
Instructions

The task is to integrate an existing CDCL-based SAT solver and multi-agent path finding (MAPF) into a

single compact solver. Contemporary decision procedures for a complex theory T often rely on the

concept of DPLL(T) in which a SAT solver is integrated with a decision procedure for a conjunctive

fragment of T. DPLL(T) can be used to employ a SAT solver in MAPF solving via regarding MAPF as a

theory and implementing a decision procedure for its conjunctive fragment. Tasks for the student are

as follows:

1. Study decision procedures for complex theories based on DPLL(T) and SAT-based algorithms for

multi-agent path finding.

2. Suggest an integration of a SAT solver and MAPF via the DPLL(T) scheme. Investigate various

parameters of the integration such as what constraints should be treated lazily and what constraint

should be added in an eager way.

3. Implement the MAPF solver based on the DPLL(T) scheme using the suggested integration and

evaluate it on relevant benchmarks.

 
[1] Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli: Solving SAT and SAT Modulo Theories: From an

abstract Davis--Putnam--Logemann--Loveland procedure to DPLL(T). J. ACM 53(6): 937-977 (2006)

[2] Daniel Kroening, Ofer Strichman: Decision Procedures - An Algorithmic Point of View, Second

Edition. Texts in Theoretical Computer Science. An EATCS Series, Springer 2016, ISBN 978-3-662-50496-

3.

[3] Pavel Surynek: Unifying Search-based and Compilation-based Approaches to Multi-agent Path

Finding through Satisfiability Modulo Theories. IJCAI 2019: 1177-1183

Electronically approved by Ing. Karel Klouda, Ph.D. on 6 January 2021 in Prague.

Assignment of master’s thesis

Title: DPLL(MAPF): Integration of a SAT Solver and Multi-Agent Path Finding

Student: Bc. Martin Čapek

Supervisor: doc. RNDr. Pavel Surynek, Ph.D.

Study program: Informatics

Branch / specialization: Knowledge Engineering

Department: Department of Applied Mathematics

Validity: until the end of summer semester 2021/2022

Master’s thesis

DPLL(MAPF): Integration of a SAT
Solver and Multi-Agent Path Finding

Bc. Martin Čapek

Department of Applied Mathematics
Supervisor: doc. RNDr. Pavel Surynek, Ph.D.

May 6, 2021

Acknowledgements

I feel very grateful to have a supervisor who has guided me through my
diploma thesis.

I would like to thank my family for their continuous support that has been
shown during my college years.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 6, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Martin Čapek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Čapek, Martin. DPLL(MAPF): Integration of a SAT Solver and Multi-Agent
Path Finding. Master’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2021.

Abstrakt

Multiagentńı hledáńı cest (MAPF) se často kopiluje do výrokové splnitelnosti
(SAT) a je dále vyřešeno existuj́ıćım SAT řešičem.

V této práci jsme přǐsli s novým kompilačńım schématem DPLL(MAPF),
který použ́ıvá těsnou inegraci teorie MAPF a SAT řešiče. Vysvětlili jsme, že
DPLL(MAPF) je daľśım logickým krokem pro zlepšeńı řešič̊u MAPF použ́ıvaj́ıćı
ĺıné kódováńı. Takovým řešičem je SMT-CBS, na který jsme se v této práci
zaměřili.

Dále jsme navrhli novou stategii ĺıného kódováńı - Eager chokepoints.
Impementovali jsme DPLL(MAPF) a podrobili test̊um. Vyšlo nám, že

DPLL(MAPF) dokáže překonat SMT-CBS. Nakonec jme vyhodnotili strategii
Eager chokepoints, která se ukázala jako nevhodná.

Kĺıčová slova multiagentńı hledáńı cest (MAPF), kooperativńı hledáńı cest,
SAT, umělá inteligence, DPLL(MAPF), kompilace problému do výrokové spl-
nitelnosti, snaživé kódováńı, ĺıné kódováńı

vii

Abstract

Multi-agent path finding (MAPF) is often compiled to Boolean satisfiability
(SAT) and solved by existing SAT solvers.

We present in this paper a novel compilation scheme called DPLL(MAPF),
which brings closer integration of SAT solver and MAPF theory. We show
that DPLL(MAPF) is the next logical step in improving lazy encoding MAPF
solvers. Such solver that we focus on is SMT-CBS.

We propose a new strategy of adding constrains more eagerly - Eager
chokepoints.

We implemented DPLL(MAPF) and evaluated it. The results show that
DPLL(MAPF) can outperform SMT-CBS and our strategy Eager chokepoints
is not a favorable improvement.

Keywords multi-agent path finding (MAPF), cooperative pathfinding, propo-
sitional satisfiability (SAT), artificial intelligence, DPLL(MAPF), SAT-based
compilation, eager encoding, lazy encoding

viii

Contents

Introduction 1

1 Backround and theory 3
1.1 Multi-agent pathfinding . 3

1.1.1 Cumulative objectives 5
1.1.2 MAPF methods . 5

1.2 Propositional logic . 5
1.3 CDCL . 6
1.4 Automated planning . 8

1.4.1 Classical planning . 9
1.4.2 Planning example . 10
1.4.3 SATPlan . 12

1.5 Eager Encoding: MDD-SAT . 14
1.5.1 Optimality and completeness 16

1.6 Constrains . 17
1.6.1 Example . 18

2 Novel methods 21
2.1 Eager vs Lazy encoding . 21
2.2 Lazy Encoding: SMT-CBS . 22
2.3 DPLL(T) . 25
2.4 SAT Solver + MAPF = DPLL(MAPF) 27

2.4.1 Adding constrains . 29
2.4.2 Eagerly adding of chokepoints 31

3 Prototype 33
3.1 reLOC . 34
3.2 CPF format . 35
3.3 encode MAP . 35
3.4 MAPF handler . 36

ix

3.5 Solver . 37

4 Experimental evaluation 39
4.1 Graphs . 39
4.2 Checking parameter . 41

4.2.1 Uniform . 42
4.2.2 Exponential . 42
4.2.3 Size of formula . 42
4.2.4 Another concepts . 43

4.3 Results . 43
4.3.1 Measurement description 43
4.3.2 Results and evaluation 44
4.3.3 Eager chokepoints evaluation 47

Conclusion 49
Future works . 50

Bibliography 51

A Acronyms 57

B Contents of enclosed CD 59

x

List of Figures

0.1 Autonomous drive units and storage pods that contain products
and can be moved by the drive units (left) and the layout of a
warehouse system (right) [1] . 1

1.1 An example of move forbidden by no-swap constrain 4
1.2 An example of move forbidden by following constrain 4
1.3 An example of MAPF consisting of three agents and its solution . 4
1.4 Example of implication graph . 7
1.5 Example of a system, which includes planning [2] 9
1.6 Cargo transport as planning . 11
1.7 Schema of SATPlan with optimization criterion 12
1.8 Example of MAPF with one agent 15
1.9 A TEG for MAPF from figure 1.8. 15
1.10 An MDD for TEG from figure 1.9. 16
1.11 Simple MAPF problem . 18
1.12 MDDs for agents in figure 1.11 . 18

2.1 diagram of SMT-CBS . 24
2.2 SMT-CBS in DPLL(T) perspective 25
2.3 The main components of DPLL(T) 27
2.4 diagram of DPLL(MAPF) . 30
2.5 Part of MDD with two chokepoints 31

4.1 MAP file format and image of such map 40
4.2 maze-32-32 . 40
4.3 empty . 41
4.4 Warehouse-100-63 . 41

xi

List of Tables

4.1 Number of variables . 42
4.2 Number of checks without finding collision 43
4.3 Empty 16 runtime results in milliseconds 44
4.4 Empty 32 runtime results in seconds 45
4.5 Maze runtime results in seconds . 45
4.6 Warehouse runtime results in seconds 46
4.7 Sums of TDP LL(MAP F) − TSMT −CBS in seconds and percentage

improvement counted as (TDP LL(MAP F)/TSMT −CBS)−1. Columns
are sorted by row sum. Negative numbers are highlighted. 46

4.8 Sums of TDP LL(MAP F)Choke
− TSMT −CBS in seconds. Last two

rows are sum of column and percentage improvement counted as
(TDP LL(MAP F)Choke

/TSMT −CBS)− 1 47
4.9 Sums of TDP LL(MAP F)−TDP LL(MAP F)Choke

in seconds and sum of
columns. Positive numbers are highlighted. 47

xiii

Introduction

Multi-agent path finding (MAPF) has been well studied by researchers from
artificial intelligence, robotics, theoretical computer science and operations
research. The task of the (standard) MAPF is to find the paths for multiple
agents in a given graph from their current vertices to their targets without
colliding with other agents, while at the same time optimizing a cost function.
The MAPF problem represents an abstraction for many important real-life
tasks from warehouse logistics [3], computer games [4], or ship avoidance [5].
In order to reflect various aspects of real-life applications variants of MAPF
have been introduced such as those considered kinematic constraints [6], large
agents [7], or deadlines [8].

Figure 0.1: Autonomous drive units and storage pods that contain products
and can be moved by the drive units (left) and the layout of a warehouse
system (right) [1]

Let us see the automated warehouse on figure 0.1. In the warehouse, items
need to be moved. In order to move X items, X robots (agents) are given a
task to move to these items positions and that is a simple MAPF problem.
When the first robot picks up an item, it needs to go to another position, or
an inactive robot gets a command to move to some position, we have another
instance of MAPF problem, and we need to recalculate it. Therefore, the
real life problem of navigating robots in a warehouse is more dynamic and
complex (considering rotation, different speed, . . .). As we said earlier, the

1

Introduction

standard MAPF is an abstraction of the problem, but can be used with some
extensions.

In this work, we focus on developing a faster method for the standard
formulation of the MAPF problem via converting it into a boolean satisfiability
problem (SAT). We are targeting on improving the lazy approach by saving
SAT solver from the calculation of infeasible solutions, which should lead to
better performance.

2

Chapter 1
Backround and theory

In this chapter, we will go through the basic concepts and prerequisites re-
quired for understanding the later parts of this work.

First, we will introduce MAPF formally. Then we will look at propositional
logic, which is crucial for translating MAPF to SAT. Then we will explain what
is automated planning and how is SAT used in automated planning. After
that we will have everything ready to show you how to encode MAPF to SAT
instances and you will have an idea how to solve MAPF by eager encoding,
which is our final goal in this chapter.

1.1 Multi-agent pathfinding

Multi-agent path finding (MAPF) [9, 10, 11, 12, 13, 14, 15] is the task of nav-
igating agents from given starting positions to given individual goal positions.
The task takes place in an undirected graph G = (V,E). Agents from a set
A = {a1, a2, ..., ak} are located in vertices1 of G with at most one agent per
vertex.

Valid movement of an agent is either to move to its adjacent vertex or stay
at the same vertex.

Additionally, the movements of agents are instantaneous and are possi-
ble across edges assuming no other agent is entering the same target vertex.
Agents are allowed to enter vertices being simultaneously vacated by other
agents. However, the trivial case when a pair of agents swaps their positions
across an edge is forbidden in the standard formulation of MAPF.

In other words, we can say we are using no-swap constraint (fig.1.1) and
do not following constrain (fig.1.2).

There are more MAPF constrains like edge conflict, cycle conflict or dis-
appear at target. They will not occur with our setting of MAPF and disappear
at target is not standart, so we will omit them.

1often called nodes

3

1. Backround and theory

(1) No-swap constrain forbids agents from swapping their position over
a single edge. In other words, agents are not allowed to use the same edge at
the same time. This constrain is demonstrated on figure 1.1 with two agents,
labeled by green and red color.

Figure 1.1: An example of move forbidden by no-swap constrain

(2) Following constrain forbids agents from moving to a vertex if it is
not empty before the move action has begun, see figure 1.2.

Figure 1.2: An example of move forbidden by following constrain

We usually denote the configuration of agents in the vertices of G at a
discrete time step t as αt : A → V . Non-conflicting movement transform
configuration αt instantaneously into the next configuration αt+1. We do
not consider what happens between t and t + 1 in this discrete abstraction.
Multiple agents can move at a time, hence the MAPF problem is inherently
parallel.

