
Instructions

1) Familiarize with the existing methods for Gauss-Jordan method on GPU [1,2].

2) Implement Gauss-Jordan method using CUDA

3) Measure the performance of your solver and compare it with existing solutions.

4) Discuss the results from 3).

[1] https://www.sciencedirect.com/science/article/pii/S2212017312000096

[2] https://link.springer.com/article/10.1007/s11227-013-1043-3
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Abstrakt

Tato práce se zabývá řešeńım soustav lineárńıch rovnic pomoćı r̊uzných řešič̊u
na GPU i na CPU. Řešitelé jsou mezi sebou testováni na čas provedeńı a
správnost výpočt̊u.

Kĺıčová slova Gauss-Jordan, GPU, CUDA, částečné otáčeńı, paralelńı re-
dukce.

Abstract

This thesis is about solving systems of linear equation via different solvers
on GPU as well as on CPU. Solvers are tested between each other in time of
execution and correctness of calculations.

Keywords Gauss-Jordan, GPU, CUDA, Partial Pivoting, Parallel Reduc-
tion.
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Chapter 1
Introduction

The goal of this project is to implement System of Linear Equations (SLE)
with Gauss-Jordan elimination method on Graphics Processing Unit (GPU)
using Compute Unified Device Architecture (CUDA) technology.

As SLEs are used widely used in many fields, an efficient algorithm that
would solve them is very essential. SLE could be solved via different mathe-
matical methods, one of the most traditional ones being Gaussian elimination
[1] and its variation Gauss-Jordan elimination [2] methods. There is an im-
plicit parallelism in solving SLE.

We will look at why GPU is very efficient in solving highly parallelized
tasks and compare the solution on GPU with the solution on CPU. We
will also cover CUDA technology that is available only on NVIDIA GPUs.
Gauss-Jordan method will be implemented on GPU and on CPU for refer-
ence. Partial pivoting variations of Gaussian elimination will also be imple-
mented and tested between each other. cuBLAS library will also be used
to substitute Gauss-Jordan elimination with Gaussian elimination with par-
tial pivoting strategies. Besides traditional Gaussian elimination with various
pivoting strategies, LU decomposition of matrices, implemented via NVIDIA’s
cuSOLVE library, will also be covered.

All the previously mentioned methods will be compared with each other
based on time of execution and correctness of calculations. Tests will be done
with double and single precision variations of all solvers. Special algorithm
will be implemented on CPU with extended double precision type of values to
be a reference solver: all other solvers’ results will be compared with reference
solver’s results.

Testing will consist of 2 parts: comparison of basic Gauss-Jordan algorithm
implementations on CPU and GPU — this test will serve the purpose of
showing difference in performance on CPU and GPU; comparison of all solvers’
on GPU results with reference solution on CPU — this test will be used
to evaluate precisions of different solvers on GPU and get the most precise
algorithm.
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Chapter 2
Terms and definitions

The System of Linear Equations (SLE) are used in many engineering and
scientific problems. SLE with n unknowns and m equations:

a11x1 + a12x2 + ... + a1nxn = b1

a21x1 + a22x2 + ... + a2nxn = b2

.

.

.

am1x1 + am2x2 + ... + amnxn = bm

Could be converted to matrix with m rows and n columns, as illustrated below,
where matrix A is matrix of coefficients, b is vector of results of each equation,
and x is vector of unknowns. To learn more about SLE, see [3]:

A =



a11 a12 . . . a1n

a21 a22 . . . a2n

. . . .

. . . .

. . . .
am1 am2 . . . amn


, x =



x1
x2
.
.
.

xn


, b =



b1
b2
.
.
.

bn


Gaussian elimination is an algorithm for solving SLE. It consists of a se-

quence of operations performed on the corresponding matrix of coefficients,
which bring matrix to its row echelon form. See [1] for basic Gaussian elim-
ination. See [4] for matrix in row echelon form. To bring matrix to reduced
row echelon form, Gauss-Jordan algorithm is used, see [2] for Gauss-Jordan
algorithm.

Matrix is in row echelon form, if it has following properties:

• Any row consisting entirely of zeros occurs at the bottom of the matrix.
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2. Terms and definitions

• For each row that does not contain entirely zeros, the first non-zero entry
is 1 (called a leading 1).

