the more suitable for the considered requirement
or just an aspect of the requirement.

Static testing does not rely on actual execution of code, but rather on a va-
riety of reviews. Static testing involves manual examination of the code
or evaluation of the code driven by a tool. [1] [2]

5

1. Software testing

The static testing or static analysis has many pros over the dynamic
testing. The first one is that while dynamic testing detects failures that
need further investigation to find the actual defects, the static testing
finds directly the defects in the implementation. Another distinction
is that in many cases, it might be easier to perform static analysis than
to implement very complex dynamic tests. For example dynamic testing
of memory handling or security vulnerabilities might be very complex
to implement, while analogous static analysis can be performed much
easier. [2]
The main disadvantage of static testing is that it has to be performed
manually, especially in big projects that could be very time inefficient.
For example if the development is carried through many cycles and re-
quires regression testing in each cycle, the static tests should be reeval-
uated for each cycle or implementation change.

Dynamic testing is execution based, meaning the tested implementation
is executed in controlled test environment (described in 1.10). This
is achieved by implementing a test case that is then automatically exe-
cuted and evaluated.
While it might be more complex to implement a dynamic test, the imple-
mented test can be then executed and reevaluated automatically without
any additional effort and is usually more time efficient in the longer per-
spective.

In practice, the dynamic testing is preferred for its better time efficiency,
however in some cases the static approach might be more suitable. Usually
both approaches are combined to achieve higher coverage and reliability.

1.5 Black-box and white-box testing
When designing a test case, several information sources, such as specification,
source code etc. need to be considered. And based on the information that
is considered, two main testing concepts are black-box and white-box testing.
Black-box testing techniques are also often called functional testing techniques
and white-box techniques can be also called structural testing techniques. [1]

Black-box testing is considered only with the externally visible behavior of
the tested unit. In this case, the unit can be a method, class, module,
or whole system. The inputs for black-box testing are just requirements
and specifications, no internal knowledge of the tested unit shall be used
(for example the source code). Black-box testing approach is used by
the testers, since they have almost no knowledge of the internal imple-
mentation of the tested unit. [1] [7]

6

1.6. Black-box testing techniques

White-box testing uses knowledge of the internal aspects of the feature, to
name a few, structure, internal paths and implementation. The white-
box testing is usually performed by the programmers using source code
reviews and unit tests implementation (explained in 1.9.1). [1] [7]

1.6 Black-box testing techniques
As already stated in 1.5, black-box testing is mainly based on the requirements,
therefore the black-box testing techniques mainly focus on selection of the test
data for test cases and coverage of possible usage scenarios.

1.6.1 Equivalence class partitioning
As explained in 1.2, test case can be defined as a pair of input(s) and output(s).
When choosing the appropriate input, there are usually countless options to
choose from and unfortunately it is not possible to test them all due to re-
source and time limitations. ”Equivalence class testing is a technique used to
reduce the number of test cases to a manageable level while still maintaining
reasonable test coverage” [7].

Equivalence class partitioning divides data into equivalence classes (also
called partitions), where all the inputs of the equivalence class are expected
to be processed alike. Typically, the input values can be divided into valid
and invalid values, but such partitioning usually needs further distension to
obtain the final equivalence classes. [2]

For example, in a programming class, only students who have obtained
at least 30 points (from the maximum of 70) for programming assignments
can pass, and students that overreach the maximum by gaining bonus points
are suggested to enroll in a competitive programming class (the maximum
of possible points including the bonuses is 99 points). If the test object was
a software determining whether the students passed and what further actions
should be made, the possible equivalence classes and their representative val-
ues could be the following (considering only integers for simplicity):

• <0 - 29 points> – students that shall not pass with representative = 25
points,

• <30 - 69 points> – students that shall pass with representative = 42
points,

• <70 - 99 points> – students that shall pass and obtain the competitive
class recommendation with representative = 77 points,

• <−∞ - (−1) points> – invalid values with representative = −13 points,

• <100 - +∞ points> – invalid values with representative = 7581.

7

1. Software testing

1.6.2 Boundary value analysis
Boundary value analysis is based on the equivalence class partitioning de-
scribed in 1.6.1. Whereas equivalence class partitioning aims to select a can-
didate from each equivalence class, boundary value analysis focuses on bound-
aries of the equivalence classes.

This technique can be applied only to data sets where boundaries can be
defined — numbers. When the boundary value is identified, two test data sets
should be constructed — one just above the boundary and one just below the
boundary. This testing technique is quite effective in finding defects, since
programmers often tend not to treat the boundaries values correctly. [2] [1]

When applying this technique on the example of passing programming
students from the section 1.6.1, the following test values would be selected:

• <0 - 29 points> – selected boundary values would be (-1) (just below
the boundary), 0 (just above the boundary), and analogously 29 and
30; for the intervals <30 - 69 points> and <70 - 99 points> boundaries
would be selected accordingly.

• <−∞ - (−1) points> – values (-1) and 0 would be chosen for the second
boundary (this values were already covered in the previous step), but the
second boundary is little more tricky. In case the input would be of type
INT, the best approach would be to select (-MAXINT) and (-MAXINT
- 1).

1.6.3 Decision table testing
Both previously described techniques (Boundary value analysis and Equiva-
lence class partitioning) considered each input separately. But in practice,
the test object is far more complex and test cases have often various different
inputs and outputs. In such case, all possible combinations of inputs and out-
puts shall be tested. To detect the individual possible inputs, the Equivalence
class partitioning and Boundary value analysis techniques might be used. [1]
[2] [7]

The decision table in 1.1 is then defined as follows:

• In the left column, individual inputs (called conditions in this case) are
defined.

• Also in the left column, under the conditions, individual outputs (called
actions in this case) are defined.

• On the right side of the first column with conditions, columns with
individual test cases (called rules in this case) where each represents the
possible combination of conditions and their corresponding actions, are
defined. [7] [1]

8

1.6. Black-box testing techniques

Rule 1 Rule 2 ... Rule N
Conditions
Condition 1 value11 value12 ... value1N

Condition 2 value21 value22 ... value2N

...
Condition M valueM1 valueM2 ... valueMN

Actions
Action 1 action11 action12 ... action1N

Action 2 action21 action22 ... action2N

...
Action K actionK1 actionK2 ... actionKN

Table 1.1: Decision table definition [7]

1.6.4 State transition testing

When considering a test case, the output may be dependent on the previous
history of the test object. This behavior can be often defined by states of the
test object. A state transition diagram is a tool to record the states of the test
object, actions that induce transitions between the defined states, and possible
corresponding actions. This technique allows the tester to construct the test
cases to cover either all typical sequences of states, all possible transitions, all
invalid transitions, or all states. [2] [7]

Checked in
Book is stocked

Checked out
Check out / Start due timer

Check in / Stop due timer

Discarded

Write off

Lost

Write off
/ Fine reader

Figure 1.1: Example state transition diagram

To demonstrate the usage of the state transition diagram, example from
1.1 regarding states of a book from library will be considered. When a book
is stocked into the library, its initial state is ”Checked in”. Then it can be
either checked out by the reader or written off (after some time period) due
to its bad condition or being outdated. When the book is ”checked out” it
can be checked in by the reader, in opposite case it is considered lost.

Instead of recording the states and transitions to a diagram, a table might
be also used. This technique might be more convenient for complicated sys-

9

1. Software testing

Current state Event Action Next state
null Stock in – Checked in
null Check out – null
null Check in – null
null Write off (bad condition) – null
null Write off (due date) – null
Checked in Stock in – null
Checked in Check out Start due timer Checked out
Checked in Check in – null
Checked in Write off (bad condition) – Discarded
Checked in Write off (due date) – null
Checked out Stock in – null
Checked out Check out – null
Checked out Check in Stop due timer Checked in
Checked out Write off (bad condition) – null
Checked out Write off (due date) Fine reader Lost
Discarded Stock in – null
Discarded Check out – null
Discarded Check in – null
Discarded Write off (bad condition) – null
Discarded Write off (due date) – null
Lost Stock in – null
Lost Check out – null
Lost Check in – null
Lost Write off (bad condition) – null
Lost Write off (due date) – null

Table 1.2: Example state transition table

tems with high number of states and transitions. The state transition table
has columns Current state, Event, Action and Next state, as shown in 1.2
corresponding to the previous example in 1.1. [7]

1.6.5 Use Case testing

Use case is mainly a tool used by analysts and developers to describe usage
of the system from the user’s point of view. A use case is a scenario with
individual steps (performed by actors and the system) leading to a goal.

The use cases can be also used by testers to derive test cases. Such test
cases then follow the individual steps, therefore test each of the individual
functionalities and simulate real life usage of the system in one complex test,
while previously described techniques usually focused on individual separate
functionalities only. [2] [7]

10

1.7. White-box testing techniques

1.7 White-box testing techniques
As already suggested, white-box testing (also called structural testing) uses
knowledge of internal implementation details of the test object. So instead of
deriving the test cases from the requirements, the code itself, its constraints
and data attributes are considered.

1.7.1 Control flow testing
As the name control flow suggests, the goal of this technique is to test all
possible execution paths of the code base. This can be achieved by creating
a control flow diagram (also often called graph), where each node represents
a set of program statements. The nodes are connected by edges if the set
of statements of the second node may be executed just after the statements
of the first node. There are five types of nodes, including decision, merge,
statement, entry, and exit node. [8]

Test cases are then derived from the constructed diagram, where a test
case is a complete path in the diagram. The aim of this technique is to cover
as many possible paths by the test cases as possible. For this technique, six
different coverage levels are defined with corresponding criteria:

1. Statement coverage criteria (or node coverage) – ”Every statement
in the program has been executed at least once.” [8]

2. Decision coverage (or edge coverage) – ”Every statement in the pro-
gram has been executed at least once and every decision in the program
has taken all possible outcomes at least once.” [8]

3. Condition coverage – ”Every statement in the program has been ex-
ecuted at least once, and every condition in each decision has taken all
possible outcomes at least once.” [8]. On the first sight, this condition
might look very much like the previous one. First it must be considered
that decision in the program (i.e. an if statement) can consist of many
different statements. Hence while the previous condition states that ev-
ery decision outcome shall be considered, in this case, all outcomes of
each individual condition of the statement must be evaluated. [7]

4. Decision/Condition coverage – ”Every statement in the program has
been executed at least once, every decision in the program has taken all
possible outcomes at least once, and every condition in each decision has
taken all possible outcomes at least once.” [8]

5. Multiple Condition coverage – ”Every statement in the program
has been executed at least once, all possible combination of condition
outcomes in each decision has been invoked at least once.” [8]. Where
for n conditions, there are 2n combinations of condition outcomes. [8]

11

1. Software testing

6. Path coverage – ”Every complete path in the program has been exe-
cuted at least once.” [8]

1.7.2 Data flow testing
As explained in 1.7.1, control flow testing is a technique to derive test cases
from the flow of the control in the code base. Analogously data flow testing
focuses on flow of the data in the implementation. This is again achieved by
creating a data flow graph that uses similar principles as the control flow graph.
The graph tracks different occurrences of each variable, the key occurrences
to identify anomalies are definition and reference. [7] [9]

The goal of the data flow testing technique is to detect anomalies. Based
on the occurrence types of the investigated variable, several anomalies can be
detected:

• Defined and then defined again.

• Undefined but referenced.

• Defined but not referenced. [1]

1.8 Experience based testing techniques
Previously described testing techniques were rather systematic and clearly
prescribed, experience based testing is very different approach. It relies more
on the skill, intuition and experience in the field of the tester. These techniques
can be able to identify test cases and defects that the previous techniques did
not due to their limitations. [2]

1.8.1 Exploratory testing
As the name suggests, exploratory testing is useful to explore the behavior of
the test object, especially when there is not available sufficient specification
or other description. This technique can be useful in following cases:

• When the test object is new for the tester, exploratory testing can be
used to get familiar with its behavior.

• When there is no sufficient specification and the test must be performed
as soon as possible. Such situation can occur in the early development
of a feature, in which case there is not a specification at all, or it is in
progress and does not define the behavior in enough detail.

• Once a defect is detected (using any testing technique), exploratory
testing can be used to make further investigation of the defect traits and
its outcomes, e.g. to provide more detailed feedback to the developer.

12

1.9. Levels of testing

• In some (usually invalid) cases the behavior of the test object can be
undefined, but it might be still useful to investigate such case. For
example if the system crashes due to an invalid handling by the user,
this technique can be useful to determine how exactly the system crashes.
[2] [7]

Exploratory testing is sometimes performed through sessions within a de-
fined time box. During this session, the tests are gradually derived from the
previously executed tests and their results. This is usually conducted with the
help of a test charter containing test objectives as a guidance for the tester.
[2] [7]

1.8.2 Error guessing
Error guessing testing is a technique that heavily relies on the experience
and knowledge of the tester. The aim of this technique is to create a list of
possible defects, errors and failures and design test cases that will investigate
these failures and their origin. [2]

The list of the possible defects can be assessed using the experience of the
tester, however there are critical areas that tend to have more defects:

• Segments of code with high cyclomatic complexity.

• The code that has been recently added or modified.

• Code blocks that contained higher number of defects in the past.

• Parts of the test object using new technology that has not been used in
the project before.

• Features with unusually vague specification.

• Portions of code developed by novice developers or programmers more
prone to creating defects.

• Component that was developed by higher number of developers, since
there is higher chance of misunderstanding among the developers. [1]

1.9 Levels of testing
The software development, design, and requirements specification can be di-
vided into several levels (or layers). These levels could be defined as different
views on the software project.

1. On the first level (business requirements), business requirements for the
product are gathered.

13

1. Software testing

Apakrychle

V
al

id
at

io
n

Code

Unit testingCoding

Business
requirements

Architecture
design

Detailed design

Acceptance
testing

Integration
testing

Component
testing

System testing
System

requirements

Review

Review

Review

Verification

Verification

Verification

Verification

Validation

Figure 1.2: V-Model

2. On the second level (system requirements), requirements for the whole
system that is being developed are specified, these requirements deal
more with the technical details than the first level.

3. The third level (architecture design) focuses on the architecture of the
software, on this level individual modules and their cooperation is de-
scribed.

4. The following level (detailed design) specifies design of the software in
more detail, typically describes complete functionality of the individual
modules separately.

5. The last level (coding) is the process of writing the actual code base,
it includes public APIs1, methods definitions and declarations, to name
but a few.

1Application programming interfaces

14

1.9. Levels of testing

Mentioned levels are displayed in the V-Model 1.2. The V-Model is often
depicted in different versions that usually include only four levels, unlike the
V-Model shown here. That is caused by joining some of the levels, most often
the System requirements and Architecture design level. This more detailed
view enables to describe the software testing process in more detail and show
all aspects of tester’s and validator’s responsibilities.

Each of the development levels has its corresponding testing level, as shown
in the V-Model 1.2. The purpose of the individual testing levels is to verify
(or validate) that the requirements specified on the corresponding develop-
ment level have been fulfilled by the tested code. Each testing level has its
characteristic attributes – specific objectives, test object, test base, test envi-
ronment, characteristic defects and failures, specific approaches and responsi-
bilities. The individual test levels will be discussed separately in the following
subsections. [2] [1]

1.9.1 Unit testing
”Unit testing refers to testing program units in isolation” [1]. The definitions
of the scope of a unit differ, but it is often understood as methods, functions,
or procedures. In some cases, a class or even a whole module is considered
a unit. The unit testing is also sometimes referred to as a module or component
testing. [1]

In this thesis, the main considered differences between the unit testing and
component testing are the purpose and the author of the testing. In practice,
unit tests are often implemented and performed by the programmer of the
tested functionality. The purpose of the unit testing is to detect defects in
the early stage of the development. It is mainly a tool for the programmer to
ensure that the code has satisfactory quality, since the programmer is respon-
sible for the quality of the code. Therefore the unit tests and their results are
not used in the validation process.

Since the unit tests are performed by the programmer of the tested code,
the approach has a few different features from component testing that is per-
formed by a tester. In contrast to the component testing, unit testing is a white
box testing, since the programmer has knowledge of the internal structure of
the tested code. Hence detection of the defects is usually faster than during
component testing. [10]

1.9.2 Component testing
As already stated in 1.9.1, component and unit testing are often considered
to be the same, since both levels refer to testing program units in isolation
[1]. But the scope of the component testing slightly differs from the unit
testing. While the goal of the unit testing is usually to test separate methods,
functions, or procedures and focuses more on testing implementation details,

15

1. Software testing

the component testing aims to test, verify, and validate functionality of whole
components or modules. [10]

A component ”refers to a separate module or programming object that
works independently of the other components in a system while maintaining
communication with the entire system” [11]. To give an example, component
can be an API, a database, a process, or a daemon. The components are
usually tested in isolation, in characteristic test environment often using mocks
and stubs [2].

The component testing is performed by a tester, therefore it is a black box
testing. Unlike the unit testing, results of component testing are used in the
validation process to evaluate whether the test object fulfills its requirements.