The initial configuration of agents in vertices of the graph can be written
as α0 : A → V and similarly the goal configuration as α+ : A → V . The
task of navigating agents hence can be expressed as a task of transforming
the initial configuration of agents α0 : A → V into the goal configuration
α+ : A→ V via valid moves.

Figure 1.3: An example of MAPF consisting of three agents and its solution

4

1.2. Propositional logic

On figure 1.3 there is MAPF problem on the left with three agents and
their destinations, on the right is the goal configuration (graph where agents
are on their goal destinations), and in the middle bottom is a solution written
as table.

1.1.1 Cumulative objectives

We often aim at minimizing the global cumulative cost of two commonly used
functions:
(1) sum-of-costs (denoted ξ) is the summation, over all agents, of the
number of time steps required to reach the goal location.
Formally, ξ = ∑m

i=1 ξ(path(ai)), where ξ(path(ai)) is an individual path cost
of agent ai from α0(ai) to α+(ai).
(2) makespan: (denoted µ) is the total time until the last agent reaches its
destination (i.e., the maximum of the individual costs).

While finding a feasible solution of MAPF can be done in polynomial time
[16, 17], finding an optimal solution with respect to either the makespan or
the sum-of-costs is an NP-hard problem, because it is a generalized problem
of 2n − 1 sliding puzzle. [18].

1.1.2 MAPF methods

There are many methods for solving MAPF. There are bounded suboptimal
[19], suboptimal search [20] and optimal methods [21], such as answer set pro-
gramming (ASP) [22], constraint satisfaction problem (CSP) [23] and Boolean
satisfiability (SAT) [24].

Nevertheless, in this work we are focusing on reduction MAPF to satisfi-
ability.

1.2 Propositional logic

Propositional logic is the simplest logic that we can use for the description of
states and relations of a real/fictional world as an abstraction, and then we
can use this abstraction as a working environment.

We will go through some definitions that will appear in this work.
Atomic formula is basic statement/proposition that can be assigned True
or False, e.g. It is raining, I like you, 5 < 3, . . .
Formula can also be created as a combination of formulas connected by logical
operators (AND, OR, IMPLIES, . . .), e.g. It’s raining and I like you.

We then use variables as shortcuts for atomic formula, e.g. x ∧ y, where
x = It’s raining, y = I like you
Literal is an atomic formula (proposition) or its negation, e.g. x,¬x
Clause is a disjunction of literals, e.g. y ∨ ¬x

5

1. Backround and theory

A clause is true if at least one of the literals is true.
CNF (Conjunctive Normal Form) is a conjunction of one or more clauses, e.g.
(x ∧ y) ∨ ¬x, x ∨ y, x

Any formula can be represented in CNF. CNF is used as a canonical rep-
resentation of formulas in many algorithms.

The problem is when we rely on that the formula will be in CNF and it is
not, so we have to convert it to CNF, because the conversion may lead to an
exponential explosion of the formula. This might rapidly slow the algorithm.
Luckily, many real world problems can be naturally represented as a formula
in CNF.
Assignment means assigning truth values to formula, e.g. we have formula
y ∨ ¬x and we will assign values to atomic formulas, such as x = 1, y = 0
Assignment A satisfies the formula P if and only if A(P) = True, e.g. as-
signment x = 1, y = 0 satisfies formula y ∨ ¬x
SAT (Boolean Satisfiability Problem) is the problem of determining if there
exists an interpretation that satisfies a given propositional formula (is there
an assignment that makes it true?). Cook–Levin theorem says that SAT is
NP-complete [25]. This means that any NP problem can be reduced to SAT
and it has been a popular procedure since SAT solvers started improving.

If the formula is unsatisfiable, we denoted that as UNSAT. The well-known
algorithm for solving SAT is CDCL.

1.3 CDCL

Conflict-driven clause learning (CDCL) is an algorithm for solving the SAT.
CDCL was inspired by the older algorithm DPLL. CDCL outperformed DPLL
and modern SAT solving algorithms are most often CDCL based.

Davis–Putnam–Logemann–Loveland (DPLL) is an algorithm for solv-
ing the CNF-SAT problem (deciding the satisfiability of the formula in CNF).

DPLL algorithm use Backtracking, Unit propagation and Pure literal:
Backtracking - algorithm starts by choosing a propositional variable,

assigning it a truth value. By assigning a truth value, it splits the problem
into two subproblems (we can image a binary tree, where node is a variable
and two edges leading from it represent assigning True and False). Then it
continuous on the subproblem with the same logic (splitting problem), if any
solution was not found in this subproblem, we will try to solve the second
subproblem (with opposite truth value).

Unit propagation - when a clause contains only a single literal, we know
which truth value should be assigned to the related variable to satisfy this
clause. We then propagate this variable we have just assigned to other clauses.

Pure literal - propositional variable with only one polarity (with or with-
out logical negation ¬). Such variable can be assign truth value that literal

6

1.3. CDCL

is true. Furthermore in CNF if one literal in clause is true, than the clause is
true, so we can delete clauses with pure literal.

DPLL algorithm uses chronological backtracking (as we introduced), with-
out learning. CDCL uses non-chronological backtrack (”Backjumping”) with
learning on implication graph.

Backjumping is form of backtracking. Backtracking always goes up one
level in the search tree, while backjumping may go up more levels. This is
allowed by knowledge from implication graph.

Implication graph is a directed acyclic graph where each vertex repre-
sents a variable assignment. When the assignment of one variable leads to the
assignment of another variable, we will write that relation as edge. If a graph
contains a variable assigned both true and false, we call it conflict. From the
graph we can see roots of the conflict.

We will show you an example of an implication graph (see figure 1.4)
constructed from the propositional formula defined below. In our implication
graph, we will first assign X as true, then we will be applying unit propagation
(each edge will have a number representing the clause). We will end with
conflict.

We will construct an implication graph (see figure 1.4) as example. We
will be using the CNF formula with clauses:

1. X ∨W ∨ Z

2. ¬X ∨ Y ∨W

3. ¬X ∨ ¬W

4. ¬Y ∨ ¬Z

5. W ∨ Z

Figure 1.4: Example of implication graph

First, we assign variable X as true and create node ’X ’. Then we propagate
this literal - first clause is satisfied, second is changed ¬X∨Y ∨W → ∨Y ∨W ,
third is changed ¬X ∨ ¬W → ¬W . In the third clause, unit propagation is

7

1. Backround and theory

triggered assigning W to be false. So we create a node ’¬W ’ and mark the
edge with the number of clauses leading to this decision. In our case, the unit
propagation will repeat until a conflict happens and that is our implication
graph on figure 1.4.

When we reach a conflict in an implication graph, we can make cuts and
learn from them. In figure 1.4 there are 3 cuts and from each we can get a
conflicting clause:

• Cut 1: ¬X

• Cut 2: ¬Y ∨W

• Cut 3: ¬Y ∨ ¬Z

We provide algorithm 1 which represents high-level overview of the Conflict-
Driven Clause-Learning algorithm, where BCP() is backjumping. DECIDE()
Chooses an unassigned variable and a truth value for it, if all variables are
assigned, it returns false.

Moreover, a scheme of CDCL is provided as part of figure 2.2 in next
chapter.

Algorithm 1: CDCL-SAT
1 CDCL (CNFformula)
2 while True do
3 while (BCP() = “conflict do
4 backtrack-level ← Analyze-Conflict()
5 if backtrack-level < 0 then
6 return “Unsatisfiable”
7 BackTrack(backtrack-level)
8 if ¬DECIDE() then
9 return “Satisfiable”

1.4 Automated planning

The world is in a certain state, but we would like it to be in another state.
Thus, we will search for such a plan that will lead us through a sequence of
actions to the desired goal state.

That was a very simple definition of planning. However, if we want AI to
do the planning for us, we need to define the environment states and actions
for the AI so it can make a plan (and we can use propositional logic for that).

8

1.4. Automated planning

Figure 1.5: Example of a system, which
includes planning [2]

Planning is often just a part of an
agent or system, see figure 1.5.

Because we talk about planning
in artificial intelligence, we can imag-
ine a taxi as an agent (either an au-
tonomous car or taxi driver who acts
by our planning). Agent got the task
to deliver passenger. First, the agent
will plan the route to pick up passen-
ger. Then the agent will act by this
plan. The agent can create a plan
more dynamically (on the way) or
react to the environment (e.g. traf-
fic jam, which could have been mes-
saged from other agents). Or we can
have some centralised system that
will process all requests and create
plans (navigation) to all taxis.

Ideally, we would like to have a general planning-problem solver to solve
such planning problems. However, the real word is too complex and we reduce
the difficulty by simplifying assumptions. So the automated planning can be
split into many categories based presumptions like:

• deterministic vs non-deterministic (e.g. some vehicles can be delayed by
traffic or can have an accident)

• Can be actions apprehended as instantaneous?

• Can the current state be observed unambiguously?

• . . .

Simple and popular planning classification is the classical planning prob-
lem.

1.4.1 Classical planning

Planning have:

• (representation of) goal to achieve

• (representation of) actions that can be performed

• (representation of) the environment

and have to generate a plan to achieve the goal.

9

1. Backround and theory

Classical planning has these restrictions:

• Deterministic – each action has only one outcome

• Finite system – finitely many states, actions, events

• Static (no exogenous events) – no changes, but the agent’s actions

• Attainment goals – existence of a set of goal states

• Sequential plans – a plan is linearly ordered as a sequence of actions

• Implicit time – no time duration, linear sequence of instantaneous states

• Off-line planning – first plan, then act

It is also always fully observable, because the initial state is known unambigu-
ously, and all actions are deterministic, so we now exactly in what state we
are after any sequence of actions.

To represent the planning problem we use a language based on proposi-
tional logic. Two best known languages are PDDL (Planning Domain Def-
inition Language) and older STRIPS (Stanford Research Institute Problem
Solver) [26]. These two languages are very similar and they uses operators.

Operator consists of:

• Name of operator

• List of all variables used in the operator

• A Precondition – a set of literals which must be established before the
action is performed

• An Effect – a set of literals which are established after the action is
performed

An instance of an operator is called action.

1.4.2 Planning example

The basic example of a planning problem is cargo transport, see fig.1.6. The
initial state is some cargo C on place A and truck T on place B. The goal
state is cargo on place D.

First, we need to define an environment:

At(x,a): object x (truck or cargo) is at place a

In(c,t): cargo c is in truck t

Then we need to define the initial state, goal state, and operators:

10

1.4. Automated planning

Figure 1.6: Cargo transport as planning

Initial state: At(C,A) ∧At(T,B) ∧ Place(A) ∧ Place(B) ∧Cargo(C) ∧
Place(D) ∧ Truck(T)

Goal state: At(Cargo, C)

Operator(Load(c, t, a))
precond: At(c, a) ∧At(t, a) ∧ Cargo(c) ∧ Truck(t) ∧ Place(a)
effect: ¬At(c, a) ∧ In(c, t)

Operator(Unload(c, t, a))
precond: In(c, t) ∧At(t, a) ∧ Cargo(c) ∧ Truck(t) ∧ Place(a)
effect: At(c, a) ∧ ¬In(c, t)

Operator(Move(t, from, to))
precond: At(t, from) ∧ Truck(t) ∧ Place(from) ∧ Place(to)
effect: ¬At(t, from) ∧At(t, to)

A plan solution to the problem is an ordered set of actions:

11

1. Backround and theory

[Move(T, B, A), Load(C, T, A), Move(T, A, D), Unload(C, T, D)]

Deciding whether any plan exists for a propositional STRIPS instance is
PSPACE-complete. Various restrictions can be enforced to decide if a plan
exists in polynomial time or at least make it an NP-complete problem [27].

1.4.3 SATPlan

Planning as satisfiability is a powerful approach in automated planning, pro-
posed by Henry Kautz and Bart Selman in their SATPLAN system in 1992 [28].
Reduces the planning problem instance into an instance of classical proposi-
tional SAT problem, which is further solved by some SAT solver.

SATPlan is about satisfaction. We want any solution, not necessarily the
cheapest or the shortest.