• For two successive (non-zero) rows, the leading 1 in the higher row is
further left than the leading one in the lower row.

Matrix is in reduced row echelon form, if it has following properties:

• All of the rows containing nonzero entries sit above any rows, whose
entries are all zero.

• The first nonzero entry of any row, called the leading entry of that row,
is positioned to the right of the leading entry of the row above it.

Basically, matrix in reduced row echelon form has nonzero values only in pivot
entries.

2.1 Common notation of variables in algorithms

Some algorithms will have common variables:

• matrix size: height and width of the matrix, e.g. matrix size = 500
means that it is matrix with 500 × 500 entries. In other words, SLE
consists of 500 equations.

• pivot id: index of the current pivot in the matrix.

• m A: left-hand side of the SLE, i.e. matrix A — matrix of coefficients.

• m B: right-hand side of the SLE, i.e. matrix B.

• m C: SLE variables’ values that will be calculated after matrix A and
matrix B are calculated, i.e. matrix C.

2.2 Gauss-Jordan method pseudo-code

Algorithm 1 illustrates a pseudo-code for Gauss-Jordan method:

1. First, matrix will be processed in top-down fashion, as illustrated on the
left matrix in Figure 1:

a) Pivot is chosen(line 1).
b) Row under the pivot that will be updated is chosen and ratio of

pivot entry with entry in the pivot column for given row under the
pivot is calculated and stored, as a multiplicative, in mult vari-
able(lines 2-3).

4



2.2. Gauss-Jordan method pseudo-code

c) Every column entry of the row chosen in line 2 is updated with
regards to the multiplicative calculated in line 3(lines 4-6).

2. After bringing matrix to row echelon form, it will be brought to reduced
row echelon form, as illustrated on the right matrix in Figure 1:

a) The process is similar to the described above with only difference
that matrix will be processed in down to top fashion(lines 9-16).

Algorithm 1 Gauss-Jordan algorithm
1: for i = 0 to matrix size− 1 do
2: for y = i + 1 to matrix size− 1 do
3: mult← matrix[y][i]/matrix[i][i]
4: for x = i to matrix size− 1 do
5: matrix[y][x]← matrix[y][x]−mult ·matrix[i][x]
6: end for
7: end for
8: end for
9: for i = matrix size− 1 downto 0 do

10: for y = 0 to i− 1 do
11: mult← matrix[y][i]/matrix[i][i]
12: for x = 0 to i do
13: matrix[y][x]← matrix[y][x]−mult ·matrix[i][x]
14: end for
15: end for
16: end for

Figure 1: Matrix that will be processed in top-down and down-top fashion
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Chapter 3
Software aspects

3.1 GPGPU and CUDA

General Processing on Graphics Processing Unit (GPGPU) is used to imple-
ment non-graphical tasks on GPU. GPU has a lot more cores than CPU, but
those cores do not have that much functionality that CPU cores have, which
make GPU cores highly specialized for particular tasks and, as there are a lot
of them, it is possible to implement highly parallelized code that will run on
GPU.

Compute Unified Device Architecture (CUDA) is a parallel computing
platform and API model created by NVIDIA. It allows developers to use
CUDA-enabled cores for GPGPU. It is a software level that gives access to
instruction set of GPU. CUDA code is mostly written in C/C++. Special
extension .cu is used to recognize CUDA code.

Code that runs on GPU is called a device code, whereas all code, executed
on CPU is called host code. When host recognizes device code, host launches
device code on GPU and continues running leftover host code, so host is not
blocked by device code. To learn more about CUDA, see [5].

Every NVIDIA GPU has computability, which determines the capability
of GPU to run particular CUDA instructions. For the purpose of this article,
NVIDIA GeForce RTX 2080 Ti was used with computability 7.5.
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3. Software aspects

3.1.1 Kernel

Kernel is a parallel code that is launched and executed on a device by many
threads at once. Consists of a grid that contains multiple blocks and is con-
figurable by developer.

Each block is executed by multiple threads at once. There is a maximum
number of threads that is possible to allocate for one block. For GPU, used in
this thesis(RTX 2080 Ti), this maximum is 1024 threads per each block. To
learn more about CUDA kernels, see [6]. In code, kernel functions are written
with global prefix.