1.9.3 Integration testing

”Integration testing is the level of test done to ensure that the various com-
ponents of a system interact and pass data correctly among one another and
function cohesively.” [12]. Unlike in unit and component testing, integration
testing does not test just parts of the system in isolation, but tests that the
components or modules have been integrated correctly. In other words, the
purpose of integration testing is to put the developed components/modules
together and find possible defects related to compatibility of the components.

Especially in moderate to large projects with tens to even hundreds of
programmers cooperating together, different components are developed by
various programmers and tested in isolation on component testing level by
various testers. The coordination of alike project can be very complicated
and defects such as incompatible interfaces can be easily made. The goal of
the integration testing level is to reveal these defects and ensure the integrated
components are compatible. [1]

1.9.4 System testing

”The objective of system-level testing, also called system testing, is to establish
whether an implementation conforms to the requirements specified by the
customers” [1]. While the integration testing focuses on testing compatibility
of a system components and their collaboration, system testing focuses on the
behavior of a system from the outside. It aims to verify that requirements for
a system, functional and non-functional, have been met.

In practice, the system testing and integration testing are often imple-
mented and evaluated together, since their test cases can be very similar. The
test environment is often the same and on both levels already fully integrated
system is tested. The only difference is that the integration testing level fo-
cuses on the internal collaboration of the components, while the system testing
level goal is to verify behavior of a system from the outside.

16

1.10. Test environment

1.9.5 Acceptance testing
The goal of acceptance testing is to validate that the developed product fulfills
customer’s requirements. It can be very similar to system testing, since it fo-
cuses on the same criteria, but it is performed by the customer or a third party
entrusted by the customer. The main goal of the acceptance testing is not to
detect defects, but rather build the customer’s confidence in the product that
it meets the required functionality, standards and other requirements. [2] [7]

1.10 Test environment
The IEEE standard [6] defines the test environment (also called test bed)
as ”hardware and software configuration necessary to conduct the test case”.
In other words, when considering a test case, certain conditions need to be met
to execute the test case in such environment that the test object behaves the
same as in the production environment. The test environment (depicted in 1.3)
can include hardware configuration, operating system, third party software,
network setting, test data, and database server to name but a few. [1] [13]

Test environment

Test driver

Test object

Test doubles

Input parameters,
control test environment Output parameters

Third party
software

Operating
system

Hardware
configuration

Network

Test data

Test case Results

Figure 1.3: Test environment

The tester must ensure that the test environment complies with the pro-
duction environment and does not influence behavior of the test object in any
unexpected way. But at the same time, it enables the tester to have a full con-
trol of the environment through the test driver and can be used to the tester’s

17

1. Software testing

advantage. This is especially utilized on the unit and component testing level
by using test doubles (described in detail in 1.11). [14]

1.11 Test doubles
As suggested in 1.10, tester can simulate the production environment by creat-
ing test double(s). Test double replaces a real object (i.e. component, library,
database etc.), simulates its behavior and at the same time checks the behavior
of the test object. The test object calls are then redirected to the test double
instead of the real object as depicted in 1.4. The test double has usually quite
simple implementation and is far less complex than the real object. [15] [16]
There are a few possible reasons for using test doubles:

Test driver

Test object

Test double

Set expectations,
control behavior

 Invoke Redirected real
object calls

Real object

Figure 1.4: Test double usage

• Some components needed for executing the test object are not imple-
mented yet. Using test doubles instead of the non-implemented compo-
nents enables to execute the tests earlier, since there is no need to wait
for the implementation.

• Test doubles allow the tester to check communication between the com-
ponents that might not be accessible for the tester in production (or
similar) environment.

• Using test doubles can reduce tests execution time. For example if a cer-
tain component takes long time to respond to certain calls, it can be
replaced by faster responding test double.

• Some components might have side effects that are not desired in testing
process. For example, an email shall be sent when an event is triggered,
but it would be inconvenient to actually send the email every time the

18

1.11. Test doubles

corresponding test is executed. So a test double is created, which reg-
isters the call requesting to send the email, but does not actually send
the email.

• Some dependency of the test object has complex setup that cannot be
easily satisfied, i.e. it needs special hardware or plenty of configuration
data and other dependencies. [17] [18]

This approach is used mainly on the component and unit test level, since
it enables the tester to have full control of the test environment. Otherwise
it would be often impossible to investigate communication between individual
components or systems. On the other hand, whenever a public API of the
real object changes, the test double must be updated accordingly.

There are a few variations of the test double – test stub, test spy, mock
object and fake object. The term test double is often incorrectly confused with
just a subset term mock or stub. [16] These are the test double variations:

Test Stub – ”is an object that holds predefined data and uses it to answer
calls during tests.” [15]. Stub is an object that includes the same API
as the real object, therefore the test object calls can be redirected to it.
The stub then only responds according to predefined data, hard-coded
or configured from the test driver. [19]

Test Spy – returns predefined data the same way the stub does. But addi-
tionally it saves the calls from the test object and their parameters. The
saved data are later verified by the test driver. [20]

Mock Object – has, on the first sight, very similar behavior as the test
spy. It returns predefined data and registers calls from the test object.
But unlike the test spy, mock object directly verifies the calls and their
parameters right after they were made by the test object, therefore mock
object does not return the data to the test driver. The call expectations
(and return data) are configured from the test driver. [21]

Fake Object – is very different from the previous variations. The goal of the
Fake object is to imitate the behavior of the real object, but in a simpler
way. This is mainly used when the real object is not implemented yet, or
its responses are too slow. Unlike previous variations, fake object is not
controlled by the test driver at all, therefore its return values are not
predefined and the test object calls are not verified in any way from this
test double. [22]

19

Chapter 2
Analysis of C++ testing

frameworks

When developing dynamic tests, the best practice is to use a testing frame-
work. Of course, it is possible to implement automatic tests from scratch. But
testing software is not just about implementing scenarios and simple checks,
when managing bigger code base (both implementation and tests), the test-
ing should have some structure and procedures, which is easier to achieve
by using a framework. Testing frameworks usually already manage many as-
pects of software testing and make the process much easier for the tester, by
functionalities such as verifying expected behavior, assembling tests into test
suites, identifying test failures, providing test reports, cleaning up after test
execution, finding and executing individual tests etc. [23]

2.1 xUnit
xUnit is a term used for collection of frameworks that derive their function-
ality and structure from Smalltalk SUnit framework [24]. The concepts first
introduced in the SUnit framework and popularized by the JUnit framework
[25] were then widely used in several other frameworks, usually called xUnit,
where x is replaced by name of the programming language the framework was
developed for, but this naming rule is not always applicable. When discussing
testing frameworks, it is often desirable to identify whether it belongs to the
xUnit testing family, i.e. it follows the xUnit concepts. [26] [27] That includes
the following concepts:

Test runner – is an executable program that runs tests implemented using
a xUnit framework and reports the test results. It provides testers with
uniform way to execute the tests. The behavior of the test runner may
differ in the way it registers the test cases – it either discovers them

21

2. Analysis of C++ testing frameworks

automatically based on predefined structure, or the tester must explicitly
register them. [28]

Test method – each test (test case) is defined as a method, procedure, or
function [29]. This test method implements four stages:

1. Setup – preparation of the test data, test doubles, test context etc.
2. Exercise – interactions with the test object.
3. Verify – verification of the outcomes to determine whether it met

the expectations.
4. Teardown – setting the test environment to the previous set up

(before the setup phase). [30]

Test case class / Test suite – all the test methods (since they are meth-
ods) must be collected into a class. The related test methods are put
under a class that is called Test case class, so a Test case object is cre-
ated for each test by instantiating the test case class once for each test
method. [31]

Test case object – for each test method a test case object is instantiated,
that allows the test runner to simply manipulate and execute the tests
individually. The test case objects are then collected into Test suite
object. [32]

Test suite object – is a composite2 of test case objects, it holds the collec-
tion of the individual test case objects. The test suite object is called by
the test runner to execute and evaluate the tests. [34]

Test case object

Test runner

Test case class

Test method_1

- Setup
- Exercise
- Verify
- Teardown

Test method_N

- Setup
- Exercise
- Verify
- Teardown

Test suite
object

Test method_1

- Setup
- Exercise
- Verify
- Teardown

Test case object

Test method_N

- Setup
- Exercise
- Verify
- Teardown

Test object
run

suite

create

create

create

run

run

Exercise

Exercise

Figure 2.1: xUnit framework diagram (inspired by [28])

2Composite design pattern composes ”objects into tree structures to represent part-
whole hierarchies. Composite lets clients treat individual objects and compositions of objects
uniformly.” [33]

22

2.2. Comparison criteria

The overall structure of a xUnit framework and relationships between the
just introduced concepts are depicted in diagram 2.1. Since the xUnit ap-
proach is used in several testing frameworks, for a tester that is already famil-
iar with one of this frameworks, it is quite effortless to adapt to using other
frameworks from the xUnit frameworks family.

2.2 Comparison criteria
This chapter aims to compare some of the C++ testing frameworks, for which
a methodology needs to be defined. Different projects and testers might have
different criteria, however the goal of this chapter is not a comparison based
on project specific criteria, but rather on the most general criteria possible.
The criteria will be scored either by [0 - 5 points] (where 5 is the best score)
or [yes/no] option. The following criteria will be considered:

Basic usage simplicity [0 - 5 points] – how easy/difficult it is to implement
a simple test case. Evaluation of this criterion will be based mainly on
very simple test example showed in 2.1 – test with just simple assertion.

1 TEST (SimplestTest) {
2 int someNum = 42;
3 ASSERT(someNum, 42);
4 }

.

Source code 2.1: Simplest test example inspired by [35]

Fixtures [0 - 5 points] – whether the framework supports setup and teardown
steps (for test case classes) and to what extent. In this step, their usage
simplicity will be also evaluated, which will be again mainly performed
on simple test example 2.2.

Assertion [0 - 5 points] – testing frameworks shall provide tools to actu-
ally verify the behavior of the test object, which is usually achieved by
assertions. The provided support may vary, i.e. whether assertion of
non-trivial data types are supported or whether the assertions provide
output with compared values in case of failure.

Exceptions handling [yes/no] – the test object can sometimes throw un-
expected exceptions, e.g. access some invalid memory location. In such
case, the desired behavior is that the framework will not crash with its
test object, but rather catch the exception and report it.

23

2. Analysis of C++ testing frameworks

1 SETUP (FixtureTestCase) {
2 int someNum = 42;
3 }
4
5 TEST (FixtureTestCase, Test0) {
6 ASSERT(someNum, 42);
7 someNum = 7581;
8 }
9

10 TEST (FixtureTestCase, Test1) {
11 ASSERT(someNum, 42);
12 }

Source code 2.2: Simplest test example with fixtures inspired by [35]

Test doubles support [0 - 5 points] – as explained in 1.11, test doubles
are a useful tool to simulate the production environment and test the
test object behavior from different perspectives. The test frameworks
have different levels of support – none, providing API especially for test
doubles and their expectation assertion, or full support including the
creation or generation of the test doubles.

Extensibility [0 - 5 points] – various projects might need very specific func-
tionalities, in such case it is desired that the framework is easily exten-
sible or modifiable.

xUnit [yes/no] – whether the framework is from the xUnit family. The frame-
works from xUnit family might be easier to learn for testers familiar with
the xUnit concepts.

License – under what license the framework is.

2.3 CppUnit
”CppUnit is the C++ port of the famous JUnit framework for unit testing.”
[36]. So CppUnit is purely derived from the JUnit framework, therefore it
shall be the most representative C++ member of xUnit family. This analysis
was performed on version 1.12.1.

Basic usage simplicity – implementation of the simplest unit test defined
in 2.2 is shown in 2.3. Firstly a class for the test case must be created,
it is a good practice to create a separate header file for this purpose.
The test suite needs to be explicitly registered, for which three different
macros (lines 2, 4 and 9) must be used overall. Only then follows the

24

2.3. CppUnit

actual implementation of the test, which needs to be also registered using
a macro. [37] [2 points]

1 class SimplestTestSuite : public CppUnit::TestFixture {
2 CPPUNIT_TEST_SUITE(SimplestTestSuite);
3 CPPUNIT_TEST(SimplestTest);
4 CPPUNIT_TEST_SUITE_END();
5 protected:
6 void SimplestTest();
7 };
8
9 CPPUNIT_TEST_SUITE_REGISTRATION(SimplestTestSuite);

10
11 void SimplestTestSuite::SimplestTest() {
12 int someNum = 42;
13 CPPUNIT_ASSERT_EQUAL(someNum, 42);
14 }

Source code 2.3: Simplest CppUnit test example

Fixtures – the support of fixtures is decent, as shown in 2.4, adding setUp()
and tearDown() steps is quite straightforward and does not add addi-
tional complexity (does not require usage of any additional macros). For
each test, an individual test case object is created, therefore it is ensured
the tests do not affect each other (i.e. in case of 2.4 the someNum vari-
able is initialized for each test separately with value 42). But objects
need to be allocated dynamically in the setUp() step, if they need to
be initialized for each individual test. [38] [3 points]

1 class FixtureTestSuite : public CppUnit::TestFixture {
2 CPPUNIT_TEST_SUITE(FixtureTestSuite);
3 CPPUNIT_TEST(Test0);
4 CPPUNIT_TEST(Test1);
5 CPPUNIT_TEST_SUITE_END();
6 public:
7 void setUp(); // tearDown() fixture would be analogous
8 protected:
9 int someNum;

10 void Test0();
11 void Test1();
12 };
13
14 CPPUNIT_TEST_SUITE_REGISTRATION(FixtureTestSuite);
15
16 void FixtureTestSuite::setUp() {
17 someNum = 42;
18 }
19
20 void FixtureTestSuite::Test0() {
21 CPPUNIT_ASSERT_EQUAL(someNum, 42);
22 someNum = 7581;
23 }
24
25 void FixtureTestSuite::Test1() {
26 CPPUNIT_ASSERT_EQUAL(someNum, 42);
27 }

Source code 2.4: Simplest CppUnit test example with fixtures

25

2. Analysis of C++ testing frameworks

Assertion – CppUnit framework provides quite basic support of assertions
– condition statements, equality of basic data types, and additionally
comparison of floating-point numbers with delta precision. This sup-
ported assertions are provided both with and without message option.
But there is absolute lack of assertions for ”less than”, ”greater than”,
and inequality. Also, assertions evaluating whether the test object threw
or did not throw an exception are included. [39] [2 points]

Exceptions handling – CppUnit uses a protector [40], which is a wrapper
around the tests. It shall catch all thrown exceptions and prevent the
tests from crashing. Additionally a macro CPPUNIT_TEST_EXCEPTION
can be used for test registration to catch a specific exception. [yes]

Test doubles support – CppUnit does not include any test doubles support
whatsoever. [0 points]

Extensibility – the source code obtained from the project official site [36]
includes all needed sources that can be freely modified. The archive
also includes descriptive coding guidelines. The code is reasonably split
into modules, but unfortunately the code itself contains almost no com-
ments or documentation whatsoever, but official documentation site [41]
is quite verbose and sufficient for most purposes.
The older versions of CppUnit required the STL3, RTTI4, and exception
handling. But these dependencies have been successfully eliminated in
the newer versions and according to the code guidelines, it aims to avoid
unnecessary dependencies in general. [4 points]

xUnit – [yes]

License – [GNU LGPL] [44]

Overall the CppUnit framework provides the basic functionalities that are
desired from a xUnit framework, but does not provide any additional tools
such as test doubles support and better assertion support. It might be suitable
for smaller projects with no test doubles demand, but its usage is not as easy
as it could be.

2.4 Boost Test Library
Boost Test Library [45] is part of the Boost library [46] that is widely used and
introduces a few new approaches to C++ testing. This section will consider
the 1.76.0 version.

3”The Standard Template Library (STL) is a set of C++ template classes to provide
common programming data structures and functions such as lists, stacks, arrays, etc.” [42]

4”Run-time type information is a mechanism that exposes information about an object’s
data type at runtime” [43]

26

2.4. Boost Test Library

Basic usage simplicity – as shown in 2.5, the implementation of simple test
is very close to ideal, it is almost as simple as the one defined in 2.2.
[5 points]

1 #define BOOST_TEST_MODULE Simplest test // Defines the name of this program
2
3 BOOST_AUTO_TEST_CASE(SimplestTest) { // no additional registration of the test is needed
4 int someNum = 42;
5 BOOST_CHECK_EQUAL(someNum, 42);
6 }

Source code 2.5: Simplest Boost.Test test example

Fixtures – the Boost testing library has a very original approach to fixtures,
as shown in 2.6. The fixture is defined through a struct, where the con-
structor is later used as setUp() and the desctructor as tearDown() for
the associated tests. By using BOOST_TEST_MESSAGE macro a descriptive
message can be added for more verbose output.