Bounded SATPlan is the question whether there exists a plan of a given
length or less (we want an optimal solution).

In the bounded SATPlan, we have a planning problem P and a number
n (representing optimization criterion). We have to define formula for (P,n)
such that any satisfying truth assignment of the formula represent a solution
to (P,n). We say that this formula is satisfiable if it has a solution.

The schema of bounded SATPlan is captured on figure 1.7, where CNF is
a propositional formula in conjunctive normal form of (P,n).

Figure 1.7: Schema of SATPlan with optimization criterion

We also provide algorithm 2, where Tmax is the upper bound and the rest
of the input is a planning problem.

We will show an example of encoding problem into a propositional formula.
The problem will be: We have truck T on location A and want to move it to
location B. The problem is a simplified problem from subsection 1.4.2 and we
will use similar symbols.

Propositional formula for one time step:

12

1.4. Automated planning

Algorithm 2: Framework of bounded SATPlan
1 SATPlan (init, transition, goal, Tmax)
2 for t = 0 to Tmax do
3 cnf ← translate to SAT(init, transition, goal, t)
4 assignment← SAT-solver(cnf)
5 if model is not null then
6 return extract solution(assignment)

7 return failure

1. At(T,A)0 - initial state

2. At(T,B)1 - goal state

3. At(T,A)1 ⇔ (Move(T,B,A)0 ∨At(T,A)0) - successor state axiom

4. At(T,B)1 ⇔ (Move(T,A,B)0 ∨At(T,B)0) - successor state axiom

5. Move(T,A,B)0 ⇒ (At(T,A)0 ∧At(T,B)1 ∧ ¬At(T,A)1) - operator

6. Move(T,B,A)0 ⇒ (At(T,B)0 ∧At(T,A)1 ∧ ¬At(T,B)1) - operator

7. (¬Move(T,B,A)0 ∨ ¬Move(T,A,B)0) - restriction for only one action

The upper index represents time. The numbered lines represent clauses (al-
though they are not, but let us imagine we can transform them any time) and
with the conjunction of lines we get CNF, which can be put into SAT solver.

The initial and goal states are marked blue, because they are true. Our
goal is to find an assignment that all lines are true. In the next step, we
propagate the initial and goal state. We will mark true literals with blue and
false ones with red:

3. At(T,A)1 ⇔ (Move(T,B,A)0 ∨At(T,A)0)

4. At(T,B)1 ⇔ (Move(T,A,B)0 ∨At(T,B)0)

5. Move(T,A,B)0 ⇒ (At(T,A)0 ∧At(T,B)1 ∧ ¬At(T,A)1)

6. Move(T,B,A)0 ⇒ (At(T,B)0 ∧At(T,A)1 ∧ ¬At(T,B)1)

7. (¬Move(T,B,A)0 ∨ ¬Move(T,A,B)0)

To satisfy 4. line we have to mark Move(T,B,A)0 as true. We will continue
assigning/coloring until we have:

3. At(T,A)1 ⇔ (Move(T,B,A)0 ∨At(T,A)0)

4. At(T,B)1 ⇔ (Move(T,A,B)0 ∨At(T,B)0)

13

1. Backround and theory

5. Move(T,A,B)0 ⇒ (At(T,A)0 ∧At(T,B)1 ∧ ¬At(T,A)1)

6. Move(T,B,A)0 ⇒ (At(T,B)0 ∧At(T,A)1 ∧ ¬At(T,B)1)

7. (¬Move(T,B,A)0 ∨ ¬Move(T,A,B)0)

We ended with all satisfied lines, thus the problem is solvable with this solu-
tion. We can get a solution as a set of actions if we select all true operators.
In our case, it is Move(T,B,A)0.

1.5 Eager Encoding: MDD-SAT

The idea behind MDD-SAT [29] is to construct a complete Boolean model, a
propositional formula F(ξ) according to the following definition.

Definition 1 (complete model). Propositional formula F(ξ) is a complete
Boolean model for MAPF Σ iff F(ξ) is satisfiable ⇔ Σ has a solution of sum-
of-costs ξ.

Being able to construct F(ξ) for solvable MAPF, one can obtain the opti-
mal sum-of-costs by consulting the SAT solver with a series of queries about
F(ξ0), F(ξ0 + 1), ... until a satisfiable formula is found, where ξ0 is a lower
bound on the sum-of-costs such as the sum of shortest paths of individual
agents. This iterative scheme works due to the fact that satisfiability of F(ξ)
is a non-decreasing function in parameter ξ.

The construction of F(ξ) must ensure that a valid MAPF solution can
be extracted from its satisfying assignment. This is done by representing the
configurations of agents at all relevant time steps before they reach their goals
via propositional variables. We first make a time expanded graph (TEG) of the
underlying graph G [24] for each agent, a directed acyclic graph obtained by
copying vertices of G for all relevant time steps. A directed edge is introduced
into TEG for each pair of nodes from consecutive copies corresponding to
vertices that are connected in G. In addition to this, nodes from consecutive
copies corresponding to identical vertices are connected by directed edges as
well to represent wait actions. A directed path in TEG corresponds to an
individual plan of the agent (sequence of its moves). The construction of
TEG is shown in Figures 1.8 and 1.9.

It remains to ensure that satisfying assignments of F(ξ) correspond to non-
conflicting paths. A Boolean variable X t

u(ai) is introduced for every node ut

from TEG (a node corresponding to u ∈ V at time step t) for each agent agent
ai ∈ A; X t

u(ai) is TRUE iff agent ai is located in u at time step t. Similarly,
we introduce Boolean variables for edges denoted E t

u,v(ai), with analogous
meaning; E t

u,v(ai) is TRUE iff agent ai moves from u to v starting the move
at time step t. Finally constraints are added so that truth assignments are
restricted to those that correspond to valid solutions of a given MAPF. The

14

1.5. Eager Encoding: MDD-SAT

Figure 1.8: Example of MAPF with one agent

Figure 1.9: A TEG for MAPF from figure 1.8.

added constraints together ensure that F(ξ) is a complete Boolean model for
given MAPF. We will closely look at the constrains in the next section.

The MDD-SAT solver implements an improvement over TEGs based on
the observation that not all nodes in TEG can be reached under a given sum-
of-costs ξ. The unreachable nodes can be pruned out from the TEG resulting
in a directed acyclic graph called multi-value decision diagram (MDD) which
has been introduced in the context of MAPF by search-based solvers [12, 13]
(see Figure 1.10). Adoption of MDDs in MDD-SAT resulted in much smaller
formulae.

Algorithm 3 shows the pseudo-code of MDD-SAT.
The SATPlan schema on figure 1.7 is also scheme for MDD-SAT workflow.

15

1. Backround and theory

Figure 1.10: An MDD for TEG from figure 1.9.

Algorithm 3: Framework of MDD-SAT, an optimal SAT-based
MAPF solver
1 MDD-SAT (Σ = (G = (V,E), A, α0, α+))
2 paths ← {shortest path from α0(ai) to α+(ai)|i = 1, 2, ..., k}
3 ξ ←

∑k
i=1 ξ(paths(ai))

4 while TRUE do
5 F(ξ)← encode-Complete(ξ,G,A, α0, α+)
6 assignment ← consult-SAT-Solver(F(ξ))
7 if assignment 6= UNSAT then
8 paths ← extract-Solution(assignment)
9 return paths

10 ξ ← ξ + 1

1.5.1 Optimality and completeness

Definition 2 (Optimality). An algorithm is optimal when it returns an
optimal solution (with respect to a criterion).

Definition 3 (Completeness). An algorithm is complete if it

• always terminates

• returns valid solution when the input is valid

Algorithm 3 clearly terminates for solvable MAPF instances as we start
seeking a solution of ξ = ξ0 and increment ξ to all possible values (algorithm
using makespan µ would proceed the same way - initialize µ and incrementing
it). So if we iterate over ξ values starting at minimum ξ0, we must at some
point obtain a solution and it will be optimal, because no previous solution
was found → optimality ensured.

In the case of unsolvable instances, algorithm 3 would be iteratating for-
ever. The unfeasibility of an MAPF instance can be checked separately by a
polynomial-time complete sub-optimal algorithm such as push-and-rotate [30].

16

1.6. Constrains

This ensures completeness and this technique will not worsen our time com-
plexity.

1.6 Constrains

In the previous chapter, we learned how to construct variables from MAPF
and told that we need to add constrains to them to have complete model.

We can formalize MAPF rules with four types of constrains and all of them
can be easily interpreted in CNF:

1. Edges

Agents can move in the graph through edges. We will look at example
from figure 1.10. If an agent is at time 1 in vertex a (denoted as a1) then
in time 2 agent can be in a2 or b2 but can’t be in c2. We will write this
constraint in propositional logic as a1 ⇒ (a2∨b2). This can be rewritten
in clause: ¬a1 ∨ a2 ∨ b2

2. Collisions

More agents cannot occupy one vertex. In other words, the sum of agents
for each vertex and time is less than or equal 1. Therefore, we disallow
every pair: ¬χt

v(αi)∨¬χt
v(αj) ; ∀ i,j ∈ Agents∧ i 6= j ; ∀v ∈ V ertices ;

for each t = 0 . . . µ
Prohibition of pair is clause so we create CNF by conjunction of these
clauses.

3. Agent can be in one vertex at one time

This might seem obvious to us, but we have to tell the program explicitly.

We will do this same way as collisions - prohibition of pairs. By this,
we allow an agent to be nowhere at one time. We can afford to do this,
because Edge constraint will ensure that the agent will not disappear.

We will look at the example from figure 1.10. Agent A1 in time 2 cannot
be simultaneously in vertices a, b and c. We can write this as CNF:
(¬a2 ∨ ¬b2) ∧ (¬a2 ∨ ¬c2) ∧ (¬b2 ∨ ¬c2)
Therefore assignment a2 = 0, b2 = 0, c2 = 0 is valid for this constraint
as we spoke few lines earlier.

4. Swaps

In the standard MAPF we forbid swaps (see figure 1.1). We will do that
by forbidding all four variables, that represent such swap - ¬χt

v(αi) ∨
¬χt

w(αj)∨¬χt+1
w (αi)∨¬χt+1

v (αj); ∀ i,j ∈ Agents∧i 6= j; v, w ∈ V ertices;
t = 0 . . . µ− 1

17

1. Backround and theory

1.6.1 Example

We will demonstrate how exactly are these constrains created using a simple
MAPF example, see figure 1.11.

Figure 1.11: Simple MAPF problem

For each agent, we will construct MDD with µ = 2, see figure 1.12. We can
see that this makespan is insufficient for this problem (we need at least 3 time
steps to solve it), thus this encoding will not be complete model. Algorithm 3
would proceed the same way, first it would create these MDDs and explicitly
encoding, then try to solve it resulting in UNSAT, after that increasing µ to
3, make new encoding, which will be solvable.

Figure 1.12: MDDs for agents in figure 1.11

The variables for MDDs in figure 1.12 can be written as:
a0

0, a
1
0, a

2
0, b

1
0, b

2
0, c

2
0, d

2
0, d

0
1, d

1
1, d

2
1, b

1
1, b

2
1, a

2
1, c

2
1, where letter represents vertex, in-

dex represents time and upper index represents agnet.
Then we use the variables to construct the constrains as clauses. These

clauses will be used to create CNF formula by conjuncting them. We will
show all clauses divided into categories:

18

1.6. Constrains

• Edges
We will divide clauses for each agent/MDD.

Agent 0 Agent 1
¬a0

0 ∨ a1
0 ∨ b1

0 ¬d0
1 ∨ d1

1 ∨ b1
1

¬a1
0 ∨ a2

0 ∨ b2
0 ¬d1

1 ∨ d2
1 ∨ b2

1

¬b1
0 ∨ a2

0 ∨ b2
0 ∨ c2

0 ∨ d2
0 ¬b1

1 ∨ a2
1 ∨ b2

1 ∨ c2
1 ∨ d2

1

• Collisions
¬b1

0 ∨ ¬b1
1

¬a2
0 ∨ ¬a2

1

¬b2
0 ∨ ¬b2

1

¬c2
0 ∨ ¬c2

1

¬d2
0 ∨ ¬d2

1

• Agent can be in one vertex at one time
We will divide clauses for each agent/MDD.