In Algorithm 2, 10 x 10 = 100 blocks are created with 32 x 32 = 1024
threads for each block. Depending on the GPU, all blocks could run in parallel
or be scheduled for latter execution on device.

Algorithm 2 Kernel call
1: dim3 grid(10, 10), block(32, 32)
2: custom kernel <<< grid, block >>> ()

Figure 2: CUDA kernel

Figure 2 illustrates CUDA kernel. Image source: [7].
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3.1. GPGPU and CUDA

3.1.2 Memory

CUDA memory is divided into global memory, local memory, and shared
memory.

3.1.2.1 Global memory

Global memory available for all cores of the GPU. Has the greatest memory
space compared to any other type of memory in CUDA memory hierarchy,
though it is the slowest.

The GPU, used in this thesis(RTX 2080 Ti), has 11 GB of global memory.

3.1.2.2 Shared memory

Shared memory is located on chip, which makes it much faster than global
memory. Shared memory is roughly 100 times faster than global memory.
During CUDA kernel call, the amount of shared memory(in bytes) could be
defined. The GPU, used in this thesis(RTX 2080 Ti) has 49 KB of shared
memory per block. To learn more about shared memory, see [8].

In Algorithm 3, shared memory of 16 B is allocated for each block of called
kernel.

Algorithm 3 Shared Memory size declaration
1: int shared memory size← 2 · sizeof(double)
2: custom kernel <<< grid, block, shared memory size >>> ()

3.1.2.3 Local memory

Each thread of the kernel block gets its limited amount of local memory, which
is accessible only by this particular thread. Very close to stack memory for
each function in C language.

3.1.3 Device memory allocation in code

As host memory and device memory are separate, host memory can’t be ac-
cessed in device code. Device memory should be allocated beforehand on host.
It is achieved by cudaMalloc().

Freeing is achieved by cudaFree(). Memory copying from device to host
and vice versa is achieved via cudaMemcpy().

9



3. Software aspects

3.2 Basic Gauss-Jordan algorithm implementation
on CPU

Basic Gauss-Jordan algorithm consists of finding ratio of pivot column of the
pivot row with every lower row’s pivot column and further subtraction of pivot
row with all lower rows multiplied by that ratio.

Doing it in top-to-down fashion, will bring matrix to row echelon form.
Doing it again, but in down-to-top fashion, will bring it to reduced row echelon
form.

Algorithm 4 illustrates bringing of matrix A(the matrix of coefficients)
into row echelon form with modification of matrix B(right-hand side of SLE).
In lines 7-13, matrix of coefficients is modified per one row. In line 14, the
matrix B(right-hand side of SLE) is modified.

Algorithm 4 Top-down triangulation on CPU
1: for i = 0 to matrix size− 1 do
2: pivot← matrix A[i][i]
3: for y = i + 1 to matrix size− 1 do
4: row pivot← matrix A[y][i]
5: mult← row pivot/pivot
6: for x = i to matrix size− 1 do
7: m A[y][x]← m A[y][x]−mult ·m A[i][x]
8: end for
9: m A[y][i]← 0

10: m B[y]← m B[y]−mult ·m B[i]
11: end for
12: end for

After bringing the matrix A in row echelon form and modifying matrix
B accordingly, matrix is brought in reduced row echelon form with according
changes to matrix B. For bringing matrix to reduced row echelon form, see
A.1.
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3.2. Basic Gauss-Jordan algorithm implementation on CPU

At the end, the values of SLE variables are calculated and written into
matrix C, as illustrated in Algorithm 5.

Algorithm 5 Getting results of SLE on CPU
1: for i = 0 to matrix size− 1 do
2: m C[i]← m B[i]/m A[i][i]
3: end for

3.2.1 Complexity analysis

The program consists of 3 loops: the out-most loop traverses through all rows
of the matrix A consecutively choosing current pivot; second loop consecu-
tively traverses through all rows under the currently chosen pivot; inner-most
loop updates columns of the row chosen in the upper loop.