This different approach allows the fixtures to be associated with test
suites, but also with individual tests with BOOST_FIXTURE_TEST_CASE
macro instead of BOOST_AUTO_TEST_CASE. Therefore fixtures can be de-
fined globally and used across different test suites. The struct is created
for each test individually, therefore the tests do not affect each other
through the fixtures. Overall it provides very good functionality, but its
definition still demands more than minimal effort. [47] [4 points]

1 #define BOOST_TEST_MODULE Simplest fixtures
2
3 struct CustomFixture {
4 CustomFixture() : someNum(42) {BOOST_TEST_MESSAGE("setup fixture");}
5 ~CustomFixture() {BOOST_TEST_MESSAGE("teardown fixture");}
6
7 int someNum;
8 };
9

10 BOOST_FIXTURE_TEST_SUITE(CustomTestSuite, CustomFixture) // associate the fixture with test suite
11
12 BOOST_AUTO_TEST_CASE(Test0) {
13 BOOST_CHECK_EQUAL(someNum, 42);
14 someNum = 7581;
15 }
16
17 BOOST_AUTO_TEST_CASE(Test1) {
18 BOOST_CHECK_EQUAL(someNum, 42);
19 }
20
21 BOOST_AUTO_TEST_SUITE_END()

Source code 2.6: Simplest Boost.Test test example with fixtures

27

2. Analysis of C++ testing frameworks

Assertion – the Boost test library provides wide variety of assertions. Firstly,
three severity levels for assertions are available:

• Warning – in case of an unfulfilled expectation, a warning is printed
out, but the deviation does not count towards the errors count and
does not stop the test from continuing.

• Error – a corresponding error is printed out, the deviation counts
toward the errors count, but it does not stop evaluation of the rest
of the test.

• Fatal error – the corresponding deviation is printed out, counts
toward the errors count and stops the test from further evaluation.
[48]

The most universal assertion available is BOOST_TEST() macro that eval-
uates provided statement, which is just alone quite standard function-
ality for a test framework, but in case of failure, this particular macro
prints out the whole statement with actual values, which is unusual
for simple statement assertion. Additionally it automatically detects
certain comparisons, e.g. comparison of C-strings is evaluated as if the
std::string objects were used, for floating point values a tolerance might
be provided and many more. It is actually a universal operator sup-
porting equality, ”less than”, ”greater than” and bitwise comparisons
for non-trivial data types. [49]
Also assertion for expectations of exceptions [50], timeout [51], and out-
put streams [52] of the test object are provided. [5 points]

Exceptions handling – thrown exceptions are caught and do not affect
evaluation of following tests, information about thrown exceptions are
printed out. [yes]

Test doubles support – the Boost test library itself does not provide any
test doubles support. But a compatible library Turtle [53] was developed
to add the functionality. The Turtle library was especially developed to
supplement the Boost test library, but it is independent from the original
Boost project and its latest version was published in 2014, since then,
no updates were made.
The Turtle library provides an API to set and check the test double
calls expectations, i.e. what function shall be called, how many times
it shall be called and with what arguments. It detects also unexpected
calls and provides an option to ignore the input arguments or a given
number of calls. Also a mechanism for generating actual test doubles
is provided, therefore the test doubles do not need to be created manually
from scratch. This is achieved again by a set of macros, for example to
generate a test double class with method, as shown in 2.7. But the

28

2.5. Google Test

1 MOCK_CLASS(MockClass) { // mock of a class
2 // mock of class method: int method(int i) {};
3 MOCK_METHOD(method, 1, int(int));
4 };
5
6 BOOST_AUTO_TEST_CASE(mockUsage) {
7 MockClass mockObject;
8 // expect one method call with input parameter equal to 42 and instruct the mock to return 7581
9 MOCK_EXPECT(mockObject.method).once().with(42).returns(7581);

10 testObject.trigger();
11 // verify all existing mock objects expectations
12 mock::verify();
13 }

Source code 2.7: Simplest Boost.Test test example with test double

usage of the macros is quite complicated, since a special macro needs to
be used for destructors, constructors, static methods, and operators, to
name but a few. It has also many documented limitations – objects for
which test doubles cannot be generated, such as non-virtual methods,
template methods, methods with a throws specifier, and many others.
So usability of the test doubles generating is rather very limited and
unfortunately the documentation is very brief about the usage. [54]
[3 points]

Extensibility – the source code is reasonably structured and very well docu-
mented. But the Boost test library is only available by downloading the
whole Boost library and the test library implementation contains many
dependencies from the whole library. The whole boost library source
code (before compilation) has around 150 MB, which suggests how huge
this library is, therefore expanding or modifying the framework might
be quite difficult because of the amount of dependencies. [2 points]

xUnit – the usage of fixture is slightly unusual, but overall it fulfills the xUnit
concepts. [yes]

License – [Boost Software License] [55]

Overall the Boost test library provides wide variety of functionalities, but
it comes with a price of big library. Additionally the test doubles support
is provided just by the external Turtle library, which unfortunately did not
stand to the Boost library simplicity and universal usage, therefore makes
quite poor extension.

2.5 Google Test
Google Test [56] is currently a widely popular C++ testing framework, since
it offers plenty of useful functionalities and the development team still works
on new releases. This section will be concerned with the v1.11.0 version.

29

2. Analysis of C++ testing frameworks

Basic usage simplicity – the simplest test case displayed in 2.8 is basically
ideal, same as 2.1 defined in comparison criteria. [5 points]

1 TEST(SimplestTestSuite, SimplestTest) {
2 int someNum = 42;
3 EXPECT_EQ(someNum, 42);
4 }

Source code 2.8: Simplest Google Test test example

Fixtures – the approach of Google Test framework is very similar to the
Boost.Test approach, as shown in 2.9. The fixture is defined through
a class, but unlike in Boost, it does not use a constructor and destructor
as setUp() and tearDown() steps. It is rather achieved by inheritance
from testing::Test class (or other for more parameterizable fixtures)
and overriding SetUp() and TearDown() methods, the class is instan-
tiated for each test individually, therefore the tests do not affect each
other through the fixture (but that can be also achieved if demanded,
by defining static methods and attributes). It demands even less lines
than the Boost.Test library, the result code does not include any unnec-
essary lines, such as explicit registration of the fixtures. [57]

1 class CustomFixture : public ::testing::Test {
2 protected:
3 void SetUp() override {
4 someNum = 42;
5 }
6 // void TearDown() override {} // tearDown() is not needed in this case
7
8 int someNum;
9 };

10
11 TEST_F(CustomFixture, Test0) {
12 EXPECT_EQ(someNum, 42);
13 someNum = 7581;
14 }
15
16 TEST_F(CustomFixture, Test1) {
17 EXPECT_EQ(someNum, 42);
18 }

Source code 2.9: Simplest Google Test test example with fixtures

Additionally various global fixtures can be combined, which will be ap-
plied to all tests gradually in LIFO5 approach. Also value-parameterized
tests can be implemented through the fixtures – one test is run several
times for different values defined as parameter of the test. Also Typed
tests are introduced – by combining fixtures and templates, one test can
be performed for several types, if they share the same expectations. [58]
[5 points]

5Last In, First out principle

30

2.5. Google Test

Assertion – Google Test provides two following severity levels for assertions:

• Nonfatal failure – a corresponding error is logged and allows the
current test to continue running.

• Fatal failure – a corresponding error is logged and the current test
is aborted.

A macro for equality, ”less than”, ”less or equal”, ”greater than”, and
”greater or equal” are provided for each supported type. The asser-
tions are supported for basic data types, strings, C-strings and float-
ing point values, in other words all possibly supported data types, but
for the non-trivial data types, different assertions must be used, i.e.
ASSERT_DOUBLE_EQ() for equality of doubles, ASSERT_STREQ() for equal-
ity of C-strings etc., therefore there is not an universal operator as in the
Boost.Test library. Also exceptions and timeout assertions are provided.
[59]
Additionally, Google Test introduces built-in matchers, a set of meth-
ods for variety of comparisons. It supports generic comparisons, e.g.
IsNull(), Optional() (checks whether argument of type optional<>
contains a provided value), VariantWith<T>() (checks whether pro-
vided value is variant<> that holds the alternative of type T with
a value matching the provided value), and more. Further it provides
extended support for comparison of floating point values (approximate
equality etc.), strings (support of regular expressions, suffix and prefix
requirements, substrings searching, to name but a few), containers (i.e.
whether a container contains provided value, or a container is a subset
of another container), members, pointers, tuples, etc. [60] [5 points]

Exceptions handling – by default, Google Test catches thrown exceptions
and reports them as failure. But this can be also disabled, for example
for debugging purposes. [58] [yes]

Test doubles support – the Google Test aimed to create a test doubles
support with JMock [61] as an inspiration, but with C++ in mind. It
provides an API to set and check the test double calls expectations, i.e.
what method shall be called, how many times, and with what arguments.
The expectations are defined through the already mentioned matchers,
which allows to check variety of expectations, rather than just equality
of arguments and number of calls. The expectations are overall quite
parameterizable, i.e. the sequence of calls can be either arbitrary or
strictly defined, individual calls of one method can be (partially) ignored
etc.
The Google Test also provides macro MOCK_METHOD() to generate a test
double of a method. Then the test double can be controlled via macros

31

2. Analysis of C++ testing frameworks

for setting its actions – Google Test defines several actions [62] that al-
low several ways to return a value (one predefined value, iterate through
provided list for each call, and more), perform side effects (modifying
input/output arguments, throwing exceptions, etc.) or invoking prede-
fined functions, functors, or lambdas. This is all implemented in a con-
venient way, where it can be used effectively in any case – default actions
for each call might be defined, then additional actions can be added for
individual call or predefined number of calls.

1 class CustomTestDouble : public OriginalClass {
2 public:
3 // mock of class method: int method(int i) {};
4 MOCK_METHOD(int, method, (int));
5 };
6
7 TEST(SimplestTestSuite, SimplestTest) {
8 CustomTestDouble mock;
9 // expect one method call with input parameter equal to 42 and instruct the mock to return 7581

10 EXPECT_CALL(mock, method()).With(Eq(42)).Times(1).WillOnce(Return(7581));
11 testObject.trigger();
12 // test double expectations will be checked automatically
13 }

Source code 2.10: Simplest Google Test test example with test double

The creation and usage of test double is shown in 2.10. The Google
Test supports automatic creation of test doubles only for methods, test
doubles of classes must be created manually as demonstrated in the
example 2.10 (by deriving from the original class), the class methods
are then mocked and controlled as explained. This approach is not fully
automatic, however it provides the tester with reasonable amount of
control over the test double. [63] [5 points]

Extensibility – the official documentation includes several notes describing
how certain functionalities can be further extended. The source codes
include plenty of comments explaining the implementation, the imple-
mentation is distributed into a few modules, but the distribution does
not fully correspond with the individual functionalities and there seem
to be no description about it (the official documentation [56] is rather
a tutorial and does not provide standard reference style description of
modules and classes). The implementation has also several dependencies
to standard libraries including STL. [4 points]

xUnit – [yes]

License – [BSD 3-Clause ”New” or ”Revised” License] [64]

Overall Google Test provides the widest range of functionalities so far.
The basic usage is simple and intuitive and is not influenced by additional

32

2.6. CppUTest

more complex features. But at the same time, the framework is very param-
eterizable through the matchers and actions.

2.6 CppUTest
CppUTest [65] is a C++ and C testing framework, frequently used in embed-
ded projects, but suitable for other projects too. CppUTest aimed for simple
usability and design, portability for both new and old platforms and compli-
ance with the xUnit concepts. This section will be concerned with the 3.8
version. [65]

Basic usage simplicity – the basic usage is very close to the reference 2.1,
as demonstrated in 2.11, but a test suite must be defined and registered
first in order to implement a test. [4 points]

1 TEST_GROUP(SimplestTestSuite) {};
2
3 TEST(SimplestTestSuite, SimplestTest) {
4 int someNum = 42;
5 CHECK_EQUAL(someNum, 42);
6 }

Source code 2.11: Simplest CppUTest test example

Fixtures – the fixtures usage shown in 2.12 complies with the xUnit ap-
proach. The fixtures are defined as a part of a test suite, the corre-
sponding setUp() and tearDown() steps are then performed for each
related test individually, therefore the individual tests do not influence
each other. The fixture definition is simple and straightforward, no ad-
ditional explicit registration of the test suite (as in Boost Test library)
is needed.

1 TEST_GROUP(SimplestTestSuite) {
2 void setup() {
3 someNum = 42;
4 }
5 // void teardown() {} // tearDown() is not needed in this case
6
7 int someNum;
8 };
9

10 TEST(SimplestTestSuite, Test0) {
11 CHECK_EQUAL(someNum, 42);
12 someNum = 7581
13 }
14
15 TEST(SimplestTestSuite, Test1) {
16 CHECK_EQUAL(someNum, 42);
17 }

Source code 2.12: Simplest CppUTest test example with fixtures

33

2. Analysis of C++ testing frameworks

Otherwise the CppUTest framework does not provide any additional
functionality, such as global fixtures in Google Test, but similar out-
comes can be achieved by using inheritance in the test suites. [4 points]

Assertion – CppUTest provides intermediate support of assertions, it sup-
ports evaluation of equality for integer numbers, unsigned numbers,
floating point values with tolerance, strings (case sensitive and insen-
sitive, substring searching), pointers, whole memory areas, and more,
the assertions allow to add output message in case of failure. The sup-
port of other relation than equality is a bit more modest, since just one
macro CHECK_COMPARE() is available to compare two values with pro-
vided operation (which must be defined between the provided values),
which has its limitations, but is easily extensible. Also an assertion
for exception expectations is provided. Different severity levels are not
supported, all assertions result in fatal errors. [66] [3 points]

Exceptions handling – the thrown exceptions are caught and reported, but
there seem to be no way to switch off this functionality (e.g. for debug-
ging). [yes]

Test doubles support – CppUTest includes a support API for testing with
test doubles called CppUMock. CppUMock provides methods for setting
and checking mock expectations, such as numbers of calls and passed
input parameters, the calls tracing can be also switched to ignore any
unnecessary data. Also a way to set mock to return value and output
parameters is supported – this is achieved by simply passing data from
the test driver to the mock, the framework does not put any restrictions
on the data whatsoever. It does not provide any additional logic for the
outcomes of the mock, beside an option to set default return value, but
more complex logic can be implemented by the tester and easily ported
with the provided API (e.g. iterating through a list of return values).
The usage of the API is demonstrated in 2.13.

1 class CustomTestDouble : public OriginalClass {
2 public:
3 virtual int method(int arg) {
4 // register call of the call and its input parameter an return preset value
5 return mock().actualCall("method").withParameter("arg", arg).returnIntValue();
6 }
7 };
8
9 TEST(SimplestTestSuite, SimplestTest) {

10 // expect one method call with input parameter equal to 42 and instruct the mock to return 7581
11 mock().expectOneCall("method").withParameter("arg", 42).andReturnValue(7581);
12 testObject.trigger();
13 mock().checkExpectations();
14 }

Source code 2.13: Simplest CppUTest test example with test double

34

2.7. Results overview

CppUMock provides a simple and intuitive API for controlling test dou-
bles, but it does not support the actual creation of the mocks at all.
As the official documentation states [67], its goal was mainly very sim-
ple use, the developer stays in control, and no code generation, which
was fully achieved. However CppUTest is fully compatible with Google
Test and Google Mock, therefore more complex functionalities can be
easily added if needed. [67] [3 points]

Extensibility – as already mentioned, the official documentation is rather
a tutorial than a standard documentation, and the implementation itself
contains comments or any other explanation just rarely. The implemen-
tation is divided into a few modules, but the partitioning does not really
correspond to individual functionalities. The framework provides a way
to hook pre-test and post-test actions via plugin [68], but there seem
to be no other support or guidelines to modify the framework or add
additional functionality. On the other hand, the framework is still quite
small, self-sustained and intuitively designed. [3 points]

xUnit – [yes]

License – [BSD 3-Clause ”New” or ”Revised” License] [69]

Overall the CppUTest framework provides basic functionality in an intu-
itive and simple way. It does not apply any unnecessary constraints, therefore
the framework usage can by customized by the tester as needed, but that can
also result in more failures if used incorrectly.

2.7 Results overview

CppUnit BoostTest GoogleTest CppUTest
Usage simplicity 2 5 5 4
Fixtures 3 4 5 4
Assertion 2 5 5 3
Exceptions handling yes yes yes yes
Test doubles 0 3 5 3
Extensibility 4 2 4 3
xUnit yes yes yes yes

License GNU
LGPL

Boost
Software
License

BSD
3-Clause
License

BSD
3-Clause
License

Table 2.1: Overview of C++ framework comparison results

35

2. Analysis of C++ testing frameworks

Four frameworks were analysed and evaluated, the examined frameworks
where selected based on their users count and historical influence. Eight basic
criteria were tracked, overview of the result is enlisted in the table 2.1.

The importance of the considered criteria might differ for various projects,
i.e. Google Test provides wide set of functionalities, but some smaller projects
may not even use them, therefore using smaller framework such as CppUTest
can be more convenient.

36

Chapter 3
Design of the CppUTest

extension

One of the main goals of this thesis is to design and implement extension of
the C++ testing framework CppUTest analysed in section 2.6, with focus on
support of test doubles. As already mentioned, CppUTest provides API for
setting test doubles expectations and their checking, but does not support
creation of the test doubles itself. The developers of the CppUTest framework
suggest that they did not create the test doubles creation on purpose, since it
leaves the tester in charge and allow them to implement any behavior of the
test double.