Agent 0 Agent 1
¬a1

0 ∨ ¬b1
0 ¬d1

1 ∨ ¬b1
1

¬a2
0 ∨ ¬b2

0 ¬d2
1 ∨ ¬b2

1

¬a2
0 ∨ ¬c2

0 ¬d2
1 ∨ ¬c2

1

¬a2
0 ∨ ¬d2

0 ¬d2
1 ∨ ¬a2

1

¬b2
0 ∨ ¬c2

0 ¬b2
1 ∨ ¬c2

1

¬b2
0 ∨ ¬d2

0 ¬b2
1 ∨ ¬a2

1

¬c2
0 ∨ ¬d2

0 ¬c2
1 ∨ ¬a2

1

• Swaps
¬b1

0 ∨ ¬d1
1 ∨ ¬b2

1 ∨ ¬d2
0

¬b1
1 ∨ ¬a1

0 ∨ ¬b2
0 ∨ ¬a2

1

We constructed 29 clauses. This formula is unsatisfiable, because both
agents would collide on vertex b if they have to get to their destination in 2
time steps. Therefore, we increase makespan µ to 3 and construct a new CNF
formula, which contains 57 clauses (twice as much).

So we can imagine that the number of clauses scale quite well with a
MAPF instance. Although it is not easy to define scaling because it depends
on many corresponsive features, e.g. the number of agents, agent’s paths, size
and complexity of the graph,. . .

19

Chapter 2
Novel methods

2.1 Eager vs Lazy encoding

Compiling MAPF to other formalisms for which an off-the-shelf solver is avail-
able is a popular solving approach. Optimal solvers for MAPF based on the
compilation to constraint satisfaction problem (CSP) [23], answer set pro-
gramming (ASP) [22], integer programming (IP) [31], and Boolean satisfiabil-
ity (SAT) [24] currently exist.

In this work, we focus on compilation of MAPF to SAT [32]. Contemporary
techniques of MAPF compilation regard the SAT solver as an external tool
having only limited interaction with the main MAPF solver. Often, a formula,
called a complete Boolean model, encoding a question whether there exists a
solution to input MAPF of a specified cost is constructed in a single-shot and
consulted with the SAT solver. The task of the SAT solver is to determine
the truth value assignment of all decision variables satisfying the formula or
the answer that such assignment does not exist. This scheme has been used in
MDD-SAT (see section 1.5), the first sum-of-costs optimal SAT-based MAPF
solver [29].

The disadvantage of the SAT consultation scheme from MDD-SAT is
twofold:
(1) The complete Boolean model must be fully specified so that the equiva-
lence between the solvability of the input MAPF instance and the satisfiability
of the Boolean model is established, which may result in a large formula.
(2) The SAT solver in this scheme acts as a black box for the main solver that
has no way to interact with the SAT solver until it finishes.

The first disadvantage has been addressed in SMT-CBS [33] (will be prop-
erly explained in next section 2.2), a sum-of-costs optimal SAT-based solver
that introduces the concept of incomplete Boolean models. Using the incom-
plete Boolean model, the input MAPF instance is not fully specified so only the
implication between the solvability of the input MAPF and the Boolean model
holds. Such a relaxation requires that the MAPF solution obtained from the

21

2. Novel methods

truth value assignment of the model is checked for consistency against MAPF
movement rules (as those are not fully encoded in the model). If the rules are
not violated, the solving process is finished. Otherwise the model needs to
be refined by constraints that forbid the detected MAPF rule violations and
consulted with the SAT solver again 2.

The benefit of using incomplete Boolean models is that often the solving
process finishes with a small formula since a lot of constraints specifying the
MAPF problem completely will not come into effect (for example we do not
need to specify all collision avoidance constraints between agents in a sparse
instance). A similar process has been adopted in the compilation of MAPF
to IP [31].

However, the second disadvantage only becomes more apparent in SMT-
CBS. The main MAPF solver must wait until the complete truth value as-
signment is found by the SAT solver. In SMT-CBS not every rule is encoded,
thus SAT solver may make an early decision leading to MAPF rule violation.
Such violation cannot be detected by SAT solver because it is not aware of
the rules and the communication with the main solver that knows the absent
rules. This disadvantage will be covered by DPLL(MAPF) approach (which
will be introduced in further section 2.4). DPLL(MAPF) will be able to detect
such early decision violating MAPF rules.

2.2 Lazy Encoding: SMT-CBS

An important innovation step from MDD-SAT is represented by SMT-CBS
[33], an optimal SAT-based solver employing the idea of encoding MAPF as a
Boolean formula lazily. The lazy encoding is formalized through the concept
of incomplete Boolean model defined as follows.

Definition 4 (incomplete model). Propositional formula H(ξ) is an in-
complete Boolean model of MAPF Σ iff H(ξ) is satisfiable ⇐ Σ has a solution
of sum-of-costs ξ.

In an incomplete Boolean model H(ξ) we do not specify all constraints (see
section 1.6) defining the movement rules of MAPF. We rely on being lucky to
obtain a valid MAPF solution from an under-specified formulation. Hence, in
the contract to MDD-SAT, we need to add a check that the solution extracted
from the satisfying assignment of H(ξ) is consistent, that is, we need to ensure
that agents do not jump, do not disappear, do not appear from nothing etc.
since the correspondence between non-conflicting directed paths in MDDs and
satisfying assignments of H(ξ) is no longer preserved in the under-specified
formulation. If the consistency check is successfully passed, we can return

2This process is analogous to conflict-based search (CBS) [13] where MAPF rule viola-
tions (conflicts between pairs of agents) are resolved via branching the search.

22

2.2. Lazy Encoding: SMT-CBS

the valid MAPF solution extracted from the model, otherwise the incomplete
model needs to be refined.

Algorithm 4: SMT-CBS algorithm for MAPF solving
1 SMT-CBS (Σ = (G = (V,E), A, α0, α+))
2 conflicts ← ∅
3 paths ← {shortest path from α0(ai) to α+(ai)|i = 1, 2, ..., k}
4 ξ ←

∑k

i=1 ξ(paths(ai))
5 while TRUE do
6 (paths, conflicts)← SMT-CBS-Fixed(conflicts, ξ,Σ)
7 if paths 6= UNSAT then
8 return paths
9 ξ ← ξ + 1

10 SMT-CBS-Fixed(conflicts, ξ,Σ)
11 H(ξ)← encode-Incomplete(conflicts, ξ,Σ)
12 while TRUE do
13 assignment ← consult-SAT-Solver(H(ξ))
14 if assignment 6= UNSAT then
15 paths ← extract-Solution(assignment)
16 collisions ← check-Consistency(paths) /* via DECIDEMAPF */
17 if collisions = ∅ then
18 return (paths, conflicts)
19 for each (ai, aj , v, t) ∈ collisions do
20 H(ξ)← H(ξ) ∪ {¬X t

v(ai) ∨ ¬X t
v(aj)}

21 conflicts ← conflicts ∪ {[(ai, v, t), (aj , v, t)]}

22 return (UNSAT,conflicts)

The pseudo-code of SMT-CBS algorithm is shown as Algorithm 4. The
high-level loop that iterates sum-of-costs is the same as in MDD-SAT. The
difference rests in low-level loop within the SMT-CBS-Fixed function that
answers the existence of a solution of a specified sum-of-costs ξ in which the
incomplete Boolean model is refined. Various strategies of refinement can
be adopted. The SMT-CBS starts with H(ξ) where only collision avoidance
constraints are omitted. The constraints making agents to move along directed
paths in MDDs are present. Hence, the consistency check consists in a check
for collisions (lines 16-18). If a collision in a vertex is detected, say a collision
between agents ai and aj in v ∈ V at time step t, then the model is refined
with collision avoidance constraints, in this case clause ¬X t

v(ai) ∨ ¬X t
v(aj) to

H(ξ) is added (line 20). Eventually H(ξ) may converge towards the complete
Boolean model, however often a solution is obtained much earlier.

Terminology alert: We introduced collisions as constrain in section 1.6.
There is also introduced the swap constrain. In lazy encoding we see both
swap and collisions contrains as collisions. We can look at swap as a collision
on an edge.

We present the diagram of SMT-CBS on figure 2.1. It may seem com-

23

2. Novel methods

plicated, but we can look at the diagram as an extension of the scheme of
SATPlan on figure 1.7 with addition of:

• Separating conflicts will produce incomplete model consisting of Prob-
lem without conflicts and Collisions. The Encoder takes these two sep-
arated parts for encoding.

• Collisions are encountered conflicts. They are empty at start and can
be extended by action Add conflicts.

• Paths (potential plan) are decoded assignment. Because we are using
incomplete model, the paths may violate some unencoded MAPF rules.
The Paths can become Plan after successful Consistency check.

• Consistency check will find all Conflicts in Paths and give them all to
Add conflicts. If none is found then our diagram returns Plan and ends.

• Add conflicts will add conflicts to Collisions that arose during Con-
sistency check.

Figure 2.1: diagram of SMT-CBS

24

2.3. DPLL(T)

The optimality and completeness are the same as in MDD-SAT, see section
1.5.1. Completeness is not changed because a complete check is performed
when the assignment is full.

2.3 DPLL(T)

DPLL(T) [34, 35] which is a framework for integrating the SAT solver with
a decision procedure, usually denoted DEDUCTION T , for the conjunctive
fragment of some first-order theory T . The two components of DPLL(T)
together form a decision procedure for general problems in theory T with
arbitrary Boolean structure where the SAT solver component takes care of the
Boolean structure and the DEDUCTION T component checks the consistency
of assignments suggested by the SAT solver against axioms of T .

Figure 2.2 describes the workflow of using SAT solver with a decision
procedure using lazy encoding (such as SMT-CBS). It is a very close diagram
to DPLL(T), therefore we describe it and then show how to enhance it into
DPLL(T).

Figure 2.2: SMT-CBS in DPLL(T) perspective

First we will look at CDCL3 SAT solver in figure 2.2. It is high-level
overview of the Conflict-Driven Clause-Learning algorithm described in section
1.3. It consists of:

3The proper name of the algorithm hence should be CDCL(MAPF), but we follow the
notation DPLL(T) used in the literature.

25

2. Novel methods

• Decide – Chooses an unassigned variable and a truth value for it. If all
variables are assign, it gives an assignment to Deduction.

• α – is an assignment (either partial or full).

• BCP (Boolean Constraint Propagation) – Repeated application of the
unit clause rule until either a conflict is encountered or there are no more
implications.

• Analyze conflict – It is responsible for computing the backtracking
level, detecting global unsatisfiability, and adding new constraints to
the search in the form of new clauses.

• bl – is the backtracking level, i.e., the decision level to which the proce-
dure backtracks.

• Backjump – Sets the current decision level to bl and erases assignments
at decision levels larger than bl.

On top of SAT solver, there is another functionality that has the ability
to reason about theory T :

• Deduction – decision procedure, which takes decoded assignment and
returns conflicts with theory T.

• Add cluses – simply adds encoded conflicts.

• De() – decoding variables into a theory instance.

• En() – encoding theory instances into CNF formula.

This figure is SMT-CBS when we identify our theory T as MAPF. We will
take further steps to improve it into DPLL(T)/DPLL(MAPF).

In section 2.1 we mentioned the disadvantage that this scheme has - No
way to interact with SAT solver until it finishes. We can see that deduction is
called after a full satisfying assignment is found. Thus, the time taken from
making a mistake4 to complete the assignment is wasted. In DPLL(T) we can
call deduction before full assignment.

In figure 2.3 we have same functionalities as in previous figure 2.2. The
most spotable is how they are connected. We can see that there is no more SAT
solver, this is because the parts reasoning about the theory were integrated
closer into SAT solver, thus, we could call it Theory solver instead of SAT
solver. We can still imagine making a horizontal line separating Add clauses
and Deduction, but the communication through this imaginary line would
be different from the figure 2.2 and would not resemble communication with
SAT solver.