When the current pivot is the first entry in the matrix, the inner two
loops, will run n times, when an outer loop, also runs n times, so, overall time
complexity will be O(n3), where n is the number of variables of SLE.
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Chapter 4
Algorithms on GPU

Basic Gauss-Jordan algorithm on CPU, processes each row, under pivot row,
in successive manner, whereas, they could be updated concurrently with other
rows. Each column of given row, could also be updated in parallel to other
columns of that particular row. It leaves quite some room for parallelization
and GPU could help achieving it.

4.1 CUDA kernel grid and blocks

Custom CUDA kernels could be implemented to run on GPU to modify all of
the matrix rows and columns concurrently. To process matrix, 2 dimensional
blocks will be used: with dimension X and Y. As, it is possible to allocate
only 1024 threads per block, both dimensions X and Y of kernel block would
be of size

√
1024 = 32.

As CUDA kernel blocks are processed in a grid, for blocks to run con-
currently, grid should be able to cover all of the matrix with its blocks, so,
assuming the matrix height and width is N and as grid is 2 dimensional(X
and Y), for each dimension, there will be N

32 blocks, if N mod 32 = 0 and
N

32 + 1 blocks, if N mod 32 ̸= 0.

4.2 Basic Gauss-Jordan implementation on GPU

To process each row under pivot row, ratio of pivot entry with every entry
below the pivot entry in pivot column must be calculated and stored in some
array, such array will be called as array of multiplicatives. To get the values of
ratios in parallel, custom CUDA kernel could be used. Algorithm 6 illustrates
kernel for calculation of multiplicative values for given pivot, which will be
called with dimension of grid and blocks as described in Section 4.1:

13



4. Algorithms on GPU

1. Position of entry of the pivot column under pivot entry is established(line
1).

2. All threads that got position of the entry that goes out of the matrix
boundaries, will not continue calculation(lines 2-4).

3. Multiplicative values is calculated for given entry of the matrix in the
pivot column under the pivot row(line 5).

Algorithm 6 Kernel for calculation of multiplicative values in top-down fash-
ion

1: pos y ← blockIdx.y · blockDim.y + threadIdx.y + pivot id + 1
2: if pos y ≥ matrix size then
3: return
4: end if
5: mult[pos y]← matrix[pos y][pivot id]/matrix[pivot id][pivot id]

For down-top version of Algorithm 6, see B.1.

Algorithm 7 Kernel for updating matrix rows under pivot row
1: pos x← blockIdx.x · blockDim.x + threadIdx.x + pivot id
2: pos y ← blockIdx.y · blockDim.y + threadIdx.y + pivot id + 1
3: mem id← threadIdx.y
4: if pos y ≥ matrix size ∨ pos x ≥ matrix size then
5: return
6: end if
7: extern shared arr[]
8: if threadIdx.x = 0 then
9: arr[id]← mult[pos y]

10: end if
11: syncthreads()
12: if pos x = pivot id then
13: m A[pos y][pos x]← 0
14: m B[pos y]← m B[pos y]− arr[id] ·m B[pivot id]
15: else
16: m A[pos y][pos x]← m A[pos y][pos x]−arr[id] ·m A[pivot id][pos x]
17: end if

After calculation of array of multiplicatives, rows, under the pivot row,
must me updated. CUDA kernel for such purpose is illustrated in Algorithm 7
with the same dimensions of grid and blocks as described in Section 4.1:

1. Absolute positions of X and Y of current entry processed by the thread
is calculated(lines 1-2).

14



4.2. Basic Gauss-Jordan implementation on GPU

2. Id of the shared memory array that will be used for accessing shared
memory array(line 3).

3. Check, if current thread processes entry of the matrix that is out of
bound of the matrix(lines 4-6).

4. Initialize shared memory array, copy to it values from multiplicatives
array, as value of entry from multiplicative array will be used through-
out the given row of the matrix that will be updated, and synchronize
threads to wait(done via syncthreads() function), until all threads fin-
ish initializing shared memory(lines 7-11).

5. Update the left-hand side of the SLE(lines 13, 16) and right-hand side
of the SLE(line 14).

Down-top version of kernel in Algorithm 7 is different only with the fact
that it contains calculation of SLE variables’ values and absolute positions of
X and Y of a matrix entry that will be processed via thread are different.