But in practice, majority of the used test doubles share just a few common
features that could be automatized, instead of their manual and tedious repro-
duction in the individual test doubles. The aim of this chapter is to identify
these features and design an extension that will automate their implementa-
tion, with respect to the CppUTest philosophy and goals.

3.1 Functional requirements
This section aims to identify the common features of majority of the test
doubles and formulate functional requirements that will lead to automation of
implementation of such test doubles with regard to the CppUTest framework.
The following requirements are applicable for the designed extension.

[F_1 | Automatic actual call] – all test doubles created with the exten-
sion shall automatically call the CppUTest method actualCall() with
the mocked method or function name to register the call.

Note: The CppUTest framework demands every test double of method or
function to register the call, but currently it needs to be done manually

37

3. Design of the CppUTest extension

for all individual mocks. Therefore this requirement aims to fulfill this
automatically.

[F_2 | Constant return value] – test doubles created with the exten-
sion shall provide an option to set their return and output6 value(s)
for parameterizable number (including one) of calls using the CppUTest
API.
Note: The CppUTest already provides API for setting the test double
return or output value, but this desired behavior needs to be currently
manually processed in the test double. This requirement states that the
extension shall support creation of test doubles that will automatically
process this desired behavior.

[F_3 | Key-value return value] – test doubles created with the exten-
sion shall provide an option to set their return and output value(s) based
on a provided key-value map(s), where the key corresponds to one of the
input parameters and the assigned value is then the desired return or
output value.
Note: The CppUTest API does not explicitly provide such functionality,
therefore this requirement also requires to provide some way to control
this behavior through the test driver. In other words, this requirement
states that the test double shall allow the tester to define a map for
its return value or individual output value(s), where one of the input
parameters is used as a key.

[F_4 | Default return value] – test doubles created with the extension
shall provide an option to set their default return and output value(s)
for undefined number of calls using the CppUTest API.
Note: The CppUTest provides similar feature, but the default value can
be actually set only from the test double, not the test driver as demanded
in this requirement. Therefore the support shall be be added to the test
driver API as well.

[F_5 | Return values priority] – if the test double created with the ex-
tension has set return and output value(s) through more than one of the
provided options when its call is processed, the value(s) shall be used
according to the following priority:

1. If the value(s) is/are set as constant return value defined in F_2,
this/these value(s) shall be used with the highest priority.

2. If the value(s) is/are not set as constant return value defined in
F_2 and is/are set as key-value return value defined in F_3, the
key-value return value shall be used.

6Output value is an output parameter of a function or method.

38

3.1. Functional requirements

3. If the value(s) is/are not set as constant return value defined in
F_2 and is/are not set as key-value return value defined in F_3,
but is/are set as default return value defined in F_4, the key-value
return value shall be used.

[F_6 | Return value not set] – if the return value of test double created
with the extension is not set when its call is processed, the corresponding
test shall fail.

[F_7 | Original function call] – test doubles created with the extension
shall provide an option to call the original function/method (the pro-
duction function/method the test double replaces) and propagate its
behavior (return and output value(s)) without changing. The created
test double shall support this functionality in three following ways:

1. The original function/method will be called for defined number of
the test double calls (analogous to the constant return value defined
in F_2). If this condition is met, the counter for defined number
of calls shall be decremented regardless of the following conditions
results.

2. The original function/method will be called based on a list of values
which correspond to one of the input parameters value, i.e. if value
of the provided parameter in the current call is equal to one of the
values in the provided list, the original function/method shall be
called.

3. The original function/method will be called by default for undefined
number of calls.

If at least one of the conditions above is met, the original function shall
be called.
Note: The CppUTest does not explicitly provide an option to set the
test double to call the original function, therefore this functionality shall
be added to the test driver API as well.

[F_8 | Throw an exception] – test doubles created with the extension
shall provide an option to set them to throw a provided exception. The
created test double shall support this functionality in three following
ways:

1. The exception will be thrown for defined number of the test double
calls (analogous to the constant return value defined in F_2). This
setting of exception shall override other possibly set exception in
the following two steps.

2. The exception will be thrown based on a key-value map, where
the key corresponds to one of the input parameters (analogous to

39

3. Design of the CppUTest extension

the key-value return value defined in F_3). The exception type
may vary for different key values. This setting of exception shall
override other possibly set exception in the following one step.

3. The exception will be thrown by default for undefined number of
calls (analogous to the default return value defined in F_4). This
setting does not override other possibly set exception.

Note: The CppUTest does not explicitly provide an option to set the
test double to throw an exception, therefore this functionality shall be
added to the test driver API as well.

[F_9 | Parameters automatic registration] – the test doubles created
with the extension shall register all its calls parameters values using
the CppUTest method withParameter() with the individual parameter
name and value.

Note: The parameters values actual expectations can be set and checked
in the test driver using the CppUTest API.

[F_10 | Invoke side effects] – the test doubles created with the exten-
sion shall provide an option to invoke a passed function, functor or
lambda function. The test double is not responsible for any other eval-
uation of such invocation, for instance passing its return value. The
created test double shall support this functionality in three following
ways (analogous to throwing an exception):

1. The side effect will be invoked for defined number of the test double
calls. This setting of side effect shall override other possibly set side
effect in the following two steps.

2. The side effect will be invoked based on a key-value map, where
the key corresponds to one of the input parameters. The side effect
type may vary for different key values. This setting of side effect
shall override other possibly set side effect in the following one step.

3. The side effect will be invoked by default for undefined number of
calls. This setting does not override other possibly set side effect.

Different desired behavior types, such as invoking side effects, setting out-
put parameters values, throwing an exception, and more, can be freely com-
bined, even though it might not be obvious from the requirements. Priority
of some disjunct combinations, such as combination of desired return value
and throwing an exception, is not yet determined and will be considered in
the following sections.

40

3.2. Non-functional requirements

3.2 Non-functional requirements
This section aims to identify non-functional requirements relevant for the ex-
tension. The most important concern is to design the extension so it will com-
ply with the CppUTest core design principles. The following requirements are
derived mainly from these principles.

[N_1 | Simple design and usage] – the extension shall be simple in de-
sign and simple in usage. Meaning no new constraints (e.g. Google Test
Actions or Matchers alternatives) shall be introduced in the test doubles
created with the extension.
Note: This requirement is clearly very vague, imprecisely defined and
immeasurable. But it is important to explicitly formulate that the ex-
tension shall follow the CppUTest simplicity that brings intuitive usage
and no unnecessary restrictions.

[N_2 | No code generation] – the extension shall not use code genera-
tion for the creation of the test doubles.
Note: The motivation behind this requirement is to keep the tester in
charge and the code base understandable. The functional requirements
do not grant to cover all test double possible needed behavior, therefore
it can be assumed that test doubles created with the extension may be
combined with manually implemented test doubles. The code genera-
tion prohibition ensures that using of both manually implemented and
created with the extension test doubles will not introduce additional
complexity.

[N_3 | No complicated macros] – the extension shall not use non-trivial
macros for creation of the test doubles.
Note: This is again one of the CppUTest mock support principles, which
enhances its simple usage and design.

[N_4 | C++ language] – the extension shall be implemented in C++
programming language. Support of a C API is out of scope of this work.

[N_5 | CppUTest compatibility] – the extension shall be compatible
with the CppUTest framework and it shall use its existing test dou-
bles support as much as possible without changing the current behavior
principles.

The requirements derived from the CppUTest core design principles are
rather vague and immeasurable, however these constraints are still needed
to ensure as ideal compatibility as possible with the CppUTest framework.
These requirements need to be defined and respected in the design to satisfy
the testers that chose the CppUTest framework for its characteristic simple
usage and design.

41

3. Design of the CppUTest extension

3.3 Test double design
The defined requirements imply what use cases shall be supported, especially
by the created test double. The characteristics of design of this extension
differ from a regular software development process, since it focuses more on
improving an existing test double creation and modifying an existing library,
therefore the use cases will not be discussed in a regular manner. This chapter
will rather focus on determining the key dilemmas of the designed extension,
defining its expected behavior in more detail and determining the core design
decisions.

Firstly, the requirements are relevant mainly for the created test double
itself, the rest of the design decisions will need to be made mostly based on the
design of the test double. Since the test double implementation shall require
minimal manual effort from the tester, but at the same time satisfy all the
functional requirements in any case, the aim is to design a test double that
will determine its desired behavior dynamically based on the data provided
from the test driver.

The designed behavior of the test double is presented in the activity dia-
gram 3.1. The test double gradually fetches its desired behavior and based on
the accepted data performs the desired actions. The desired behavior is set
and fetched from the test driver, which will be discussed in detail in the fol-
lowing sections. The test double activities can be briefly separated into the
following steps.

1. Register the actual call.

2. Register values of the provided parameters. This must be ensured before
any modification of the output parameters, either by original function
call or by filling the values based on desired behavior.

3. (Optional) Call the original function and save its result(s).

4. Fill values of the output parameters according to the desired behavior.
Since this is performed after the optional original function call, it ensures
the tester can set the test double to either call the original function and
preserve its original output parameters values, or to overwrite them with
desired values.

5. (Optional) Invoke side effect, which can include throwing an exception.

6. Determine the return value, applicable only for test doubles with return
value. Again, if no desired return value is set, but the original function
was called, its return value will be propagated.

Since the goal of the CppUTest is to leave the tester in charge and do not
create any additional restrictions on its usage, the desired behavior options

42

3.3. Test double design

Register the
actual call

Register the
parameter

value

Fill the
parameter

value

The parameter
is output

Parameter left
to process

Get next
parameter

No parameter left to process

Get desired
behavior

Call the original
function and

save its result

 The original function
shall be called

The original function
shall not be called

Return the
determined
return value

Determine the
return value

Return value
is defined

Fail the test due
to the error

No return
value is defined

Get next
parameter

The parameter is
not output

Parameter left
to process

No parameter
left to process

Try to get
desired side

effect

Invoke side
effect

Side effect
shall be invoked

No side effect
shall be invoked

Figure 3.1: Activity diagram of the test double

43

3. Design of the CppUTest extension

can be freely combined and it is the tester’s responsibility to use only logically
valid combinations. These possible combinations can include the following
options.

• Use each test double parameter as purely input parameter in one test
and as output parameter in another test.

• Call the original function/method in the test double, but set the test
double return value to a custom value (different from the original func-
tion/method call return value).

• Call the original function/method with successful result, but throw an
exception from the test double.

In order to perform the actions identified in this section, the test double
needs to have the following data provided.

• Values of parameters provided by the test object.

• Names of the parameters, since they are necessary to register the param-
eters values via the CppUTest API. The names will need to be explicitly
handled to the test double in the implementation by the tester.

• The desired behavior, which will be fetched from the test driver via the
CppUTest API that will be discussed in the following sections.

3.4 Desired behavior determination
Based on the requirements, several options to set desired behavior of the test
double shall be supported and there are no explicit restrictions on their com-
binations. In the test double design section 3.3, behavior for most of the
combinations was already defined in the activity diagram 3.1, but priorities of
different types of return and output values settings, original function call set-
tings and side effects settings were not designed in detail yet. All of this four
types of parameterizable desired behavior (output value, return value, origi-
nal function call and side effect) actually shall share three following different
approaches with corresponding priorities to be set through the test driver.

1. The desired behavior is set as a constant option for a defined number of
calls. This means the desired behavior will be applied for the provided
number of calls, after the number is reached, the desired behavior will
no longer make an effect on behavior of the test double.

2. The desired behavior is set as a key-value map option, where the desired
behavior is selected based on the value received from the test object of
one of the input parameters, this received value is used as a key to deter-
mine the desired behavior. One key-value entry can be set for undefined

44

3.5. Extension of the existing CppUMock API

number of calls (until the test double is cleared). If the received value
is not found in the provided map, this option cannot be applied.

3. The desired behavior is set as the default option, which is applied if none
of the above was set for infinite number of calls. If the desired behavior
is not set even in this option, it is handled differently for the following
cases.

• For the return value, this indicates that it is unknown what value
shall be returned. If neither original function was called, therefore
its return value is also unknown, which shall lead to failure of the
evaluated test.

• This is not applicable for output parameters – if a desired value
of the output parameter is not set, the parameter is then treated
as a purely input parameter.

• If it is not desired to call the original function, it is simply not
called and its behavior is not propagated anyhow.

• If no desired side effect is set, it indicates no side effect shall be
invoked.

3.5 Extension of the existing CppUMock API
This section aims to answer a question how to integrate the extension with the
existing CppUMock library, which is part of the CppUTest framework. The
CppUMock consists of two parts – test driver API and test double API. The
relationships between the APIs and their usage is demonstrated in domain
diagram 3.2.

CppUMock

Test driver
API

Test object
API

Test driver Test object Test double

Control
and

verify ?

1 1

Redirected
original

object calls ?

1 0..*

?
Set desired behavior

and check expectations

1

1

?
Get desired behavior

and register calls

0..*

1

Figure 3.2: Domain diagram of CppUMock usage

45

3. Design of the CppUTest extension

The test driver API provides methods through which the tester can con-
trol the test double and check the expectations. This includes setting the
test double return value, output parameters, expectations of calls, input pa-
rameters values etc. The test double API then provides the second side –
getting the behavior expectations and registering the actual calls and their
input parameters.

The functionalities the extension shall support, such as combining of con-
stant, key-value, and default return value are, unfortunately highly linked to
the functionalities already supported by the CppUMock. Therefore it will
be more convenient to directly integrate the functionalities to the existing li-
brary and their corresponding code files instead of creating a separate library.
However compatibility with the original framework shall be preserved, so the
current behavior of the CppUTest is not changed.

For further design, a crucial information regarding the CppUTest library
is that it does not use templates in neither of its functionalities, meaning that
desired behavior settings and expectations, such as desired return value, are
explicitly supported only for the following (C++) data types – bool, int,
unsigned int, long int, unsigned long int, long long, unsigned long
long, double (with optional accuracy for input parameters expectations),
const char*, void*, const void* and void (*)(). Thus for its public API,
it defines one method for each data type if needed, for example for setting test
double desired return value. Internally, a class MockNamedValue is used for
storing the values uniformly, which is implemented using the union construct.
The MockNamedValue class is used to store all the relevant test double de-
sired behavior and CppUMock highly relies on its usage, therefore the new
features shall be also implemented with usage of this class, instead of intro-
ducing templates to the existing constructs, which would otherwise corrupt
the compatibility.

3.6 Test double creation API

The aim of this section is to consider the test double API possibilities. Since
the one of the CppUTest design principles is to leave the tester in charge and
the test double functionalities designed in the section 3.3 do not fulfill all
possible test double requirements and scenarios desired in a testing process
(but it shall fulfill most of them), the designed test double shall be easy to
combine with manually defined test doubles. Therefore the test double will
be created for each function or method individually, as it is also designed in
other testing frameworks analysed in chapter 2.

46

3.6. Test double creation API

Then there are two possible options to implement a test double function
or method that allow easy creation for the tester:

1. Using macro – a macro for defining and creating test double, similar to
MOCK_METHOD() in Google Test.

2. Function call – the functionality of the function or method will be dele-
gated by calling a designed function.

Both options would be sufficient to provide the required functionality. But
the second option, function call, complies more with the CppUTest design
principles, since one of the principles is to avoid complex macros. Another
advantages of the second option are the following.

• The tester can combine functionality provided through the extension
with their custom additional implementation.

• If combined with fully manually implemented test doubles, the code base
will be more consistent.

• It does not bring any additional restrictions, such as test doubles of
non-virtual methods would not be allowed (as in case of Google Test
and Turtle extension of the Boost Test).

Therefore the creation of the test double in the extension will be supported
through a function. Such function shall be able to accept undefined number
of arguments, which can be achieved through variadic function template [70].
However it shall be considered that one of the CppUTest principles is to avoid
templates, nevertheless the test double creation API will be separated from
the existing CppUTest implementation, therefore it will not affect the existing
implementation. Also there is no other reasonable solution for defining func-
tion with arbitrary number of arguments. Thus the function shall be defined
as presented in 3.1, where the option with return value will be defined for
individual data types supported by CppUTest, to ensure compatibility with
the CppUMock API.

// test double without return value
template <typename... Types>
void mockWithoutReturnValue(char* method_name, char** args_names, char** args_types,

Types&&... arg);

// test double with int return value
template <typename... Types>
int mockReturningInt(char* method_name, char** args_names, char** args_types, Types&&... arg);

Source code 3.1: Designed Test double creation API definition

47

3. Design of the CppUTest extension

The test double function defined in 3.1 shall accept the following parame-
ters:

• const char* method_name – name of the method/function the test
double replaces.

• const char** args_names – array of C-strings of the parameters. The
names are used for registering values of the parameters provided by test
object in the call.

• const char** args_types – array of C-strings of names of types of
the parameters. The names shall be provided only for data types un-
supported by CppUTest (typically user defined classes). For CppUTest
supported data types parameters, the values shall be empty C-strings.

• Types... arg – the passed parameters of the test double function.