4by mistake we mean assignment that violate MAPF rules

26

2.4. SAT Solver + MAPF = DPLL(MAPF)

Figure 2.3: The main components of DPLL(T)

Deduction is invoked after no further implications can be made by BCP.
Deduction finds conflicts and communicates them to the SAT solver part form
of the propositional formula. Hence, in addition to implications, there are now
also implications due to the theory T. This is called theory propagation. Thus,
in addition to the normal Boolean constraint propagation (BCP) performed
by the SAT solver, there is now also theory propagation.

2.4 SAT Solver + MAPF = DPLL(MAPF)

The SAT solver in the SMT-CBS framework is put in a position that it does
not completely understand what is the problem being solved. It may happen
that early variable assignments in the SAT solver’s search are inconsistent
with MAPF rules. However, the MAPF solution consistency check can be
made only after the SAT solver assigns all variables. Hence, we suggest to
make a further innovation step from SMT-CBS and to check consistency also
in partial assignments of incomplete Boolean models. This step requires very
close integration of the SAT solver and the MAPF theory.

The pseudo-code of the low-level search of DPLL(MAPF) that checks the
existence of MAPF solution for fixed sum-of-costs ξ is shown as Algorithm 5
(it is based on the DPLL(T) pseudo-code from [36]). The algorithm follows the
design of conflict-directed clause learning SAT solver [37, 38] into which MAPF
consistency check is added when the SAT solver has a partial assignment
of Boolean variables at hand (lines 19-20). After a collision is detected the
incomplete Boolean model is refined with new collision avoidance clauses (lines
22 and 23) and backtracking based on the analysis of the implication graph

27

2. Novel methods

Algorithm 5: Framework of SAT-based MAPF solver
1 DPLL-MAPF-Fixed (conflicts, ξ,Σ)
2 H(ξ)← encode-Incomplete(conflicts, ξ,Σ)
3 if propagate-Unit() = UNSAT then
4 return (UNSAT,conflicts)
5 while TRUE do
6 (x, v)← assign-Variable()
7 if x = NULL then
8 paths ← extract-Solution(assignment)
9 return (paths, conflicts)

10 assignment ← assignment ∪ {x = v}
11 repeat
12 while propagate-Unit() = UNSAT do
13 backtrackLevel ← analyze-Conflict()
14 if backtrackLevel < 0 then
15 return (UNSAT,conflicts)
16 else
17 back-Track(backtrackLevel)

18 paths ← extract-Partial-Solution(assignment)
19 collisions ← check-Consistency(paths) /* via DECIDEMAPF */
20 for each (ai, aj , v, t) ∈ collisions do
21 H(ξ)← H(ξ) ∪ {¬X t

v(ai) ∨ ¬X t
v(aj)}

22 conflicts ← conflicts ∪ {[(ai, v, t), (aj , v, t)]}

23 until collisions = ∅;

is initiated (lines 13-18). The backtracking phase adds a conflict clause that
forbids repeating the conflicting assignment in the future. The high-level that
increments the sum-of-costs is the same as in SMT-CBS.

On figure 2.4 we can see the diagram of DPLL(MAPF). This diagram
is almost the same as diagram of SMT-BS on figure 2.1. We just added
3 components marked with a red border. Although we have swimlanes in
diagram showing us into which category the components belongs, we saw in
figure 2.3 that DPLL(T) requires tighter integration and final MAPF solver
will have components from all three categories.

Red components description:

• Is assignment complete

In DPLL(MAPF), SAT solver can produce partial assignment. In that
case we want to check collisions of that assignment. If the assignment
is complete, we continue the same way as SMT-CBS.

• Decode partial assignment

This is basically the same action as decoding. This action can decode
partial and full assignment, but decode is not supposed to decode the

28

2.4. SAT Solver + MAPF = DPLL(MAPF)

partial assignment and thus it probably cannot do that. We can look at
decode partial assignment as superset of decode.

• Is consistent
This function appears two times in our diagram with the same name
but different color. Although they do the same thing, the most evi-
dent distinguishability is the different workflow. Furthermore, the black
function in MAPF theory might not be designed for the plan created by
partial assignment (implementation detail).

These new components doesn’t break the optimality and completeness of
SMT-CBS. Thus, DPLL(MAPF) has these properties.

2.4.1 Adding constrains

The question is which constraints (see section 1.6) should be treated lazily. In
SMT-CBS only collisions are treated lazily, but it doesn’t mean that all lazy
encodings have to do it the same way.

In our diagram (figure 2.4) we extended SMT-CBS, which means that we
adopted the same strategy. This strategy is reasonable, but our approach does
not necessarily has to follow the same strategy.

If we want to see how DPLL(MAPF) improved SMT-CBS method by
comparing their runtimes we should keep the same strategy. But on top of
that we could try another strategy.

If we want to change the SMT-CBS lazy encoding strategy there are two
main paths to choose from:

1. Constrains that ware added lazily we can add eagerly.

2. Constrains that ware added eagerly we can add lazily.

If we would follow the first option, then we would omit some constraints
that ensure that agents are not teleporting, disappearing, or copying themself.
We think that it is better to leave this constrains in eager encoding.

This lead us to the second option. We have to add some constrains in an
eager way. This means we have to pick some collisions that we encode at the
initial encoding.

We came up with the idea of Eagerly adding of chokepoints.

29

2. Novel methods

Figure 2.4: diagram of DPLL(MAPF)

30

2.4. SAT Solver + MAPF = DPLL(MAPF)

2.4.2 Eagerly adding of chokepoints

Chokepoint is basically a narrow space, e.g. Battle of Thermopylae, it became
famous because Spartans used the narrow space (chokepoint) as a defending
position against their enemies who outnumbered them.

Chokepoint in our context will be a narrow passage in MDD.
We will define a chokepoint as time slice in MDD when there are no more

than 2 vertices. Excluding the initial and final time where is only one vertex
and no collisions are possible.

On figure 2.5 we have a part of MDD where are two chokepoints at time
1 and 3.

Figure 2.5: Part of MDD with two chokepoints

We propose to encode collisions in chokepoints at the beginning, because
it is easy in to find chokepoints and generally collisions here should be more
likely than in wide time slices.

31

Chapter 3
Prototype

First, we implemented SMT-CBS, because it is very similar to DPLL(MAPF)
and then DPLL(MAPF) itself. Because they share most of the code, the
evaluation of performance (comparing our implementation of SMT-CBS and
DPLL(MAPF)) will not differ because of the implementation, but because of
the algorithm’s design.

The implementation was done in C++ language.
DPLL(MAPF)’s foundation of main() function is captured in listing 3.1.

We are using makespan instead of sum-of-costs, because it was more com-
fortable for coding and both are equally good. First we go through inputs of
main():

• string Filename – path to MAPF instance (.cpf file, explained in section
3.2).

• int checking parameter – number for checking parameter, see section 4.2.

• bool testing – False if we want a human readable output, True gives
runtine in seconds as output.

• bool exp – True if we want our checking parameter grow exponentially,
False for uniform, see section 4.2.

Listing 3.1: Simplified main(filename, checking parameter, testing, exp)
1 MAPF handler problem = MAPF handler (f i l ename) ; // load f i l e
2 makespan = problem . g e t s h o r t e s t p a t h () ;
3 whi l e (t rue)
4 {
5 So lve r s o l v e r ; // Glucose with m o d i f i c a t i o n s
6 problem . encode (so lve r , makespan) ;
7 i f (s o l v e r . s o l v e ()) // compute v a l i d s o l u t i o n
8 {
9 e x i t (0) ; // so lved

33

3. Prototype

10 break ;
11 }
12 makespan++;
13 }

Listing 3.2: Simplified SMT-CBS main(filename)
1 MAPF handler problem = MAPF handler (f i l ename) ; // load f i l e
2 makespan = problem . g e t s h o r t e s t p a t h () ;
3 whi l e (t rue)
4 {
5 So lve r s o l v e r ; // Glucose with add c l au s e s () func t i on
6 problem . encode (so lve r , makespan) ;
7 i f (s o l v e r . s o l v e ()) // may compute i n v a l i d s o l u t i o n
8 {
9 vector<vector<int>> c o l l i s i o n s ;

10 c o l l i s i o n s = problem . c h e c k c o l l i s i o n s (s o l v e r . my model)
11 i f (c o l l i s i o n s . empty ())
12 e x i t (0) ; // so lved
13 e l s e
14 s o l v e r . add cau l s e s (c o l l i s i o n s)
15 break ;
16 }
17 makespan++;
18 }

We added listing 3.2, where is SMT-CBS main() in same simplified version
as DPLL(MAPF) main(), to see comparison of these two implementations.
The main difference is that in DPLL(MAPF) functions check collisions()
(listing 3.2, line 10) and add clauses()(listing 3.2, line 14) are called inside
Solver::solve() and check collisions() is adjusted to check the incom-
plete assignment. These two functions are represented on diagram 2.4 as Add
conflict and both Is consistent.

Before we continue, let us say that vector<int> is good representation
of clause. Example: (¬x ∨ ¬y ∨ z)→ [-1,-2,3]
And vector<vector<int>> (listing 3.2, line 9) can represent CNF formula
as a vector of clauses.

In the next sections we will explain classes, their methods, and more used
in DPLL(MAPF) main().

3.1 reLOC

Our program accepts file input in .cpf format. Because we used reLOC [39]
for generating MAPF problems/instances.

reLOC is set of programs focused on MAPF and one of them can generate
MAPF instances. It does that by taking map in .map file format (see section

34

3.2. CPF format

4.1) and it generates and saves MAPF instance in .cpf format with specified
number of agents. It produces only solvable problems.

3.2 CPF format

The CPF file format represents a graph with agents. The first line of this file
is always ”V =”. Next lines define vertices. Vertex is represented as a pair
of numbers (v : −1), where v in number of vertex from 0 to #V − 1 and the
second number -1 is unused in our case. Each vertex continuous with the set
of 3 numbers, these numbers represent the following:

1. number representing agent’s starting position

2. number representing agent’s destination

3. number is unused and will be the same as the previous number.

All agents are numbered from 1 , where 0 marks that there is no agent’s
starting nor goal position.

After vertices, the edges are defined starting with the line ”E =”. Each
edge is represented as a pair of numbers {x, y}, meaning an edge from vertex
x to vertex y. Each edge has it’s weight, -1 if the graph is not weighted .

Listing 3.3: CPF format of simple MAPF problem on figure 1.11
V =
(0: -1)[1:2:2]
(1: -1)[0:0:0]
(2: -1)[0:1:1]
(3: -1)[2:0:0]
E =
{0 ,1} (-1)
{1 ,2} (-1)
{1 ,3} (-1)

3.3 encode MAP

encode MAP is class used by class MAPF handler and it represents our encoding
map. Such map was captured on figure 2.4 as Mapping.

Mapping is a bijection of vertices of MDDs (fig.1.10) to propositional vari-
ables.

It consist of vector<encode unit> map and methods for accessing, cre-
ating, and printing variables. encode unit is struct representing proposi-
tional variable. It consist of three variables uint16 t time, agent, vertex.

35

3. Prototype

These variables are enough to represent specific vertex in MDD and proposi-
tional variable is represented by index in map. Furthermore encode unit has
implemented operators == and < for faster encoding.

The bijection looks like this: [time, agent, vertex]⇔ map index

Written more like code:
propositional variable x ⇔ [map[x].time,map[x].agent,map[x].vertex]

3.4 MAPF handler

MAPF handler is class that takes care of part of MAPF theory. It loads the
problem, does eager encoding, and creates encoding map.

It has 3 variables. vector<vector<bool>> graph and
vector<pair<uint16 t, uint16 t>> agents are representation of MAPF
instance and encode MAP map is an encoding map.

There are 3 MAPF handler’s methods called from main():

1. Constructor MAPF handler(filename) creates internal representation of
the graph and agent’s start and goal positions.

2. get shortest path() returns greatest of agent’s shortest paths.

3. encode(solver, makespan) creates MDD for each agent. Then if some
MDD has only one vertex v in some time t (excluding 0 and makespan)
we know that in SAT solver this variable needs to be marked as true,
because it is only possible place for agent to be in time t. So we can omit
translating this variable and delete pair (v,t) from other agent’s MDDs.
This also leads to making less constraints. Finally it adds collisions to
Solver and create an encoding map based on these MDDs.

In the listing 3.4 is part of encode(solver, makespan) that creates col-
lisions and encoding map.

Listing 3.4: Creating collisions
1 vector<vector<set<u int16 t>>> MDDS; // MDDS[agent] [time] [ve r tex]
2 . . . // code that c r e a t e s MDDs
3 f o r (s i z e t t = 0 ; t < makespan ; t++)
4 {
5 f o r (s i z e t a = 0 ; a < MDDS. s i z e () ; a++) // f o r each agent ' s MDD
6 {
7 map . add (t , a , MDDS[a] [t]) ;
8 f o r (s i z e t i = 0 ; i < MDDS[a] [t] . s i z e () ; i++)
9 s o l v e r . newVar () ; // Glucose i n t e r n a l method

10 s o l v e r . a d d d i s a l l o w i n g p a i r s (map . encode s e t (t , a , MDDS[a] [t])) ;
11 s o l v e r . add c l au s e s (c r e a t e e d g e s (t , a ,MDDS[a] [t −1] ,MDDS[a] [t])) ;
12 }
13 }

36

3.5. Solver

map starts with empty map.map and it is being filled on line 7. map.add() gets
one time slice of MDD (MDDS[a][t], we can image it as column of MDD on
figure 1.10) and saves them in same order as new propositional variables are
added into Solver by Solver::newVar() on line 9. This ensures compatibility
between Solver’s variables and encode MAP map.

In section 1.6 we introduced 4 types of constrains - edges, agent can be in
one vertex at one time, collisions, and swaps.

Constrain agent can be in one vertex at one time is encoded on line 10 by
method Solver::add disallowing pairs(). We implemented this method
and it is explained in the next section.

Edges are encoded on line 11. First method MAPF handler::create edges()
is called, which creates CNF formula representing edge constraints and pass it
to Solver::add clauses(), which accepts and adds CNF formula to Solver’s
formula.

Collisions and swaps are not encoded directly in SMT-CBS and our DPLL(MAPF).
In our DPLL(MAPF) we implemented these constrains into Solver.

3.5 Solver

As our SAT solver we used Glucose 4 SAT solver [40]. It has good performance,
it is open source, written in C++ and quite readable. It is based on MiniSAT
[41]. The main class in Glucose is Solver and we transformed it from SAT
solver to MAPF solver.

We added 3 methods to Solver class:

• check collisions(int size) - checks collisions and stores them in
Solver.collisions. collisions are then added by add clauses().
size means how many variables were assigned

• add clauses(const vector<vector<int>> &v) - adds clauses to Solver’s
formula, uses Glucose internal methods.

• add disallowing pairs(const vector<int> &v) - creates clause
(¬x ∨ ¬y) for every pair in input vector, they all should be positive
numbers. This method serve for easier adding clauses from method
MAPF handler::encode().

And changed method Solver::solve() from original (see listing 3.5) to
look like listing 3.6.

Listing 3.5: Solver::solve() in original Glucose
1 budgetOff () ;
2 assumptions . c l e a r () ;
3 re turn s o l v e () == l True ;

37

3. Prototype

Listing 3.6: Solver::solve() in DPLL(MAPF)
1 l b o o l s t a t u s = l R e s e t ;
2 whi l e (s t a t u s == l R e s e t)
3 {
4 add c l au s e s (c o l l i s i o n s) ;
5 c o l l i s i o n s . c l e a r () ;
6 budgetOff () ; // Glucose i n t e r n a l method
7 s t a t u s = s o l v e () ; // Glucose method f o r SAT s o l v i n g
8 }
9 return s t a t u s == l True ; // l True i f SAT

We created l Reset as new state for lbool so method Solver::solve ()
can tell us if collisions was found during SAT solving. While cycle (line 2)
keeps calling Solver::solve () until there are no collisions.

Inside solve () (line 7) we are calling check collisions() (frequency is
determined by checking parameter, see section 4.2). If collisions were found
we exit solve () with l Reset status.

We did not manage to integrate our code with Glucose 4 on such level that
DPLL(T) proposes. The Glucose 4 is very complex and it would take much
more time to understand it completely.

We were not able to add clauses inside method Solver::check collisions()
or right after this method without jumping outside main loop of solve () and
when conflicts occur some reset needs to be done (optimally there would be no
reset). Before Solver::addClause () we have to call Solver::cancelUntil(0)
and when we tried that inside main loop of solve () it broke. Therefore, we
don’t know if a perfect implementation is possible with this SAT solver.

Nevertheless, the integration of our implementation is close enough to call
it DPLL(MAPF).

38

Chapter 4
Experimental evaluation

Because our aim is to make a faster algorithm, we have to run some tests and
evaluate them. Thus, the first step is the test preparation, which is split into
two sections:

1. Creating instances for our evaluation – section 4.1.

2. Creating a set of checking parameters – section 4.2.

At the end, we present the results and its evaluation. The evaluation of
the proposed strategy Eagerly adding of chokepoints (see section 2.4.2) is done
in separate section 4.3.3.

In this chapter we used # as symbol for number, e.g. #agents means
number of agents.

4.1 Graphs

We chose 3 graphs from site movingai.com [42] to create MAPF problems for
our evaluation. All graphs are in .map format.

MAP format serves as a representation of graph as map. MAP file starts
with type, in our case it will be “octile”. Height and width are specified on
the next two lines. On the 4th line is the keyword ”map”. After that, the map
itself starts. The basic format that we are using has only two symbols:

• ”.” represents a passable terrain.

• ”@” represents an unpassable terrain/obstacle.

We created a simple example of MAP format on figure 4.1, where is also
an image of such map.

On figures 4.2, 4.3 and 4.4 are images of the graphs with sizes in their
names. Only Empty is without size, because we used this map twice with size
16x16 and 32x32. These images represent their .map format. Only the graph

39

4. Experimental evaluation

Figure 4.1: MAP file format and image of such map

of the warehouse was shortened from 161x63 to 100x63, to ensure reasonable
computational time of evaluation (the image is also edited).

We picked 3 completely different types of maps to ensure diversity for our
tests and because our program is a general MAPF solver (it is not specified
on one task, e.g. automated warehouse) and should perform well on all types
of maps. Maps are quite small, this is because our program should perform
well on smaller maps.

In the previous section, we mentioned that reLOC creates MAPF in-
stances from .map file and specified number of agents. Basically it adds n
agent’s start and goal destinations on distinguishable passable terrain of map.

For each map, we created 14 instances with different number of agents
from 2 to 30 by 2 (i.e. 2,4,6,...,30).

Figure 4.2: maze-32-32

The map Empty is a grid in graph theory.

40

4.2. Checking parameter

Figure 4.3: empty

Figure 4.4: Warehouse-100-63

4.2 Checking parameter

During SAT solving we have to stop it and check if there are collisions in it’s
partial assignment. The question is when to stop it.

If we would follow the DPLL(T) diagram on figure 2.3 we should check
collisions after each BCP, after each assigned variable. This would be too
expensive, because we have to decode the assignment before checking and
analyzing all possible conflicts.

What if we check collisions when half of the assignment is done and then
at the end? That seems reasonable, but shouldn’t we do checks more often,
for example in 1/4, 1/2, 3/4 of assigned variables? From this thought, we
created the uniform parameter.

41

4. Experimental evaluation

4.2.1 Uniform

The task of SAT solver is to assign V variables. We suggest to check consis-
tency after each (#V)/N variables are assigned, where N is our parameter.
This means that check are done at most N times uniformly to the number of
variables.

We suggest to try values {3, 5, 10} as uniform parameter in our testing.

4.2.2 Exponential

When lesser variables are assigned, then the encoding is cheaper and so is the
consistency checking. We suggest to make more checks at the earlier phase of
SAT solving and then less.

We suggest that the first check will be at some constant number of assigned
variables and the next ones grow exponentially. The constant number was
determined as 100 after a little experiment where we checked when collisions
start to appear. Consistency check is done after 100∗Nx variables are assigned,
where N is our parameter and x is number that start at 0 and increment after
each check.

We suggest to try values {2, 1.6, 1.4} as exponential parameter.

4.2.3 Size of formula

We provide table 4.1 which captions the number of variables of some instances
that we test. We can say that our instances will be translated to a formula

map size #agents #variables
Empty 16x16 2 832
Empty 16x16 30 28 599
Empty 32x32 2 299
Empty 32x32 30 322 624
maze 32x32 2 2 838
maze 32x32 30 635 421

Warehouse 100x63 2 36 301
Warehouse 100x63 16 468 539

Table 4.1: Number of variables

with thousands of variables. We prepared table 4.2 that shows how many
times the exponential parameter checks collisions, if no collisions are found.
In this case, we were lucky and SMT-CBS would be faster, because it would
not do any early checks of partial assignment.

Uniform parameter always does the same number of checks. However, the
exponential number of checks grows with the number of variables.

42

4.3. Results

parameter 1000 10 000 100 000
exp 2 5 8 11

exp 1.6 6 11 16
exp 1.4 8 15 22

Table 4.2: Number of checks without finding collision

This feature of the exponential parameter and the fact that most of the
checks are in the early phase, thus cheap, lead us to the assumption that these
parameters will achieve better results (or at least have a potential to do so).

4.2.4 Another concepts

If we imagine that we can check at any time and do as many checks as we
want. This means that for one instance that is encoded to N number of
variables we have 2N−1 − 1 possible ways of checking. Because sum of all
possible k combinations from N variables is ∑N

k=1
(N

k

)
= 2N − 1 and we have

to do check when final variable is assigned, thus the formula 2N−1 − 1. By
the way for 832 variables (which is our smallest instance) 2331 − 1 ≈ 10250.
Thus, trying all possible combinations is out of question because its merely
impossibly computation.

We came up with two approaches, but more can be invented. We will see
in the results how much will the performance vary with different parameters
and if it is worth to work with the checking parameter.

Another idea is dynamically changing the checking parameter based on
when and how many collisions were found, e.g. if we are using the parameter
uniform 10 and the first collision is found on the 8th check and there is just
1 collision, so maybe next time we could check more lately. This dynamical
checking seems promising, but it needs to be well explored. In this work, we
focus on the experimental evaluation, which can tell us if DPLL(MAPF) is a
good way of improving SMT-CBS. We think that our parameters will do the
job.

Reminding the chosen parameters:

• Uniform – 3, 5, 10

• Exponential – 2, 1.6, 1.4

4.3 Results

4.3.1 Measurement description

Tests were done on a system with Core i7 CPU, 16 GB RAM, under Windows
10. Each instance was run 10 times and the presented results are averaged.

43

4. Experimental evaluation

We will be calling maps from the previous section Empty 16, Empty 32,
Maze and Warehouse. Only tests on Warehouses were shortened by the num-
ber of agents greater than 16, due to Glucose::OutOfMemoryException in
larger instances and we decided to give up on these, because even if we man-
aged to solve this exception, the runtime might be very large. We think that
8 instances of Warehouse are enough for our evaluation.

For testing, we wrote shell scripts which create .csv files filled with run-
times. Then we used python 3 with jupyter notebook5 to average the results
and for subtraction DPLL(MAPF) runtimes by SMT-CBS’s to see the differ-
ence.

In the next sections, we will use letter T as shortcut for runtime.

4.3.2 Results and evaluation

In this section, we provide an evaluation of our implementation. Special strat-
egy Eager chokepoints (section 2.4.2) will be discussed in the next section.