However, the presented definition does not provide all possibly required
data to the test double function, since a reference to the original function shall
be provided in cases the original function shall be called. Also the original
function reference shall not be a mandatory parameter in all cases, since test
doubles are in testing process sometimes used to substitute for a unit that
is not implemented yet, therefore in some cases the reference to the original
function is not yet known. Thus two options shall be always provided – one
with no original function reference (already defined in 3.1) and one with the
original function reference, as defined in 3.2.

// test double with original function reference and without return value
template<typename F, typename... Types>
void mockWithoutReturnValueWithOriginalFunction(char* method_name, char** args_names,

char** args_types, F original_function, Types&&... arg);

// test double with original function reference and with int return value
template<typename F, typename... Types>
int mockReturningIntWithOriginalFunction(char* method_name, char** args_names, char** args_types,

F original_function, Types&&... arg)

Source code 3.2: Designed Test double creation API definition with original
function/method reference parameter

The second alternative defined in 3.2 accepts one additional parameter,
F original_function, which shall include reference to the original function,
and if desired, shall be called with the provided parameters. Again, the func-
tion option with return value shall be defined for individual data types sup-
ported by CppUTest.

48

3.7. Test driver API

3.7 Test driver API

As already mentioned, the CppUMock has test driver API and test double
API, this section will be dedicated to the design of extensions and modifi-
cations of the test driver API. These extensions and modifications will be
derived based on the functional requirements defined in 3.1. The API is de-
signed based on existing CppUMock API, uses same or similar method and
parameter names, which are not described in detail in this section, therefore
for more details see the CppUMock documentation [67].

MockSupport

- globalDesiredBehaviorList

+ expectOneCall()
+ expectNCalls()

+ setReturnValueList()
+ setDefaultReturnValue()
+ setOutputParameterList()
+ setDefaultOutputParameter()
+ setSideEffectList()
+ setDefaultSideEffect()
+ setCallOriginalFunctionList()
+ setDefaultCallOriginalFunctionList()

MockExpectedCall

- inputParameters
- outputParameters
- returnValue

- sideEffect
- shouldCallOriginalFunction

+ withParameter()
+ withOutputParameterReturning()
+ andReturnValue()

+ withSideEffect()
+ andCallOriginalFunction()

MockFunctionDesiredBehavior

- functionName
- returnValueList
- defaultReturnValue
- outputParameterLists
- defaultOutputParameters
- sideEffectList
- defaultSideEffect
- callOriginalFunctionList
- defaultCallOriginalFunction

+ setReturnValueList()
+ setDefaultReturnValue()
+ setOutputParameterList()
+ setDefaultOutputParameter()
+ setSideEffectList()
+ setDefaultSideEffect()
+ setCallOriginalFunctionList()
+ setDefaultCallOriginalFunctionList() - alreadyPresentFunctionality

- newFunctionality

1

0..*

Stores call expectations
and constant

desired behavior
?

1

0..*

Stores mocks global
desired behavior

?

Figure 3.3: Test driver API domain diagram

49

3. Design of the CppUTest extension

The overall test driver API focused additions and their integration into
the existing API are demonstrated in the domain diagram 3.3. In general,
the MockSupport class provides an entry point for all CppUMock functionali-
ties and stores all coherent data. MockExpectedCall stores expectations and
desired behavior of individual test doubles calls, i.e. constant desired behav-
ior, such as return value and parameters value, therefore it will be extended
to support constant desired behavior of side effect calls and original function
calls. Then a new class MockFunctionDesiredBehavior will be created, for
storing global desired behavior, i.e. behavior for all calls of one function test
double, such as key-value and default values. The classes demonstrated in 3.3
are just the most significant classes that will need to be extended and created,
additional helper classes and functions will need to be also implemented.

Based on the requirement F_3 key-value return value, new methods shall
be created to set desired key-value return or output value as defined in 3.3,
where returned ReturnValueDictionary and OutputParameterDictionary
will be initialized and empty, but will provide methods to fill them with key-
value data. The parameterName attribute is the name of the parameter which
values will be used as the key.

ReturnValueDictionary& MockSupport::setReturnValueList(const SimpleString& functionName,
const SimpleString& parameterName);

OutputParameterDictionary& MockSupport::setOutputParameterList(const SimpleString& functionName,
const SimpleString& outputParameterName, const SimpleString& keyParameterName);

Source code 3.3: Setting key-value return or output value API definition

Based on the requirement F_4 default return value, new methods shall
be implemented to set desired default return or output value defined in 3.4,
where T will be replaced with data type corresponding to the return value
type.

void MockSupport::setDefaultReturnValue(const SimpleString& functionName, <T> value);

void MockSupport::setDefaultOutputParameter(const SimpleString &functionName,
const SimpleString &outputParameterName, const void *value, size_t size);

Source code 3.4: Setting default return or output value API definition

Based on the requirement F_7 original function call, methods to set the
test double to call the original function shall be created as defined in 3.5,
where returned ShallCallOrigFunctionDictionary will be initialized and
empty, but will provide methods to fill it with key-value data.

Based on the requirement F_10 invoke side effects, methods to pass a de-
sired side effect invocation shall be provided as defined in 3.6, where returned

50

3.8. Test double API

// call the original function for constant number of calls
MockExpectedCall& MockExpectedCall::andCallOriginalFunction(bool value);

// call the original function based on the provided list
ShallCallOrigFunctionDictionary& MockSupport::setCallOriginalFunctionList(

const SimpleString& functionName, const SimpleString& parameterName);

// call the original function by default
void MockSupport::setDefaultCallOriginalFunction(const SimpleString& functionName, bool value);

Source code 3.5: Setting original function call API definition

SideEffectDictionary will be initialized and empty, but will provide meth-
ods to fill it with key-value data.

// invoke side effect for constant number of calls
MockExpectedCall& withSideEffect(void (*value)());

// invoke side effect based on a provided key-value list
SideEffectDictionary& setSideEffectList(const SimpleString& functionName,

const SimpleString& parameterName);

// invoke default side effect
void setDefaultSideEffect(const SimpleString& functionName, void (*value)());

Source code 3.6: Setting test double to invoke a side effect API definition

Based on the requirement F_8 throw an exception, methods to set the test
double to throw provided exception shall be implemented. However, passing
an exception of unknown type to the framework is impossible without usage of
templates or RTTI, which would violate the CppUTest framework principles
and current design. Instead, the tester will have a possibility to wrap throwing
of an exception into a function and pass this function as a side effect (defined
in previous step) of the test double method. Therefore no additional methods
need to be implemented for this purpose.

3.8 Test double API
As already mentioned, the CppUMock has the test double API, which is re-
sponsible mainly for determining test double desired behavior, while the pur-
pose of the test driver API (designed in section 3.7) was to set the desired
behavior. The design in this section will be derived mainly from the existing
test double API, therefore for more details about the existing API see the
CppUMock documentation [67].

An overview of the test double API new functionalities and modifications
of the existing API are demonstrated in the domain diagram 3.4. Brief descrip-
tions of classes present in the diagram MockSupport, MockExpectedCall, and
MockFunctionDesiredBehavior were already provided in section 3.7. Class

51

3. Design of the CppUTest extension

MockSupport

- expectedCallsList
- currentActualCall

+ returnValue()

+ GetSideEffect()
+ shouldCallOriginalFunction()

MockExpectedCall

- inputParameters
- outputParameters
- returnValue

- sideEffect
- shouldCallOriginalFunction

+ returnValue()
+ getOutputParameter()

+ getSideEffect()
+ shouldCallOriginalFunction()

MockFunctionDesiredBehavior

- functionName
- returnValueList
- defaultReturnValue
- outputParameterLists
- defaultOutputParameters
- sideEffectList
- defaultSideEffect
- callOriginalFunctionList
- defaultCallOriginalFunction

+ returnValue()
+ getOutputParameter()
+ getSideEffect()
+ shouldCallOriginalFunction()

- alreadyPresentFunctionality
- extendedFunctionality
- newFunctionality

1 0..*

Stores call
expectations
and constant

desired behavior ?

1

0..*

Stores mocks global
desired behavior

?

MockActualCall

- inputParameters
- outputParameters
- returnValue

- sideEffect
- shouldCallOriginalFunction

+ returnValue()
+ withOutputParameter()

+ getSideEffect()
+ shouldCallOriginalFunction()

0..1

Stores current
actual call

?

0..*1

Get global desired
? behavior

?
Get constant

desired behavior
0..1

0..1

Figure 3.4: Test Double API domain diagram

MockActualCall provides methods to record the actual input parameters val-
ues passed to the test double and determine the desired behavior. Inter-
nally, the actual call is matched with a MockExpectedCall object based on
expected sequence of the calls. Currently, the desired behavior is then de-
termined based on the matched expected call. As part of the extension, the
MockActualCall class will need to consider also the global desired behav-
ior stored in MockFunctionDesiredBehavior, therefore modification in some
methods will be implemented. And also methods for determining newly added
desired behavior will be created – side effect call and original function call.

52

3.8. Test double API

The CppUMock test double API already provides a set of methods to de-
termine desired return value and output parameters values, but it does not
consider the newly added global desired behavior, such as key-value list deter-
mined values and default values, therefore the existing methods shall be modi-
fied to reflect the new functionalities in their behavior as already defined in the
section dedicated to desired behavior determination 3.4. The changes shall be
applied to the methods listed in 3.7 (see CppUMock documentation [67] for
more detail), but their original features shall be preserved. Methods to get the
return value of specific type, such as MockActualCall::returnIntValue(),
internally use the MockActualCall::returnValue() method, therefore their
modification is not needed.

MockNamedValue MockActualCall::returnValue();
MockActualCall& MockActualCall::withOutputParameter(const SimpleString& name, void* output);
MockActualCall& MockActualCall::withOutputParameterOfType(const SimpleString& typeName,

const SimpleString& name, void* output);

Source code 3.7: Determining test double return value API

Currently the CppUMock assumes that the test double already has infor-
mation which parameters are input and which are output, since they were
until now implemented manually by the tester. But in the test double cre-
ated with the extension, it shall be determined dynamically, therefore a new
method defined in 3.8 will be added, which shall only check whether the passed
parameter name has registered desired output value.

bool MockActualCall::isParameterOutput(const SimpleString& name);

Source code 3.8: Determining test double parameter type (input/output) API
definition

Corresponding to the requirement F_7 original function call, the test dou-
ble API shall implement a method to determine whether original function shall
be called, as defined in 3.9. The original function reference shall be already
passed to the test double through the test double creation API defined in 3.6.

bool MockActualCall::shouldCallOriginalFunction();
bool MockSupport::shouldCallOriginalFunction();

Source code 3.9: Determining original function call desired behavior API def-
inition

Corresponding to the requirement F_10 invoke side effects, the test double
API shall implement a method to determine whether a side effect (a function,

53

3. Design of the CppUTest extension

lamba function or functor) should be invoked from the test double as defined
in 3.10, which shall return the set side effect to the test object. If no side
effect was set, the defined method shall return a null reference and the test
double shall invoke no side effects.

void (*MockCheckedActualCall::getSideEffect())();
void (*MockSupport::getSideEffect())();

Source code 3.10: Determining desired behavior regarding invoking a side
effect API definition

54

Chapter 4
Implementation of the

CppUTest extension

This chapter provides additional information about the implementation. The
extension was implemented based on the design in chapter 3 and no design
changes were made. This chapter provides a manual, a requirements fulfill-
ment overview, and a brief description of unit tests. For more technical detail
regarding the implementation, see the doxygen7 documentation in the source
codes delivered with this thesis.

4.1 Manual

The extended framework delivered with this thesis supports all functionalities
provided in the original CppUTest framework and their usage is unchanged,
therefore see the official CppUTest manual at [66] and CppUMock manual at
[67] for its usage. The aim of this section is to demonstrate usage of the new
functionalities in the original CppUTest manual style.

4.1.1 Return value

The extension provides two new ways of setting a return value. The return
value can be selected based on a key-value list, where the key corresponds to
one of the parameters, i.e. if the value of the selected parameter of the current
actual call is equal to one of the key-value entries of the list, the corresponding
value is selected as the return value. The key-value return value list can be
set as demonstrated in 4.1.

7”Doxygen is the de facto standard tool for generating documentation from annotated
C++ sources” [71]

55

4. Implementation of the CppUTest extension

mock().setReturnValueList("function", "key_parameter")
.key(42).value(7581)
.key(12).value(123);

Source code 4.1: Setting test double return value list

Alternatively a default return value can be set from the test driver API
as shown in 4.2. This value is then returned by the test double if no other
return value is set.

mock().setDefaultReturnValue("function", 7581);

Source code 4.2: Setting test double default return value

The test double can still get the return value as before, i.e. int return value
can be obtained via mock().returnIntValue() call or directly via returned
actual call reference mock().actualCall("function").returnIntValue().
If more desired return value options are set and applicatble for the current
call, the original (constant) return value has the highest priority, then the
key-value list return value, and lastly the default return value has the lowest
priority.

4.1.2 Output parameters
Analogously to the return value, the extension provides methods to set either
key-value list or default output parameter value, the only difference is that
the name of the output parameter, reference of the value, and its size must be
provided, as demonstrated in 4.3.

int desired_value = 7581;
// set key-value list
mock().setOutputParameterList("function", "output_parameter", "key_parameter")

.key(42).value(&desired_value, sizeof(desired_value))

.key(12).value(&desired_value, sizeof(desired_value));
// set default value
mock().setDefaultOutputParameter("function", "output_parameter", &desired_value,

sizeof(desired_value));

Source code 4.3: Setting test double output parameter

The priority of desired behavior is also analogous to the return value, i.e.
the constant value has the highest priority, then the key-value list value, and
lastly the default value has the lowest priority. Also objects are supported,
simply by using alternatives valueOfType("ObjectType", &desired_value)
and setDefaultOutputParameterOfType().

56

4.1. Manual

4.1.3 Side effects invocation
The test double might be also set to invoke a side effect, where the side
effect can be either a function, method, lambda function, or functor, the only
condition is that it can be invoked and passed as void (*)() type value,
hence, the side effect cannot accept any parameters and should not return
any value.

The setting of desired side effect invocations is demonstrated in 4.4, where
reference to a function is passed as the side effect in all cases. The side effect
desired behavior can be again set for constant number of calls, as key-value
list, or default value, with priority corresponding to the usage order in the
example, i.e. same as in the previous cases.

// the side effect definition
void sideEffect() {

std::cout << "Side effect ivoked!" << std::endl;
}

TEST(Example, SideEffect)
{

// expect one call with constantly set side effect
mock().expectOneCall("function").withSideEffect(&sideEffect);
// set key-value side effect list
mock().setSideEffectList("function", "key_parameter")

.key(7581).value(&sideEffect);
// set default side effect
mock().setDefaultSideEffect("function", &sideEffect);
// set more call expectations and invoke test object here

}

Source code 4.4: Setting desired side effect usage

The test double can then get the desired side effect and invoke it as shown
in 4.5. If no side effect is desired, nullptr is returned. The desired side effect
can be also obtained via the mock().getSideEffect() call (after registering
the actual call).

void function() {
// register the actual call and get the side effect
void (*side_effect)() = mock().actualCall("function").getSideEffect();
// invoke the side effect
sideEffect();

}

Source code 4.5: Getting the desired side effect usage

4.1.4 Original function call
The test double can be set to call the original function (or method). This
might be useful in tests designed to just observe the passed parameters or

57

4. Implementation of the CppUTest extension

when the test object is able to detect whether the original function has been
really called.

Example in 4.6 demonstrates how the test double can be set to call the
original function, which can be performed either for constant number of calls,
as key-value list, or as default value. Test double can get the desired behavior
by calling shouldCallOriginalFunction() (returning bool) on the actual
call reference or after the mock() call. If no corresponding desired behavior
was set, false is returned by default. Otherwise the constant setting has the
highest priority, then the key-value list, and lastly the default value.

// expect one call with desired behavior to not call the original function
mock().expectOneCall("function").andCallOriginalFunction(false);
// set key-value list
mock().setCallOriginalFunctionList("function", "key_parameter")

.key(7581).value(false);
// set the test double to call the original function by default
mock().setDefaultCallOriginalFunction("function", true);

Source code 4.6: Setting original function call usage

The APIs provide explicit methods only for determining whether the orig-
inal function shall be called by the test double, but no explicit method for
passing and storing the original function reference is provided. The reference
can be either manually stored in the test double implementation or passed
via the mock().setData() call (see the CppUTest manual [67] for usage de-
tails).

4.1.5 Test double creation
The extension provides a tool for test doubles creation. It automates usage of
CppUMock supported desired behavior processing with minimal effort from
the tester. This is achieved by creating a set of universal methods, which
the tester can call from the test double to delegate its functionality. This
delegated function gradually automatically performs the following steps:

1. Registers the test double actual call via the mock().actualCall() call.

2. Registers values of the passed parameters via the withParameter()
method call. It registers all passed parameters, including potentially
output parameters, therefore either expected values for all parameters
shall be set via the test driver API, or ignoreOtherCalls() shall be
called for the corresponding expected call, in case no expected values of
output parameters are provided.

3. Via shouldCallOriginalFunction() call, it determines whether the
original function is desired to be called. If so, the original function

58

4.1. Manual

is called, the parameters are passed without changing, and its output
parameters values and return value are stored.

4. Fetches desired behavior regarding the output parameters. That means
if a desired value is set, e.g. via test driver API withOutputParameter()
method call for a parameter, it is considered an output parameter and
the corresponding desired value is applied to it. This can override the
output parameter value set in the previous step via the original function
call.

5. Determines whether a side effect should be invoked via the test dou-
ble API getSideEffect() method call. If so, the returned side effect
is invoked.
Hint: The side effect feature can be also used to throw an exception
from the test double by wrapping the throwing of the exception into
a function, for example.

6. If the test double has a return value, its return value is fetched via the
corresponding test double API call (e.g. returnIntValue()). If no de-
sired return value was set via the test driver API, but the original func-
tion was called, its returned value is returned. If none desired return
value is found, a corresponding test fail is invoked due to the undeter-
mined return value.

int function(int input, CustomClass &output) {
const char* parameter_names[] = {"input", "output"};
const char* parameter_types[] = {"", "CustomClass"};
return mockReturningInt("function", parameter_names, parameter_types, &input, &output);

}

Source code 4.7: Test double creation support usage

An example usage of test double returning int is demonstrated in 4.7.
The mockReturningInt() accepts the following parameters:

• method_name – name of the method/function the test double replaces.

• args_names – array of C-strings of the parameter names. The names
are used for registering values of the parameters provided by the test
object in the call and determining desired behavior.

• args_types – array of C-strings of names of types of the parameters.
The names shall be provided only for data types unsupported by Cp-
pUTest (typically user defined classes). For CppUTest supported data
types parameters, the values shall be empty C-strings, where the sup-
ported data types are bool, int, unsigned int, long int, unsigned

59

4. Implementation of the CppUTest extension

long int, long long, unsigned long long, double (its checks preci-
sion can be controlled from the test driver API), const char*, void*,
const void* and void (*)().

• Types... arg – references to the passed parameters of the test double
function/method (e.g. &input and &output in the example 4.7).

The demonstrated example shows usage of test double returning int, how-
ever other functions with other return values are also provided as listed below:

• void mockWithoutReturnValue()

• bool mockReturningBool()

• int mockReturningInt()

• unsigned int mockReturningUnsignedInt()

• long int mockReturningLongInt()

• unsigned long int mockReturningUnsignedLongInt()

• long long mockReturningLongLongInt()

• unsigned long long mockReturningUnsignedLongLongInt()

• double mockReturningDouble()

• const char* mockReturningStringValue()

• void* mockReturningPointerValue()

• const void* mockReturningConstPointerValue()

• void (*mockReturningFunctionPointerValue())()

The extension provides a set of methods to set the test double to call the
original function, however, the original function reference needs to be provided
directly to the test double. The functions above do not support it, another set
of functions is therefore supported for this purpose, that additionally accept
reference to the original function as a parameter, as demonstrated in 4.8, where
the passed orig_function contains the reference to the original function.

mockReturningInt("function", parameter_names, parameter_types, orig_function, &input, &output);

Source code 4.8: Test double with original function reference creation support
usage

Again, functions with different return values accepting original function
reference are provided as listed below:

• void mockWithoutReturnValueWithOriginalFunction()

• bool mockReturningBoolWithOriginalFunction()

60

4.2. Unit tests

• int mockReturningIntWithOriginalFunction()

• unsigned int mockReturningUnsignedIntWithOriginalFunction()

• long int mockReturningLongIntWithOriginalFunction()

• unsigned long int mockReturningUnsignedLongIntWithOriginalFunction()

• long long mockReturningLongLongIntWithOriginalFunction()

• unsigned long long mockReturningUnsignedLongLongIntWithOriginalFunction()

• double mockReturningDoubleWithOriginalFunction()

• const char* mockReturningStringValueWithOriginalFunction()

• void* mockReturningPointerValueWithOriginalFunction()

• const void* mockReturningConstPointerValueWithOriginalFunction()

• void (*mockReturningFunctionPointerValueWithOriginalFunction())()

4.2 Unit tests
The implementation includes a set of unit tests focused on the new features.
Since testing of the extension with 100 % coverage is out of scope of this work,
the added tests cover just the basic usages of the new features, e.g. the key-
value list return value is tested, but not for all return value and parameters
supported data types. Overall, 31 unit tests were added.

The implemented tests have one very specific characteristic, since they
actually test a testing framework. They are implemented using the CppUTest
itself, using its test macros, test driver API, and test double API. But the
roles of the involved actors are exchanged. The test implementation itself
remains in the role of the test driver, but the testing framework is in this case
in the role of the test object. And for simplicity, the CppUTest test double
API is also accessed via the test driver.

TEST(MockReturnValueTest, DefaulReturnValue)
{

const char* function_name = "TestFunction";
mock().setDefaultReturnValue(function_name, 7581);
mock().expectOneCall(function_name);

LONGS_EQUAL(7581, mock().actualCall(function_name).returnIntValue());
LONGS_EQUAL(7581, mock().intReturnValue());

}

Source code 4.9: Example default return value unit test

One of the unit tests is demonstrated in 4.9. This test checks that when
a default return value is set, the framework propagates this setting correctly,
which is achieved by setting it via the test driver API and checking the return
value obtained via the test double API.

61

4. Implementation of the CppUTest extension

4.3 Requirements fulfillment

Requirement Corresponding implementation

F_1 Automatic actual call All test double creation API functions automatically
register the actual call.

F_2 Constant return value

• Return value via andReturnValue() method call on
expected call instance(s).

• Output parameters via withOutputParameter() and
withOutputParameterOfType() method call on ex-
pected call instance(s).

F_3 Key-value return value mock().setReturnValueList()
F_4 Default return value mock().setDefaultReturnValue()

F_5 Return values priority returnValue() and withOutputParameter() methods of
the actual call consider the values priority as required.

F_6 Return value not set All test double creation API functions with return
value fail in case the desired return value is not set.

F_7 Original function call

• andCallOriginalFunction() method call on ex-
pected call instance(s) to set constant desired be-
havior.

• mock().setCallOriginalFunctionList() call to set
key-value list desired behavior.

• mock().setDefaultCallOriginalFunction() call to
set default desired behavior.

• shouldCallOriginalFunction() call on the actual
call instance retrieves the desired behavior and
considers the priorities as required.

F_8 Throw an exception Test double can be set to throw an exception via the
side effect feature (see below).

F_9 Parameters automatic
registration

All test double creation API functions automatically
register values of all provided parameters.

F_10 Invoke side effects

• withSideEffect() method call on expected call in-
stance(s) to set constant desired behavior.

• mock().setSideEffectList() call to set key-value
list desired behavior.

• mock().setDefaultSideEffect() call to set default
desired behavior.

• getSideEffect() call on the actual call instance re-
trieves the desired behavior and considers the pri-
orities as required.

Table 4.1: Functional requirements fulfillment

An overview of the functional requirements and their corresponding ful-
fillment is demonstrated in the table 4.1. All the demonstrated requirements
are fulfilled with the listed implementation methods.

62

4.3. Requirements fulfillment

Requirement Fulfillment

N_1 Simple design and us-
age

This requirement is not well measurable, however the
extension does not introduce any new restrictions into
the CppUTest framework usage and does not use any
new constraints.

N_2 No code generation
The extension does not use code generation, the test
double creation API functions are easily combinable
with manual test doubles.

N_3 No complicated macros No new macros were introduced.
N_4 C++ language The extension is implemented exclusively in C++.

N_5 CppUTest compatibil-
ity

The original behavior of CppUTest was not changed,
which is supported by passing unit tests (part of the
original implementation).

Table 4.2: Non-functional requirements fulfillment

An overview of the non-functional requirements and their corresponding
fulfillment is demonstrated in table 4.2. Since some of these requirements
are quite vague and hardly measurable, their fulfillment determination is not
trivial. However, no violations of the stated requirements were identified and
are overall considered fulfilled.

63

Chapter 5
ETCS simulator

This chapter analyses the project of the ETCS8 simulator of the Faculty of
Transportion of CTU partly developed at FIT CTU. The selected modules of
this chapter shall be tested in this thesis. But before analysing the project
itself and its modules, basic concepts and terms will be explained.

5.1 ERTMS
The European Rail Traffic Management System (further just ERTMS) is an
EU project to unify the European railways. The initial motivation for this
project was the incompatibility of railway infrastructure in Europe (in the
past and partially still in the present). The aim of ERTMS is to create a stan-
dard for the whole European railway infrastructure and therefore also enhance
competitiveness of the European rail sector.

ERMTS consists of two components – Global System for Mobiles - Railway
(further referred to as GSM-R) and European Train Control System (further
referred to as ETCS).

GSM-R – the radio communication element for both data and voice com-
munication between the train and the track. It is based on the public
standard GSM, extended with specific functions, and using frequencies
specifically reserved for rail applications.

ETCS – the signalling element for the train. It is a standard for signalling
into the driver cabin via displaying information in less complex manner
on the onboard display. Simultaneously it monitors the train movement
and together ensures the train operates safely. [72] [73]

8European Train Control System

65

5. ETCS simulator

The ERTMS tracks can be operated in three different signalling levels.
The individual levels are described below:

ERTMS Level 1 – on this level, the train communicates with eurobalises
that are placed on the track. The eurobalises (also called balises) are
electronic devices placed on the track that track the train position and
transmit control information to the train, such as information about the
incoming passages with speed limit.

Figure 5.1: ERTMS Level 1 with balise without infill [74]

This level can be provided either with just eurobalises, or eurobalises
with infill. The alternative without the infill is demonstrated in the
diagram 5.1. The version with the eurobalises radio infill in diagram
5.2 transmits the data corresponding to the individual eurobalises in
advance with respect to its location. Therefore the train can obtain the
message to pass the signal before reaching the balises once the signal
is green. [74] [75]

ERTMS Level 2 – on this level, eurobalises are used only to communicate
fixed messages, such as location reference and length of the approaching
section. The rest of the communication is performed via the GSM-R
between the Centralized Block Centre and the trains. The diagram for
the level 2 is demonstrated in 5.3. [74] [75]

66

5.1. ERTMS

Figure 5.2: ERTMS Level 1 with balise with infill [74]

Figure 5.3: ERTMS Level 2 [74]

67

5. ETCS simulator

ERTMS Level 3 – the tracks satisfying the ERTMS level 2 and not using
any other signalling system, therefore being controlled solely through
the ERTMS, are considered ERTMS level 3. On this level, the trains
additionally have to report the trains integrity on itself. Diagram for
this level is demonstrated in 5.4. [74] [75]

Figure 5.4: ERTMS Level 3 [74]

5.2 ETCS simulator
The ETCS simulator that is developed at FIT CTU and FTS CTU aims to
simulate the ETCS system, e.g. for training the train drivers. The simulator
shall be implemented in compliance with the ETCS specification for the level
1 and level 2. The simulator includes several modules, but just a few will be
subject of this thesis. The following modules will be tested in this thesis:

DMI (Driver Machine Interface) is a module that ensures communica-
tion between the train driver and the ETCS system. The DMI receives
data from the other ETCS modules and displays them in standard way
(according to the unified ETCS specification). For more details, see [76].

EVC (European Vital Computer) module is the core of the ETCS sim-
ulator. This module receives data from other modules (e.g. RBC), com-

68

5.2. ETCS simulator

municates them to the DMI module and writes data to the JRU. For
more details see [77].

RBC (Radio Block Centre) module mainly calculates and communicates
information regarding permission for movement to the train based on
the information about the train route. It ensures safe movement of the
train on the track. For more details, see [78].

Braking curve module shall calculate the breaking curve based on data re-
ceived from the EVC. For more details, see [79].

JRU (Juridical Recording Unit) module responsibility is to receive data
from the EVC, their preservation and visualisation. The preserved data
shall be downloadable to an external device. For more details, see [80].

69

Chapter 6
Testing of the ETCS simulator

This chapter is dedicated to testing of the ETCS simulator introduced in
chapter 5.2. Only some of the ETCS simulator modules are developed at
FIT CTU and subject of this work, therefore only component level tests will
be implemented in this thesis, since higher level tests would focus on the
whole system, in this case the ETCS simulator, and the lower level, unit tests,
is responsibility of the developers and do not bring any validation value.

6.1 Testing utilities
Tests focusing on one test object typically share the same approach to invoking
the test object and verifying its behavior. Therefore before implementing the
tests themselves, a helper library was introduced, called testing utilities. This
library includes set of functions and classes useful for testing all of the modules.
This provides the following functionalities:

Process – is a class that enables running a new separate process and then
terminating it. It provides sets of methods to invoke an executable in
a separate process based on the provided path (either relative or abso-
lute) in selected working directory, check if the corresponding process
is still running, and terminate the process. This is useful for executing
the test object and restarting it for each test.

ETCS Messages – defines a set of messages used by the ETCS modules.
The messages are defined according to the official ETCS set of specifi-
cations, specifically SUBSET-026-7 [81] and SUBSET-026-8 [82].

Constants – a set of constants used by the tested modules and their corre-
sponding tests. This includes special values defined in SUBSET-026-7
[81], special values used in the ETCS simulator demo, and message at-
tributes names.

71

6. Testing of the ETCS simulator

6.2 MQTT broker
The individual ETCS simulator modules communicate via a MQTT9 broker
Eclipse Mosquitto [83], which is a third party software that is generally con-
sidered reliable and already tested. Also there were no requirements that
would require detailed testing of the communication between the individual
modules and the MQTT broker. These facts were used for setting up the test
environment, where this very broker was used for communication between the
test driver and the test object as displayed in diagram 6.1.

Test object

Test driver

Callback test
double

MQTT
broker0..* 1

Publish
and receive

messages ?

Send messages
? to TO

11

Receive messages
? via callback

0..*1

Set
expectations

?

1

0..*

Figure 6.1: Tests using MQTT broker domain diagram

6.3 General tests structure
The implemented tests are divided into individual test groups, where test
group is a set of tests focused on one feature, e.g. communication session
initiation. The test group typically defines setup and teardown actions that
are same for all tests in the same test group.

Each test group and test have a corresponding doxygen documentation
describing their purpose and individual steps. The provided doxygen docu-
mentation uses a set of tags to ensure better readability and maintainable
structure. The following tags are used:

• @brief – denotes brief description of the test or test group. Correspond-
ing text explains the general idea and verification purpose, but does not
describe the individual steps of how it is achieved.

• @action – denotes individual steps performed by the test driver, e.g.
description of the message sent to the test object.

• @expected – describes a specific expectation and how it is verified by
the test driver, e.g. that a specific message from test object is received
via the MQTT client callback.

9MQ Telemetry Transport is publish-subscribe network protocol

72

6.4. RBC tests

• @note – does not correspond to any action or expectation of the test,
but just explains some information or context that is vital for under-
standing of the test.

6.4 RBC tests
This section is dedicated to tests of module RBC, which is responsible for
communicating track information to the train to ensure its safe movement.
At first, the test environment where the tests are evaluated will be described,
then the individual dynamic tests will be listed.

Usually, tests are designed based on the requirements using techniques
described in chapter 1. Although in this case, only requirements on rather
a system level were provided, which did not provide enough details for most
of the component level tests, however, the official ETCS specification provides
detailed description of the messages exchanged between the RBC and EVC
module in SUBSET-026-7 [81], SUBSET-026-8 [82], and SUBSET-026-3 [84],
which were partially used in the ETCS simulator. Therefore the tests were
designed mainly using the exploratory testing technique based on the ETCS
specification, stated system level requirements, and brief documentation of
the RBC module, which might result in incompleteness of the overall test set.

6.4.1 Test Environment
As already mentioned, MQTT broker is used for communication with the test
object, in this case the RBC module. RBC is an independently running pro-
cess, therefore the Process class from testing utilities is used for its invocation
and termination for each test.

Also testing tools useful specifically for the RBC focused test groups were
implemented. To handle the messages coming from the test object, test dou-
bles corresponding to the individual messages were implemented, e.g. if mes-
sage Configuration Determination (number 32 in SUBSET-026-8 [82]) was
received, it would be passed to the corresponding message 32 callback func-
tion.

This is achieved by implementing a universal callback function that re-
distributes the messages to their individual message callback functions. The
callback function is part of another helper class BaseCase which provides
functionalities for setting up the test environment and test object.

6.4.2 Session initiation test group
This test group focuses on communication initiation between the EVC and
RBC, specifically exchange of messages Initiation of a communication session
number 155 (sent from EVC) and Configuration Determination number 32
(sent from RBC).

73

6. Testing of the ETCS simulator

The list of following tests was implemented and evaluated. Only their
brief description is provided, for more detailed description and individual test
steps, see the doxygen documentation.