#agents SMT-CBS UNI 3 UNI 5 UNI 10 EXP 2 EXP 1.4 EXP 1.6
2 13.6 14.5 16.2 11.6 13.7 17.3 15.3
4 20.0 18.8 21.4 20.3 22.3 24.1 25.8
6 8.1 14.7 8.2 10.7 18.6 16.5 13.0
8 18.2 20.1 22.5 21.5 22.5 21.6 21.8
10 61.7 50.5 57.4 52.9 54.6 49.8 52.3
12 56.6 41.3 43.4 45.9 40.3 40.0 38.0
14 92.2 74.9 72.2 76.4 75.6 81.5 72.4
16 78.2 75.1 72.7 72.5 68.1 80.9 72.7
18 215.2 173.3 177.7 169.9 184.8 176.6 182.6
20 449.2 219.4 235.7 228.2 236.6 272.4 227.5
22 211.2 148.8 145.9 165.4 149.1 165.4 143.3
24 169.3 166.7 155.6 163.6 156.8 151.6 151.4
26 255.7 244.5 249.6 279.8 260.3 258.4 273.8
28 432.6 515.6 479.3 481.6 478.5 522.2 497.2
30 290.9 362.0 318.6 361.6 296.4 312.0 356.0

sum 2372.6 2140.1 2076.2 2162.0 2078.0 2190.5 2143.2

Table 4.3: Empty 16 runtime results in milliseconds

When we look at row sum in table 4.7, it is interesting that the uniform
parameter’s results are in order 10, 5, 3, meaning that fewer checks perform
better. However the exponential parameters are sorted 2, 1.6, 1.4, which
means more checks leads to better runtime. But this is only when we look at
row sum and Maze others are slightly different.

5web application that allows you to interactively work with python

44

4.3. Results

#agents SMT-CBS UNI 3 UNI 5 UNI 10 EXP 2 EXP 1.4 EXP 1.6
2 0.04 0.04 0.04 0.05 0.04 0.04 0.03
4 0.66 0.67 0.68 0.79 0.64 0.64 0.59
6 0.88 1.06 0.85 1.23 0.91 0.89 0.88
8 1.15 1.23 1.08 1.59 1.19 1.08 1.10
10 0.89 1.00 0.84 1.16 0.92 0.82 0.86
12 1.77 1.94 2.22 2.44 1.70 1.61 1.74
14 1.27 1.35 1.53 1.86 1.32 1.20 1.19
16 8.10 8.58 9.34 9.77 7.37 7.31 7.26
18 4.35 4.92 4.81 5.87 4.03 3.91 4.10
20 5.60 5.71 5.40 7.18 5.26 5.11 5.07
22 11.16 11.19 11.62 13.18 9.78 9.64 9.92
24 18.53 17.19 15.14 22.78 14.38 14.34 14.78
26 5.96 5.46 5.46 7.13 5.50 4.87 4.96
28 7.32 6.81 6.65 9.68 6.83 6.59 6.28
30 10.58 9.41 10.27 14.19 9.34 9.08 9.37

sum 78.25 76.55 75.92 98.88 69.21 67.13 68.12

Table 4.4: Empty 32 runtime results in seconds

#agents SMT-CBS UNI 3 UNI 5 UNI 10 EXP 2 EXP 1.4 EXP 1.6
2 0.17 0.22 0.41 0.19 0.19 0.19 0.17
4 0.15 0.15 0.17 0.15 0.13 0.14 0.14
6 0.90 0.95 1.14 1.08 0.86 0.83 0.80
8 1.01 0.96 1.25 1.11 1.06 0.97 0.91
10 0.99 0.97 1.10 1.09 1.02 0.88 0.91
12 1.07 1.07 1.45 1.36 1.23 1.06 1.04
14 2.66 2.69 3.24 3.80 3.12 2.59 2.51
16 3.77 3.40 4.63 5.62 3.70 2.85 2.98
18 6.39 6.70 8.82 8.52 7.99 6.46 6.74
20 10.84 10.54 20.18 30.64 10.41 12.04 10.99
22 5.78 7.99 10.38 17.40 8.47 7.82 8.44
24 11.40 12.44 13.71 36.39 11.98 9.45 14.43
26 9.63 15.68 12.29 32.56 11.77 11.62 9.69
28 14.97 20.66 18.16 68.12 27.88 19.32 16.67
30 27.72 29.26 49.14 84.27 36.00 25.97 29.86

sum 97.47 113.68 146.05 292.28 125.79 102.18 106.28

Table 4.5: Maze runtime results in seconds

45

4. Experimental evaluation

#agents SMT-CBS UNI 3 UNI 5 UNI 10 EXP 2 EXP 1.4 EXP 1.6
2 6.05 6.03 5.88 6.00 6.08 5.71 5.62
4 4.88 4.92 4.79 4.80 4.86 4.74 4.51
6 8.22 8.20 8.12 7.75 7.93 7.55 7.85
8 27.54 27.03 26.91 27.74 28.31 26.33 26.56
10 61.09 48.74 44.95 51.29 56.36 51.40 51.08
12 49.24 50.92 47.94 48.31 55.98 49.71 49.43
14 57.63 65.01 51.22 50.83 62.61 52.60 51.20
16 33.98 42.29 35.36 38.32 44.15 33.64 34.38

sum 248.62 253.15 225.17 235.05 266.27 231.69 230.62

Table 4.6: Warehouse runtime results in seconds

UNI 10 EXP 2 UNI 5 UNI 3 EXP 1.6 EXP 1.4
Empty 16 -0.21 -0.29 -0.30 -0.23 -0.18 -0.23
Empty 32 20.63 -9.05 -2.34 -1.71 -10.13 -11.12

Maze 194.82 28.32 48.58 16.21 8.81 4.72
Warehouse -13.57 17.66 -23.44 4.53 -17.99 -16.92

sum 201.67 36.64 22.51 18.81 -19.49 -23.56
percentage -32.09% -7.91% -5.01% -4.22% 4.79% 5.84%

Table 4.7: Sums of TDP LL(MAP F) − TSMT −CBS in seconds and percentage
improvement counted as (TDP LL(MAP F)/TSMT −CBS)−1. Columns are sorted
by row sum. Negative numbers are highlighted.

Only in Maze DPLL(MAPF) was not able to outperform STM-CBS. Al-
though in some instances of Maze some DPLL(MAPF) is doing better than
SMT-CBS (e.g. #agents=30, SMT-CBS=27.7s, EXP 1.4=26s).

DPLL(MAPF) with uniform parameter 5 has bad performance on Maze
(48 s slower than SMT-CBS), but does best in Warehouse (-23 s). This is very
interesting, and it might be due to finding optimal parameter on Warehouse
instances. If so, it means that checking parameter is very sensitive to different
types of instances. Alike, the parameter UNI 10 has really bad runtime in
Maze (194 s) but does pretty well in Warehouse (-13 s).

Over all we can say that DPLL(MAPF) runtime depends on checking
parameter (improvement varies from -32.1% to 5.8%) and it differs on different
MAPF instances. This means that we can fine-tune this parameter on specific
instances or specific maps.

DPLL(MAPF)’s checking of partial assignment might save time or can
be just a redundant computation. It depends on if there are mistakes in
assignment. By this we explain the difference in the runtimes.

46

4.3. Results

4.3.3 Eager chokepoints evaluation

We proposed different lazy encoding strategy in section 2.4.2, we call it Eager
chokepoints. We changed our implementation of DPLL(MAPF) to use this
encoding and we denote it as DPLL(MAPF)Choke.

We ran the same test as in previous section. We will show the sumation
of runtimes and comparison.

UNI 3 UNI 5 UNI 10 EXP 2 EXP 1.4 EXP 1.6
Empty 16 0.11 0.06 0.23 0.14 0.15 0.26
Empty 32 -11.20 -8.97 -9.95 -9.15 -9.36 -7.71

Maze 137.45 142.30 162.24 128.25 137.13 119.43
Warehouse -6.13 -11.32 -6.32 -12.21 -5.40 -2.36

sum 120.23 122.07 146.20 107.03 122.52 109.62
percentage -21.98% -22.24% -25.52% -20.05% -22.31% -20.44%

Table 4.8: Sums of TDP LL(MAP F)Choke
− TSMT −CBS in seconds. Last

two rows are sum of column and percentage improvement counted as
(TDP LL(MAP F)Choke

/TSMT −CBS)− 1

In table 4.8 we can see in row percentage that this strategy is worse than
SMT-CBS. The interesting thing is that all parameters have a very similar
sum of runtimes, because DPLL(MAPF) results varied more, see table 4.7.

In table 4.9 we compared DPLL(MAPF)Choke to DPLL(MAPF).

UNI 3 UNI 5 UNI 10 EXP 2 EXP 1.4 EXP 1.6
Empty 16 -0.35 -0.36 -0.44 -0.44 -0.33 -0.49
Empty 32 9.51 6.65 30.60 0.11 -1.76 -2.41

Maze -121.24 -93.70 32.59 -99.91 -132.41 -110.62
Warehouse 10.65 -12.13 -7.26 29.87 -11.54 -15.63

sum -101.43 -99.53 55.49 -70.36 -146.04 -129.15

Table 4.9: Sums of TDP LL(MAP F)−TDP LL(MAP F)Choke
in seconds and sum of

columns. Positive numbers are highlighted.

If we look at the rows, we can see that DPLL(MAPF)Choke does better
in Empty 32 and Warehouse, comparable in Empty 16 and significantly worse
in Maze. We think that in Maze, there were a lot of chokepoints to encode
and it led to worse runtime.

We can see significant changes in row Maze. This is because in Maze there
were more chokepoints than in other maps. However, this strategy improves
some runetimes (highlighted). That means that we added eagerly some col-
lisions before they were encountered and it saved some time. Therefore, the
developing of a better lazy encoding strategy might lead to better performance.

47

4. Experimental evaluation

However, it is very hard to determine which constraints should be treated ea-
gerly, because as we can see in the results, if you unnecessarily eagerly encode
some constrains it will slow the algorithm.

Overall, this encoding strategy is worse than one used in SMT-CBS. It
only helps one parameter UNI 10.

48

Conclusion

The first chapter gives us the background for understanding the rest of our
work.

In the second chapter, we provided an overview of lazy encoding fol-
lowed by state-of-the-art SMT-CBS method. We then explained DPLL(T)
and how we can look at SMT-CBS from DPLL(T) perspective. Eventually,
the DPLL(MAPF) was introduced as MAPF solver using DPLL(T).

We implemented DPLL(MAPF) and described our implementation in sec-
tion 3. During implementation we had to decide when to check collisions, so
we created a checking parameter (see section 4.2).

Then we created and evaluated tests.
In Experimental evaluation we found out that DPLL(MAPF) is sensitive

to checking parameter and it might be possible to fine-tune it. This option
might be welcome for someone who is willing to spend time to fine-tune in
order to get better results. On the other hand, DPLL(MAPF) becomes slightly
more complicated to use than SMT-CBS, where you don’t have to specify the
checking parameter. Nevertheless, in our Experimental evaluation we tried
6 different parameters and 2 of them outperformed SMT-CBS, so finding a
quite good parameter might be easy.

DPLL(MAPF) with checking parameter EXP 1.4 has 5.84% improvement
compared to SMT-CBS in our benchmark.

We conclude that DPLL(MAPF) method is a favorable way of extending
lazy encoding.

We also proposed Eager chokepoints (see section 2.4.2). The results showed
this method to be worse than the one used in both SMT-CBS and our DPLL(MAPF)
implementation.

49

Conclusion

Future works

We see further work in exploring the checking parameter. We mentioned that
there are many ways of checking in section 4.2.4

We mentioned in section 3.5 that our implementation is almost perfect,
but we can imagine even better synergy with SAT solver. Because of the
complexity of the SAT solver and because it does not natively support the
operations we need, we think that functions that we implemented might have
been even better implemented. We think that especially the author of SAT
solver can quite easily transform his own SAT solver into MAPF solver via
DPLL(MAPF) and some manual how to do that might be created.

50

Bibliography

[1] Wurman, P. R.; D’Andrea, R.; et al. Coordinating Hundreds of Coop-
erative, Autonomous Vehicles in Warehouses. AI Magazine, volume 29,
no. 1, Mar. 2008: p. 9, doi:10.1609/aimag.v29i1.2082. Available from:
https://ojs.aaai.org/index.php/aimagazine/article/view/2082

[2] Ghallab, M. Automated planning and acting. New York, NY: Cambridge
University Press, 2016, ISBN 9781107037274.