• Title: init_success
Description: Checks that RBC successfully accepts message from EVC
for ”Initiation of a communication session” (155) and responds with
message ”Configuration Determination” (32) with correctly set data.
Result: OK

• Title: multiple_inits_same_train
Description: Checks that RBC successfully accepts the first message
from EVC for ”Initiation of a communication session” (155) and re-
sponds with message ”Configuration Determination” (32) with correctly
set data, but ignores all subsequent ”Initiation of a communication ses-
sion” messages from EVC for the same train.
Result: OK

• Title: init_multiple_sessions
Description: Checks that RBC successfully accepts multiple messages
”Initiation of a communication session” (155) from EVC for different
trains and responds with message ”Configuration Determination” (32)
with correctly set data for each.
Result: OK

• Title: init_time_incrementation
Description: Checks that the RBC always responds with train time
”T_TRAIN” attribute in the message ”RBC/RIU System Version” (32)
higher than in the received message ”Initiation of a communication ses-
sion” (155) from EVC.
Result: OK

6.4.3 Train data acknowledgement test group
This test group focuses on train data acknowledgement by the RBC, corre-
sponding to the train data sent by the EVC. The list of following tests was
implemented and evaluated. Only their brief description is provided, for more
detailed description and individual test steps, see the doxygen documentation.

• Title: acknowledgement_success
Description: Checks that RBC successfully accepts messages ”Session
established” (159), ”SoM Position Report” (157), and ”Validated Train

74

6.4. RBC tests

Data” (129) from EVC and responds with message ”Acknowledgement
of Train Data” (8) with correctly set data.

Result: OK

• Title: acknowledgement_unknown_train

Description: Checks that RBC does not respond to messages ”Session
established” (159), ”SoM Position Report” (157), and ”Validated Train
Data” (129) from EVC, when the train (NID_ENGINE) provided in
this messages is unknown to RBC, i.e. the session was not initiated with
this train.

Result: OK

6.4.4 Session termination test group

This test group focuses on termination of communication session between the
EVC and RBC. The list of following tests was implemented and evaluated.
Only their brief description is provided, for more detailed description and
individual test steps, see the doxygen documentation.

• Title: termination_success

Description: Checks that RBC successfully accepts message from EVC
for ”Termination of a communication session” (156) for an already es-
tablished session and responds with message ”Acknowledgement of ter-
mination of a communication session” (39) with correctly set data.

Result: OK

• Title: termination_unknown_train

Description: Checks that RBC ignores message ”Termination of a com-
munication session” (156) for a session that is not established, i.e. the
NID_ENGINE sent in the message does not have a corresponding ini-
tiated and confirmed session.

Result: OK

• Title: termination_on_mission

Description: Checks that RBC ignores message ”Termination of a com-
munication session” (156) for a train that is in state ON MISSION and
does not respond with message ”Acknowledgement of termination of
a communication session” (39).

Result: OK

75

6. Testing of the ETCS simulator

6.4.5 Movement authority request test group
This test group focuses on MA10 requests between RBC and EVC. The list of
following tests was implemented and evaluated. Only their brief description
is provided, for more detailed description and individual test steps, see the
doxygen documentation.

• Title: MA_request_success
Description: Checks that RBC successfully accepts message ”MA Re-
quest” (132) from EVC and responds with message ”Movement Author-
ity” (3) with correctly set data, including Packets ”Level 2/3 Movement
Authority” (15), ”Gradient Profile” (21) and ”Position Report Parame-
ters” (58).
Result: OK

• Title: MA_request_unknown_train
Description: Checks that RBC does not respond to message ”MA Re-
quest” (132) from EVC, when the train (NID_ENGINE) provided in
this message is unknown to RBC, i.e. the session was not initiated with
this train.
Result: OK

• Title: position_report_success
Description: Checks that RBC successfully accepts message ”Train Po-
sition Report” (136) from EVC and responds with message ”Movement
Authority” (3) with correctly set data, including Packet ”Level 2/3
Movement Authority” (15), when valid message ”MA Request” (132)
has been previously sent to the RBC.
Result: OK

• Title: position_report_without_MA
Description: Checks that RBC does not accept message ”Train Position
Report” (136) from EVC and does not respond with message ”Move-
ment Authority” (3) when no message ”MA Request” (132) has been
previously sent to the RBC.
Result: OK

6.4.6 End of mission test group
This test group focuses on end of mission communicated via session between
the EVC and RBC. The list of following tests was implemented and evaluated.

10Movement authority

76

6.5. Future work

Only their brief description is provided, for more detailed description and
individual test steps, see the doxygen documentation.

• Title: eom_success
Description: Checks that RBC successfully accepts message from EVC
for ”End of Mission” (150) for an already established session for train in
state ”ON MISSION” and responds with message ”Acknowledgement of
termination of a communication session” (39) with correctly set data.
Result: OK

• Title: eom_not_on_mission
Description: Checks that RBC does not accept message from EVC for
”End of Mission” (150) for an already established session for train that
is not in state ”ON MISSION” and does not respond with message ”Ac-
knowledgement of termination of a communication session” (39).
Result: OK

• Title: eom_message_duplicate
Description: Checks that RBC does not accept a duplicate message from
EVC for ”End of Mission” (150) for train that was on mission, but the
mission was already ended by corresponding message ”End of Mission”
(150).
Result: OK

6.5 Future work
In conclusion, only set of tests focused on the RBC component was imple-
mented. The implemented test scenarios were picked mainly using the ex-
ploratory testing technique, therefore if possible future development will bring
new requirements, new tests will be required as well. However the developed
tests and testing utilities were designed to be easily extensible and reusable
in the future, especially the testing utilities will hopefully prove very useful in
the future development, since it should resolve most of the issues of developing
new test environments for the ETCS project components.

The source codes delivered with this thesis contain documentation of the
testing utilities and other provided test environment tools. Also brief notes
for developing new tests are provided.

6.6 Evaluation of the CppUTest extension usage
The CppUTest extension was used to implement the individual messages call-
backs, by passing the received values to the testDouble() function. This func-

77

6. Testing of the ETCS simulator

tion then registered the received parameters values and checked the desired
behavior, as described in previous chapters.

Unfortunately test doubles demanded by the tests in this chapter were
quite simple, and their usage of test doubles was very straight forward, since
the main responsibility of the test doubles was to just register the provided
values for their verification and no more complex functionalities were nec-
essary. Therefore there was not an opportunity to use much of the newly
introduced features.

Although what proved to be practical was the functionality delegation
to the testDouble() functions instead of replacing the called functions entirely.
This was useful since the data provided by the MQTT broker on callback were
wrapped in MQTT structures whose values would be hard to verify if they
were passed to the CppUTest framework in their original form. In this case the
partially manually implemented test doubles firstly unwrapped the provided
data, and then delegated them to the testDouble() function in a verifiable
form.

78

Chapter 7
Conclusions

The main goal of this thesis was to extend the existing framework CppUTest
so it would provide better support for testing with mocks. Before design of the
extension itself, analysis of testing approaches and techniques was performed
and summary of the basics was created. The next step was examination
of other existing C++ testing frameworks where different design approaches
where compared.

The information collected in the performed analysis were used to design
new features for the CppUTest extension. This included adding an option to
set a desired side effect or original function call and introducing new approach
to setting desired behavior in general, either by setting default values from
test driver or creating a key-value map, which determines the corresponding
desired behavior based on the provided parameters values. Another new de-
signed feature was a universal test double that would automatically register
the parameters values and evaluate the preset desired behavior.

The designed features were successfully implemented and integrated into
the CppUTest framework. The unit tests already included in the framework
are passing, proving the original functionality was preserved, and new unit
tests focused on the new features were added.

The last step of this thesis was to create a set of tests for the ETCS
simulator modules. Due to big scope of the other tasks in this work and spare
documentation of some of the ETCS simulator modules, the tests were not
developed for all the modules. Instead, however, it was decided to focus on
the modules that proved to be more failure-prone in the past. Thus set of
tests focused on the RBC module was created together with testing utilities,
providing support for possible development of other tests and promising better
extensibility in the future.

79

Bibliography

1. NAIK, Kshirasagar. Software testing and quality assurance. Hoboken,
New Jersey: John Wiley & Sons, Inc., 2008. No. 2008008331.

2. OLSEN, Klaus; POSTHUMA, Meile; ULRICH, Stephanie. ISTQB CTFL
Syllabus 2018 V3.1. 2018. Available also from: https://www.istqb.org/
downloads/send/2-foundation-level-documents/281-istqb-ctfl-
syllabus-2018-v3-1.html. [cit. 2021-4-3].

3. Goals Of Software Testing. Software testing tutorials and automation
[online]. [N.d.]. Available also from: https://www.software-testing-
tutorials-automation.com/2018/02/goals-of-software-testing.
html. [cit. 2021-4-3].

4. Difference between Verification and Validation [online]. 2013. Available
also from: https://www.softwaretestingclass.com/difference-
between-verification-and-validation/. [cit. 2021-4-4].

5. IEEE Standard for System and Software Verification and Validation.
IEEE Std 1012-2012 (Revision of IEEE Std 1012-2004). 2012, pp. 1–
223. Available from doi: 10.1109/IEEESTD.2012.6204026.

6. ISO/IEC/IEEE International Standard - Systems and software engineer-
ing – Vocabulary. ISO/IEC/IEEE 24765:2010(E). 2010, pp. 1–418. Avail-
able from doi: 10.1109/IEEESTD.2010.5733835.

7. COPELAND, Lee. A Practitioner’s Guide to Software Test Design. Artech
House, 2004. No. 158053791x.

8. LIN, Nai-Wei. Control Flow Testing [https://www.cs.ccu.edu.tw/
~naiwei/cs5812/st4.pdf]. [N.d.]. [cit 2021-07-06].

9. LIN, Nai-Wei. Data Flow Testing [https : / / www . cs . ccu . edu . tw /
~naiwei/cs5812/st5.pdf]. [N.d.]. [cit 2021-07-09].

81

https://www.istqb.org/downloads/send/2-foundation-level-documents/281-istqb-ctfl-syllabus-2018-v3-1.html
https://www.istqb.org/downloads/send/2-foundation-level-documents/281-istqb-ctfl-syllabus-2018-v3-1.html
https://www.istqb.org/downloads/send/2-foundation-level-documents/281-istqb-ctfl-syllabus-2018-v3-1.html
https://www.software-testing-tutorials-automation.com/2018/02/goals-of-software-testing.html
https://www.software-testing-tutorials-automation.com/2018/02/goals-of-software-testing.html
https://www.software-testing-tutorials-automation.com/2018/02/goals-of-software-testing.html
https://www.softwaretestingclass.com/difference-between-verification-and-validation/
https://www.softwaretestingclass.com/difference-between-verification-and-validation/
https://doi.org/10.1109/IEEESTD.2012.6204026
https://doi.org/10.1109/IEEESTD.2010.5733835
https://www.cs.ccu.edu.tw/~naiwei/cs5812/st4.pdf
https://www.cs.ccu.edu.tw/~naiwei/cs5812/st4.pdf
https://www.cs.ccu.edu.tw/~naiwei/cs5812/st5.pdf
https://www.cs.ccu.edu.tw/~naiwei/cs5812/st5.pdf

Bibliography

10. Difference between Component and Unit Testing. 2019. Available also
from: https://www.geeksforgeeks.org/difference-between-compo
nent-and-unit-testing/. [cit. 2021-4-11].

11. PALMER, Larry Ray. What is Component Software? 2021. Available
also from: https://www.easytechjunkie.com/what-is-component-
software.htm. [cit. 2021-4-11].

12. CRAIG, Rick D.; JASKIEL, Stefan P. Systematic Software Testing.
Artech House, 2002. No. 1580535089.

13. Test Environment for Software Testing. 2021. Available also from: https:
//www.guru99.com/test-environment-software-testing.html. [cit.
2021-7-17].

14. Test Environment for Software Testing. 2019. Available also from: https:
//www.professionalqa.com/test-environment. [cit. 2021-7-17].

15. Test Doubles — Fakes, Mocks and Stubs. 2017. Available also from: h
ttps://blog.pragmatists.com/test-doubles-fakes-mocks-and-
stubs-1a7491dfa3da. [cit. 2021-7-18].

16. Test Double. 2011. Available also from: http://xunitpatterns.com/
Test%20Double.html. [cit. 2021-7-18].

17. What is meant by Stubs and Drivers? 2020. Available also from: https:
//www.professionalqa.com/stubs-and-drivers. [cit. 2021-7-18].

18. Mock Testing. 2021. Available also from: https : / / devopedia . org /
mock-testing. [cit. 2021-7-18].

19. Test Stub. 2011. Available also from: http://xunitpatterns.com/Test%
20Stub.html. [cit. 2021-7-18].

20. Test Spy. 2011. Available also from: http://xunitpatterns.com/Test%
20Spy.html. [cit. 2021-7-18].

21. Mock Object. 2011. Available also from: http://xunitpatterns.com/
Mock%20Object.html. [cit. 2021-7-18].

22. Fake Object. 2011. Available also from: http://xunitpatterns.com/
Fake%20Object.html. [cit. 2021-7-18].

23. Test Automation Framework. 2011. Available also from: http://xunitp
atterns.com/Test%20Automation%20Framework.html. [cit. 2021-7-24].

24. SUnit. [N.d.]. Available also from: http://sunit.sourceforge.net/.
25. JUnit. [N.d.]. Available also from: https://junit.org/.
26. FOWLER, Martin. XUnit. 2006. Available also from: https://martinf

owler.com/bliki/Xunit.html. [cit. 2021-7-24].
27. XUnit. [N.d.]. Available also from: https://dbpedia.org/page/XUnit.

[cit. 2021-7-24].

82

https://www.geeksforgeeks.org/difference-between-component-and-unit-testing/
https://www.geeksforgeeks.org/difference-between-component-and-unit-testing/
https://www.easytechjunkie.com/what-is-component-software.htm
https://www.easytechjunkie.com/what-is-component-software.htm
https://www.guru99.com/test-environment-software-testing.html
https://www.guru99.com/test-environment-software-testing.html
https://www.professionalqa.com/test-environment
https://www.professionalqa.com/test-environment
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
https://blog.pragmatists.com/test-doubles-fakes-mocks-and-stubs-1a7491dfa3da
http://xunitpatterns.com/Test%20Double.html
http://xunitpatterns.com/Test%20Double.html
https://www.professionalqa.com/stubs-and-drivers
https://www.professionalqa.com/stubs-and-drivers
https://devopedia.org/mock-testing
https://devopedia.org/mock-testing
http://xunitpatterns.com/Test%20Stub.html
http://xunitpatterns.com/Test%20Stub.html
http://xunitpatterns.com/Test%20Spy.html
http://xunitpatterns.com/Test%20Spy.html
http://xunitpatterns.com/Mock%20Object.html
http://xunitpatterns.com/Mock%20Object.html
http://xunitpatterns.com/Fake%20Object.html
http://xunitpatterns.com/Fake%20Object.html
http://xunitpatterns.com/Test%20Automation%20Framework.html
http://xunitpatterns.com/Test%20Automation%20Framework.html
http://sunit.sourceforge.net/
https://junit.org/
https://martinfowler.com/bliki/Xunit.html
https://martinfowler.com/bliki/Xunit.html
https://dbpedia.org/page/XUnit

Bibliography

28. MESZAROS, Gerard. xUnit Test Patterns. Pearson Education, Inc., 2007.
No. 0131495054.

29. Test Method. 2011. Available also from: http://xunitpatterns.com/
Test%20Method.html. [cit. 2021-7-25].

30. Four-Phase Test. 2011. Available also from: http://xunitpatterns.
com/Four%20Phase%20Test.html. [cit. 2021-7-25].

31. Testcase Class. 2011. Available also from: http://xunitpatterns.com/
Testcase%20Class.html. [cit. 2021-7-25].

32. Testcase Object. 2011. Available also from: http://xunitpatterns.
com/Testcase%20Object.html. [cit. 2021-7-25].

33. GAMMA, Erich; HELM, Richard; JOHNSON, Ralph; VLISSIDES, John.
Design Patterns. Addison-Wesley, 1995. No. 0201633612.

34. Test Suite Object. 2011. Available also from: http://xunitpatterns.
com/Test%20Suite%20Object.html. [cit. 2021-7-25].

35. LLOPIS, Noel. Exploring the C++ Unit Testing Framework Jungle. 2004.
Available also from: https://gamesfromwithin.com/exploring-the-
c-unit-testing-framework-jungle#cppunit. [cit. 2021-8-1].

36. CppUnit. [N.d.]. Available also from: https://sourceforge.net/proje
cts/cppunit/.

37. CppUnit Cookbook. [N.d.]. Available also from: http://cppunit.sourc
eforge.net/doc/cvs/cppunit_cookbook.html. [cit. 2021-7-31].

38. CppUnit::TestFixture Class Reference. [N.d.]. Available also from: http:
//cppunit.sourceforge.net/doc/cvs/class_test_fixture.html.
[cit. 2021-7-31].

39. Making assertions. [N.d.]. Available also from: http://cppunit.source
forge.net/doc/cvs/group___assertions.html. [cit. 2021-7-31].

40. Protector Class Reference. [N.d.]. Available also from: http://cppunit.
sourceforge.net/doc/cvs/class_protector.html. [cit. 2021-8-1].

41. CppUnit Documentation. [N.d.]. Available also from: http://cppunit.
sourceforge.net/doc/cvs/index.html. [cit. 2021-7-31].

42. The C++ Standard Template Library (STL). 2021. Available also from:
https://www.geeksforgeeks.org/the-c-standard-template-libra
ry-stl/. [cit. 2021-8-1].

43. RTTI (Run-time type Information) in C++. 2017. Available also from:
https://www.geeksforgeeks.org/g-fact-33/. [cit. 2021-8-1].

44. GNU LGPL. 2007. Available also from: https://www.gnu.org/licens
es/lgpl-3.0.en.html.

45. Boost.Test. [N.d.]. Available also from: https://www.boost.org/doc/
libs/1_76_0/libs/test/doc/html/index.html.

83

http://xunitpatterns.com/Test%20Method.html
http://xunitpatterns.com/Test%20Method.html
http://xunitpatterns.com/Four%20Phase%20Test.html
http://xunitpatterns.com/Four%20Phase%20Test.html
http://xunitpatterns.com/Testcase%20Class.html
http://xunitpatterns.com/Testcase%20Class.html
http://xunitpatterns.com/Testcase%20Object.html
http://xunitpatterns.com/Testcase%20Object.html
http://xunitpatterns.com/Test%20Suite%20Object.html
http://xunitpatterns.com/Test%20Suite%20Object.html
https://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle#cppunit
https://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle#cppunit
https://sourceforge.net/projects/cppunit/
https://sourceforge.net/projects/cppunit/
http://cppunit.sourceforge.net/doc/cvs/cppunit_cookbook.html
http://cppunit.sourceforge.net/doc/cvs/cppunit_cookbook.html
http://cppunit.sourceforge.net/doc/cvs/class_test_fixture.html
http://cppunit.sourceforge.net/doc/cvs/class_test_fixture.html
http://cppunit.sourceforge.net/doc/cvs/group___assertions.html
http://cppunit.sourceforge.net/doc/cvs/group___assertions.html
http://cppunit.sourceforge.net/doc/cvs/class_protector.html
http://cppunit.sourceforge.net/doc/cvs/class_protector.html
http://cppunit.sourceforge.net/doc/cvs/index.html
http://cppunit.sourceforge.net/doc/cvs/index.html
https://www.geeksforgeeks.org/the-c-standard-template-library-stl/
https://www.geeksforgeeks.org/the-c-standard-template-library-stl/
https://www.geeksforgeeks.org/g-fact-33/
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.boost.org/doc/libs/1_76_0/libs/test/doc/html/index.html
https://www.boost.org/doc/libs/1_76_0/libs/test/doc/html/index.html

Bibliography

46. Boost C++ Libraries. [N.d.]. Available also from: https://www.boost.
org/.

47. Test case fixture. [N.d.]. Available also from: https : / / www . boost .
org/doc/libs/1_76_0/libs/test/doc/html/boost_test/tests_
organization/fixtures/case.html. [cit. 2021-8-1].

48. Assertion severity level. [N.d.]. Available also from: https://www.boost.
org/doc/libs/1_76_0/libs/test/doc/html/boost_test/testing_
tools/tools_assertion_severity_level.html. [cit. 2021-8-6].

49. BOOST_TEST: universal and general purpose assertions. [N.d.]. Avail-
able also from: https://www.boost.org/doc/libs/1_76_0/libs/te
st/doc/html/boost_test/testing_tools/boost_test_universal_
macro.html. [cit. 2021-8-6].

50. Exception correctness. [N.d.]. Available also from: https://www.boost.
org/doc/libs/1_76_0/libs/test/doc/html/boost_test/testing_
tools/exception_correctness.html. [cit. 2021-8-6].

51. Time-out for test cases. [N.d.]. Available also from: https://www.boost.
org/doc/libs/1_76_0/libs/test/doc/html/boost_test/testing_
tools/timeout.html. [cit. 2021-8-6].

52. Output streams testing tool. [N.d.]. Available also from: https://www.
boost.org/doc/libs/1_76_0/libs/test/doc/html/boost_test/
testing_tools/output_stream_testing.html. [cit. 2021-8-6].

53. Turtle. [N.d.]. Available also from: https://sourceforge.net/project
s/turtle/.

54. Turtle Reference. [N.d.]. Available also from: http://turtle.sourcefo
rge.net/turtle/reference.html. [cit. 2021-8-7].

55. Boost Software License. [N.d.]. Available also from: https://www.boost.
org/users/license.html.

56. Google Test. [N.d.]. Available also from: http://google.github.io/
googletest/.

57. Googletest Primer. 2021. Available also from: http://google.github.
io/googletest/primer.html. [cit. 2021-8-13].

58. Advanced googletest Topics. 2021. Available also from: http://google.
github.io/googletest/advanced.html. [cit. 2021-8-13].

59. Assertions Reference. 2021. Available also from: http://google.githu
b.io/googletest/reference/assertions.html. [cit. 2021-8-14].

60. Matchers Reference. 2021. Available also from: http://google.github.
io/googletest/reference/matchers.html. [cit. 2021-8-14].

61. jMock. [N.d.]. Available also from: http://jmock.org/.

84

https://www.boost.org/
https://www.boost.org/
https://www.boost.org/doc/libs/1_76_0/libs/test/doc/html/boost_test/tests_organization/fixtures/case.html
https://www.boost.org/doc/libs/1_76_0/libs/test/doc/html/boost_test/tests_organization/fixtures/case.html
https://www.boost.org/doc/libs/1_76_0/libs/test/doc/html/boost_test/tests_organization/fixtures/case.html
https://www.boost.org/doc/libs/1_76_0/libs/test/doc/html/boost_test/testing_tools/tools_assertion_severity_level.html
https://www.boost.org/doc/libs/1_76_0/libs/test/doc/html/boost_test/testing_tools/tools_assertion_severity_level.html
https://www.boost.org/doc/libs/1_76_0/libs/test/doc/html/boost_test/testing_tools/tools_assertion_severity_level.html
https://www.boost.org/doc/libs/1_76_0/libs/test/doc/html/boost_test/testing_tools/boost_test_universal_macro.html
https://www.boost.org/doc/libs/1_76_0/libs/test/doc/html/boost_test/testing_tools/boost_test_universal_macro.html
https://www.boost.org/doc/libs/1_76_0/libs/test/doc/html/boost_test/testing_tools/boost_test_universal_macro.html
https://www.boost.org/doc/libs/1_76_0/libs/test/doc/html/boost_test/testing_tools/exception_correctness.html
https://www.boost.org/doc/libs/1_76_0/libs/test/doc/html/boost_test/testing_tools/exception_correctness.html
https://www.boost.org/doc/libs/1_76_0/libs/test/doc/html/boost_test/testing_tools/exception_correctness.html
https://www.boost.org/doc/libs/1_76_0/libs/test/doc/html/boost_test/testing_tools/timeout.html
https://www.boost.org/doc/libs/1_76_0/libs/test/doc/html/boost_test/testing_tools/timeout.html
https://www.boost.org/doc/libs/1_76_0/libs/test/doc/html/boost_test/testing_tools/timeout.html
https://www.boost.org/doc/libs/1_76_0/libs/test/doc/html/boost_test/testing_tools/output_stream_testing.html
https://www.boost.org/doc/libs/1_76_0/libs/test/doc/html/boost_test/testing_tools/output_stream_testing.html
https://www.boost.org/doc/libs/1_76_0/libs/test/doc/html/boost_test/testing_tools/output_stream_testing.html
https://sourceforge.net/projects/turtle/
https://sourceforge.net/projects/turtle/
http://turtle.sourceforge.net/turtle/reference.html
http://turtle.sourceforge.net/turtle/reference.html
https://www.boost.org/users/license.html
https://www.boost.org/users/license.html
http://google.github.io/googletest/
http://google.github.io/googletest/
http://google.github.io/googletest/primer.html
http://google.github.io/googletest/primer.html
http://google.github.io/googletest/advanced.html
http://google.github.io/googletest/advanced.html
http://google.github.io/googletest/reference/assertions.html
http://google.github.io/googletest/reference/assertions.html
http://google.github.io/googletest/reference/matchers.html
http://google.github.io/googletest/reference/matchers.html
http://jmock.org/

Bibliography

62. Actions Reference. 2021. Available also from: http://google.github.
io/googletest/reference/actions.html. [cit. 2021-8-14].

63. Mocking Reference. 2021. Available also from: http://google.github.
io/googletest/reference/mocking.html. [cit. 2021-8-14].

64. BSD 3-Clause ”New” or ”Revised” License. [N.d.]. Available also from:
https://github.com/google/googletest/blob/master/LICENSE.

65. Cpputest. [N.d.]. Available also from: https://cpputest.github.io/.
66. Core Manual. [N.d.]. Available also from: https://cpputest.github.

io/manual.html. [cit. 2021-8-15].
67. CppUMock Manual. [N.d.]. Available also from: https://cpputest.

github.io/mocking_manual.html. [cit. 2021-8-16].
68. Plugin Manual. [N.d.]. Available also from: https://cpputest.github.

io/plugin_manual.html. [cit. 2021-8-21].
69. BSD 3-Clause ”New” or ”Revised” License. [N.d.]. Available also from:

https://github.com/cpputest/cpputest/blob/master/COPYING.
70. KORPELA, Henri. C++11 - New features - Variadic templates. 2012.

Available also from: http://www.cplusplus.com/articles/EhvU7k
9E/. [cit. 2021-9-5].

71. Doxygen. [N.d.]. Available also from: https://www.doxygen.nl/index.
html. [cit. 2021-11-26].

72. ERTMS in brief. [N.d.]. Available also from: https://www.ertms.net/
about-ertms/ertms-signaling-levels/. [cit. 2021-11-26].

73. What is ERTMS? [N.d.]. Available also from: https://uic.org/rail-
system/ertms/. [cit. 2021-11-26].

74. ERTMS Signaling levels. [N.d.]. Available also from: https://www.ertm
s.net/about-ertms/ertms-signaling-levels/. [cit. 2021-11-26].

75. ETCS B3 R2 GSM-R B1 – System Requirements Specification. [N.d.].
Available also from: https://www.era.europa.eu/content/set-
specifications-3-etcs-b3-r2-gsm-r-b1_en. [cit. 2021-11-27].

76. KADLČEK, David; STEJSKAL, Jan; JAHODA, Petr; UDAVICHENKA,
Yury; MACHÁČEK, Jiří; VEJVODA, Štěpán. Analýza projektu DMI dis-
plej pro simulátor ETCS. 2021. Tech. rep. Faculty of Information Tech-
nology, CTU in Prague. [cit. 2021-11-28].

77. BARTOS, Jan; MENSHIKOV, Ivan; ONDRUSEK, David; PHAM, Xuan
Trung; SAFAR, Jan; VOLOSIN, Alex Jan. EVC pro ETCS simulátor,
Analytická dokumentace. 2021. Tech. rep. Faculty of Information Tech-
nology, CTU in Prague. [cit. 2021-11-28].

85

http://google.github.io/googletest/reference/actions.html
http://google.github.io/googletest/reference/actions.html
http://google.github.io/googletest/reference/mocking.html
http://google.github.io/googletest/reference/mocking.html
https://github.com/google/googletest/blob/master/LICENSE
https://cpputest.github.io/
https://cpputest.github.io/manual.html
https://cpputest.github.io/manual.html
https://cpputest.github.io/mocking_manual.html
https://cpputest.github.io/mocking_manual.html
https://cpputest.github.io/plugin_manual.html
https://cpputest.github.io/plugin_manual.html
https://github.com/cpputest/cpputest/blob/master/COPYING
http://www.cplusplus.com/articles/EhvU7k9E/
http://www.cplusplus.com/articles/EhvU7k9E/
https://www.doxygen.nl/index.html
https://www.doxygen.nl/index.html
https://www.ertms.net/about-ertms/ertms-signaling-levels/
https://www.ertms.net/about-ertms/ertms-signaling-levels/
https://uic.org/rail-system/ertms/
https://uic.org/rail-system/ertms/
https://www.ertms.net/about-ertms/ertms-signaling-levels/
https://www.ertms.net/about-ertms/ertms-signaling-levels/
https://www.era.europa.eu/content/set-specifications-3-etcs-b3-r2-gsm-r-b1_en
https://www.era.europa.eu/content/set-specifications-3-etcs-b3-r2-gsm-r-b1_en

Bibliography

78. SKIPALA, Michal; BENK, Patrik; GORGOL, Matěj; KRASNENKOVA,
Alina; ROSHCHUPKINA, Daria; STERNWALD, Jiří. ETCS simulátor –
RBC, Dokumentace. 2021. Tech. rep. Faculty of Information Technology,
CTU in Prague. [cit. 2021-11-28].

79. GOLMGREN, Nikita; BÍLEK, Matouš; KRAVTSOV, Aleksei; LANCA,
Matěj; SLANINOVÁ, Dominika; UMPRECHT, Jan; WICHTERLE, Da-
vid. Výpočet brzdné křivky pro ETCS simulátor, Analytická dokumentace.
2021. Tech. rep. Faculty of Information Technology, CTU in Prague. [cit.
2021-11-28].

80. GOLMGREN, Nikita; BÍLEK, Matouš; KRAVTSOV, Aleksei; LANCA,
Matěj; SLANINOVÁ, Dominika; UMPRECHT, Jan; WICHTERLE, Da-
vid. JRU a JRU DL Tool pro ETCS simulátor, Analytická dokumentace.
2021. Tech. rep. Faculty of Information Technology, CTU in Prague. [cit.
2021-11-28].

81. System Requirements Specification, Chapter 7, ERTMS/ETCS language.
2016. Tech. rep. European Union Agency For Railways. Available also
from: https://www.era.europa.eu/content/set-specifications-
3-etcs-b3-r2-gsm-r-b1_en. [cit. 2021-12-28].

82. System Requirements Specification, Chapter 8, Messages. 2016. Tech.
rep. European Union Agency For Railways. Available also from: https:
//www.era.europa.eu/content/set-specifications-3-etcs-b3-
r2-gsm-r-b1_en. [cit. 2021-12-28].

83. Eclipse Mosquitto. [N.d.]. Available also from: https : / / mosquitto .
org/.

84. System Requirements Specification, Chapter 3, Principles. 2016. Tech.
rep. European Union Agency For Railways. Available also from: https:
//www.era.europa.eu/content/set-specifications-3-etcs-b3-
r2-gsm-r-b1_en. [cit. 2021-12-28].

86

https://www.era.europa.eu/content/set-specifications-3-etcs-b3-r2-gsm-r-b1_en
https://www.era.europa.eu/content/set-specifications-3-etcs-b3-r2-gsm-r-b1_en
https://www.era.europa.eu/content/set-specifications-3-etcs-b3-r2-gsm-r-b1_en
https://www.era.europa.eu/content/set-specifications-3-etcs-b3-r2-gsm-r-b1_en
https://www.era.europa.eu/content/set-specifications-3-etcs-b3-r2-gsm-r-b1_en
https://mosquitto.org/
https://mosquitto.org/
https://www.era.europa.eu/content/set-specifications-3-etcs-b3-r2-gsm-r-b1_en
https://www.era.europa.eu/content/set-specifications-3-etcs-b3-r2-gsm-r-b1_en
https://www.era.europa.eu/content/set-specifications-3-etcs-b3-r2-gsm-r-b1_en

Appendix A
Acronyms

API Application programming interface

CTU Czech Technical University

DMI Driver Machine Interface

ERTMS European Rail Traffic Management System

ETCS European Train Control System

EU European Union

EVC European Vital Computer

FIT Faculty of Information Technology

FTS Faculty of Transportation

GSM-R Global System for Mobiles - Railway

JRU Juridical Recording Unit

LIFO Last In, First out

MA Movement authority

MQTT MQ Telemetry Transport

RBC Radio Block Centre

RTTI Run-time type information

STL The Standard Template Library

87

Appendix B
Contents of enclosed storage

medium

readme.txt........................file with medium contents description
src

cpputest_extension.................CppUTest extension source files
rbc_component_tests.........................RBC tests source files
thesis LATEX source files of the thesis

text
DP_Kasalicka_Katerina_2022.pdf........thesis text in PDF format

89

	Introduction
	Goals of the Thesis

	Software testing
	Goals of software testing
	Basic concepts and terms
	Functional and non-functional testing
	Dynamic and static testing
	Black-box and white-box testing
	Black-box testing techniques
	White-box testing techniques
	Experience based testing techniques
	Levels of testing
	Test environment
	Test doubles

	Analysis of C++ testing frameworks
	xUnit
	Comparison criteria
	CppUnit
	Boost Test Library
	Google Test
	CppUTest
	Results overview

	Design of the CppUTest extension
	Functional requirements
	Non-functional requirements
	Test double design
	Desired behavior determination
	Extension of the existing CppUMock API
	Test double creation API
	Test driver API
	Test double API

	Implementation of the CppUTest extension
	Manual
	Unit tests
	Requirements fulfillment

	ETCS simulator
	ERTMS
	ETCS simulator

	Testing of the ETCS simulator
	Testing utilities
	MQTT broker
	General tests structure
	RBC tests
	Future work
	Evaluation of the CppUTest extension usage

	Conclusions
	Bibliography
	Acronyms
	Contents of enclosed storage medium