[3] Basile, F.; Chiacchio, P.; et al. A Hybrid Model of Complex Automated
Warehouse Systems - Part I: Modeling and Simulation. IEEE Trans. Au-
tomation Science and Engineering, volume 9, no. 4, 2012: pp. 640–653.

[4] Wender, S.; Watson, I. D. Combining Case-Based Reasoning and Rein-
forcement Learning for Unit Navigation in Real-Time Strategy Game AI.
In ICCBR, LNCS, volume 8765, Springer, 2014, pp. 511–525.

[5] Kim, D.-G.; Hirayama, K.; et al. Collision avoidance in multiple-ship
situations by distributed local search. Journal of Advanced Computational
Intelligence and Intelligent Informatics, volume 18, 09 2014: pp. 839–848.

[6] Hönig, W.; Kumar, T. K. S.; et al. Summary: Multi-Agent Path Finding
with Kinematic Constraints. In Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2017, 2017, pp.
4869–4873.

[7] Li, J.; Surynek, P.; et al. Multi-Agent Path Finding for Large Agents.
In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI
2019, AAAI Press, 2019, pp. 7627–7634.

[8] Ma, H.; Wagner, G.; et al. Multi-Agent Path Finding with Deadlines. In
Proceedings of the Twenty-Seventh International Joint Conference on Ar-
tificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden.,
2018, pp. 417–423.

51

https://ojs.aaai.org/index.php/aimagazine/article/view/2082

Bibliography

[9] Kornhauser, D.; Miller, G. L.; et al. Coordinating Pebble Motion on
Graphs, the Diameter of Permutation Groups, and Applications. In 25th
Annual Symposium on Foundations of Computer Science, FOCS 1984,
IEEE Computer Society, 1984, pp. 241–250.

[10] Ryan, M. R. K. Exploiting Subgraph Structure in Multi-Robot Path Plan-
ning. J. Artif. Intell. Res., volume 31, 2008: pp. 497–542.

[11] Silver, D. Cooperative Pathfinding. In Proceedings of the First Artificial
Intelligence and Interactive Digital Entertainment Conference, June 1-5,
2005, Marina del Rey, California, USA, AAAI Press, 2005, pp. 117–122.

[12] Sharon, G.; Stern, R.; et al. The increasing cost tree search for optimal
multi-agent pathfinding. Artif. Intell., volume 195, 2013: pp. 470–495.

[13] Sharon, G.; Stern, R.; et al. Conflict-based search for optimal multi-agent
pathfinding. Artif. Intell., volume 219, 2015: pp. 40–66.

[14] Surynek, P. A novel approach to path planning for multiple robots in bi-
connected graphs. In 2009 IEEE International Conference on Robotics
and Automation, ICRA 2009, Kobe, Japan, May 12-17, 2009, IEEE,
2009, pp. 3613–3619.

[15] Wang, K. C.; Botea, A. MAPP: a Scalable Multi-Agent Path Planning
Algorithm with Tractability and Completeness Guarantees. J. Artif. In-
tell. Res., volume 42, 2011: pp. 55–90.

[16] Luna, R.; Bekris, K. E. Push and Swap: Fast Cooperative Path-Finding
with Completeness Guarantees. In IJCAI 2011, Proceedings of the 22nd
International Joint Conference on Artificial Intelligence, IJCAI/AAAI,
2011, pp. 294–300.

[17] de Wilde, B.; ter Mors, A.; et al. Push and rotate: cooperative multi-
agent path planning. In International conference on Autonomous Agents
and Multi-Agent Systems, AAMAS 2013, IFAAMAS, 2013, pp. 87–94.

[18] Ratner, D.; Warmuth, M. K. Finding a Shortest Solution for the N x
N Extension of the 15-PUZZLE Is Intractable. In Proceedings of the 5th
National Conference on Artificial Intelligence, AAAI 1986, Morgan Kauf-
mann, 1986, pp. 168–172.

[19] Surynek, P. Reduced Time-Expansion Graphs and Goal Decomposition
for Solving Cooperative Path Finding Sub-Optimally. In Proceedings of
the Twenty-Fourth International Joint Conference on Artificial Intelli-
gence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, edited by
Q. Yang; M. J. Wooldridge, AAAI Press, 2015, ISBN 978-1-57735-738-4,
pp. 1916–1922. Available from: http://ijcai.org/Abstract/15/272

52

http://ijcai.org/Abstract/15/272

Bibliography

[20] Barer, M.; Sharon, G.; et al. Suboptimal Variants of the Conflict-Based
Search Algorithm for the Multi-Agent Pathfinding Problem. In SOCS,
2014.

[21] J. Yu, S. M. L. Planning optimal paths for multiple robots on graphs.
IEEE International Conference on Robotics and Automation, 2013: pp.
3612–3617.

[22] Bogatarkan, A.; Erdem, E. Explanation Generation for Multi-Modal
Multi-Agent Path Finding with Optimal Resource Utilization using An-
swer Set Programming. Theory Pract. Log. Program., volume 20, no. 6,
2020: pp. 974–989.

[23] Ryan, M. Constraint-Based Multi-agent Path Planning. In AI 2008: Ad-
vances in Artificial Intelligence, 21st Australasian Joint Conference on
Artificial Intelligence, Proceedings, Lecture Notes in Computer Science,
volume 5360, Springer, 2008, pp. 116–127.

[24] Surynek, P. Time-expanded graph-based propositional encodings for
makespan-optimal solving of cooperative path finding problems. Ann.
Math. Artif. Intell., volume 81, no. 3-4, 2017: pp. 329–375.

[25] Wikipedia contributors. Cook–Levin theorem — Wikipedia, The Free En-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Cook%E2%
80%93Levin_theorem&oldid=994190506, 2020, [Online; accessed 2-
March-2021].

[26] Wikipedia contributors. Action language — Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/w/index.php?title=
Action_language&oldid=968002360, 2020, [Online; accessed 2-
March-2021].

[27] Bylander, T. The Computational Complexity of Propositional STRIPS
Planning. Artificial Intelligence, volume 69, 1994: pp. 165–204.

[28] Kautz, H. A.; Selman, B. Planning as Satisfiability. In ECAI, edited
by B. Neumann, John Wiley and Sons, 1992, ISBN 9780471936084, pp.
359–363. Available from: http://dblp.uni-trier.de/db/conf/ecai/
ecai92.html#KautzS92

[29] Surynek, P.; Felner, A.; et al. Efficient SAT Approach to Multi-Agent
Path Finding Under the Sum of Costs Objective. In ECAI 2016 - 22nd
European Conference on Artificial Intelligence, Frontiers in Artificial In-
telligence and Applications, volume 285, IOS Press, 2016, pp. 810–818.

[30] DeWilde, B.; Mors, A.; et al. Push and Rotate: a Complete Multi-agent
Pathfinding Algorithm. Journal of Artificial Intelligence Research, vol-
ume 51, 10 2014: pp. 443–492, doi:10.1613/jair.4447.

53

https://en.wikipedia.org/w/index.php?title=Cook%E2%80%93Levin_theorem&oldid=994190506
https://en.wikipedia.org/w/index.php?title=Cook%E2%80%93Levin_theorem&oldid=994190506
https://en.wikipedia.org/w/index.php?title=Action_language&oldid=968002360
https://en.wikipedia.org/w/index.php?title=Action_language&oldid=968002360
http://dblp.uni-trier.de/db/conf/ecai/ecai92.html#KautzS92
http://dblp.uni-trier.de/db/conf/ecai/ecai92.html#KautzS92

Bibliography

[31] Lam, E.; Bodic, P. L.; et al. Branch-and-Cut-and-Price for Multi-Agent
Pathfinding. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, ijcai.org, 2019, pp.
1289–1296.

[32] Biere, A.; Biere, A.; et al. Handbook of Satisfiability: Volume 185 Fron-
tiers in Artificial Intelligence and Applications. IOS Press, 2009, ISBN
1586039296, 9781586039295.

[33] Surynek, P. Unifying Search-based and Compilation-based Approaches
to Multi-agent Path Finding through Satisfiability Modulo Theories. In
Proceedings of the Twenty-Eighth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2019, ijcai.org, 2019, pp. 1177–1183.

[34] Nieuwenhuis, R.; Oliveras, A.; et al. Solving SAT and SAT Modulo
Theories: From an abstract Davis–Putnam–Logemann–Loveland proce-
dure to DPLL(T). J. ACM, volume 53, no. 6, 2006: pp. 937–977, doi:
10.1145/1217856.1217859. Available from: https://doi.org/10.1145/
1217856.1217859

[35] Katz, G.; Barrett, C. W.; et al. Lazy proofs for DPLL(T)-based SMT
solvers. In 2016 Formal Methods in Computer-Aided Design, FMCAD
2016, IEEE, 2016, pp. 93–100.

[36] Kroening, D.; Strichman, O. Decision Procedures - An Algorithmic Point
of View, Second Edition. Texts in Theoretical Computer Science. An
EATCS Series, Springer, 2016.

[37] Silva, J. P. M.; Sakallah, K. A. GRASP - a new search algorithm for sat-
isfiability. In Proceedings of the 1996 IEEE/ACM International Confer-
ence on Computer-Aided Design, ICCAD 1996, IEEE Computer Society
/ ACM, 1996, pp. 220–227.

[38] Silva, J. P. M.; Sakallah, K. A. Conflict Analysis in Search Algorithms for
Satisfiability. In Eigth International Conference on Tools with Artificial
Intelligence, ICTAI 1996, IEEE Computer Society, 1996, pp. 467–469.

[39] Surynek, P. Compact Representations of Cooperative Path-Finding as
SAT Based on Matchings in Bipartite Graphs. In 2014 IEEE 26th Inter-
national Conference on Tools with Artificial Intelligence (ICTAI), Los
Alamitos, CA, USA: IEEE Computer Society, nov 2014, ISSN 1082-
3409, pp. 875–882, doi:10.1109/ICTAI.2014.134. Available from: https:
//doi.ieeecomputersociety.org/10.1109/ICTAI.2014.134

[40] Audemard, G.; Simon, L. On the Glucose SAT Solver. Int. J. Artif. Intell.
Tools, volume 27, no. 1, 2018: pp. 1840001:1–1840001:25.

54

https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859
https://doi.ieeecomputersociety.org/10.1109/ICTAI.2014.134
https://doi.ieeecomputersociety.org/10.1109/ICTAI.2014.134

Bibliography

[41] Een, N.; Mishchenko, A.; et al. A Single-Instance Incremental SAT
Formulation of Proof- and Counterexample-Based Abstraction. 2010,
1008.2021.

[42] Sturtevant, N. R. Benchmarks for Grid-Based Pathfinding. IEEE Trans.
Comput. Intell. AI Games, volume 4, no. 2, 2012: pp. 144–148.

55

1008.2021

Appendix A
Acronyms

MAPF Multi-agent pathfinding

SAT Boolean satisfiability problem

CDCL Conflict-driven clause learning

TEG Time expanded graph

MDD Multi-value Decision Diagram

CBS Conflict Based Search

SMT-CBS Satisfiability modulo theories conflict based search

57

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

dpll mapf source codes of DPLL(MAPF)
smt cbssource codes of SMT-CBS
measurementthe directory with results and jupyter notebooks
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

59

	Introduction
	Backround and theory
	Multi-agent pathfinding
	Cumulative objectives
	MAPF methods

	Propositional logic
	CDCL
	Automated planning
	Classical planning
	Planning example
	SATPlan

	Eager Encoding: MDD-SAT
	Optimality and completeness

	Constrains
	Example

	Novel methods
	Eager vs Lazy encoding
	Lazy Encoding: SMT-CBS
	DPLL(T)
	SAT Solver + MAPF = DPLL(MAPF)
	Adding constrains
	Eagerly adding of chokepoints

	Prototype
	reLOC
	CPF format
	encode_MAP
	MAPF_handler
	Solver

	Experimental evaluation
	Graphs
	Checking parameter
	Uniform
	Exponential
	Size of formula
	Another concepts

	Results
	Measurement description
	Results and evaluation
	Eager chokepoints evaluation

	Conclusion
	Future works

	Bibliography
	Acronyms
	Contents of enclosed CD