Algorithm 8 Calculation of SLE variables’ values
1: pos x← blockIdx.x · blockDim.x + threadIdx.x
2: pos y ← blockIdx.y · blockDim.y + threadIdx.y
3: . . .
4: if pos y = pivot id− 1 ∧ pos x = pivot id then
5: m C[pos y + 1]← m B[pos y + 1]/m A[pos y + 1][pos x]
6: m C[0]← m B[0]/m A[0]
7: end if

Algorithm 8 illustrates down-top processing of matrix:

1. Absolute positions of X and Y of matrix entry that must be processed
via current thread is different that of a position in a kernel in top-
down version, as in down-top version, rows, above the pivot row are
updated(lines 1-2).

2. . . . means copy of the lines 3-17 of Algorithm 7.

3. It is only possible to calculate value of the SLE variable which is at the
position of the current pivot entry, as the current pivot row will not be
changed, that is why, when current kernel thread, processes entry which
is the next above the pivot entry in the pivot column, then value of the
SLE variable associated with the currently chosen pivot entry, will be
calculated.
As the first row of the matrix will not be chosen as a pivot row, as it is the
last row that is processed in the down-top version of the algorithm, SLE
variable, associated with the pivot entry of the first row should also be

15



4. Algorithms on GPU

calculated, whenever, any other SLE variable’s value is calculated(lines
4-6).

The steps with finding array of multiplicatives and further updating of the
matrix is done at each iteration when the pivot entry is chosen, both in top-
down and down-top fashion. Algorithm 9 illustrates the whole pseudo-code
for solving SLE on GPU.

Algorithm 9 Gauss-Jordan method on GPU
1: for pivot id = 0 to matrix size− 2 do
2: get mult array top down(m A, mult, pivot id, matrix size)
3: update matrix top down(m A, m B, pivot id, matrix size)
4: end for
5: for pivot id = matrix size− 1 downto 0 do
6: get mult array down top(m A, mult, pivot id, matrix size)
7: update matrix down top(m A, m B, m C, pivot id, matrix size)
8: end for

4.2.1 Testing of basic Gauss-Jordan implementation on GPU

To test Gauss-Jordan method algorithm on GPU, algorithm on CPU will be
used as a reference solution.

Testing environment:

• GPU name: NVIDIA GeForce RTX 2080 Ti.

• Size of total global memory (in bytes): 11554717696.

• Size of shared memory per block (in bytes): 49152.

Tests will consist of comparison of time of execution of solvers, as well as,
correctness of solved SLE variables, i.e. matrix C(see Section 2.1), compared
to values of SLE variables solved via CPU solver: Gauss-Jordan solver on
CPU will be considered 100% correct, as it is taken as a reference solution.

Testing will be made on different matrix dimensions and correctness of
calculation will be calculated as an average correctness, in percentage, for a
given solver throughout different matrix sizes ranging from 100-1000 with step
100, i.e. set of matrix sizes that consists of 10 matrices: matrix size set =
{100, 200, 300, ..., 1000}:

average correctness(solver) =
∑1000

j=100 correctness(solver, matrixj)
|matrix size set|

(1)

Both types of tests, i.e. the time of execution and average correctness of
calculations, will be performed on double and single precision types.

16



4.2. Basic Gauss-Jordan implementation on GPU

As it is illustrated in Figure 3 with both, double and single precision types,
Gauss-Jordan implementation on GPU is much faster than Gauss-Jordan im-
plementation on CPU.

Figure 3: Time of execution with double and single precision values
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4. Algorithms on GPU

As of correctness of calculations, illustrated in Figure 4, Gauss-Jordan
implementation on GPU gives roughly the same results as a Gauss-Jordan
implementation on CPU with double precision, although, with single precision,
algorithm on GPU sometimes gives different results compared to algorithm on
CPU and average correctness of calculations drops.

Figure 4: Average correctness of solvers with double and single precision values
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4.2. Basic Gauss-Jordan implementation on GPU

4.2.1.1 Matrix entry values generation

Values of matrix entries are generated via mt19937 random number generator,
used in C++, see [9] with uniform distribution of numbers between −0.5 and
0.5. Listing 4.1 illustrates code in C++ for generating n random number and
saving them in an array to use as matrix values.

1 std :: random_device random_dev ;
2 std :: mt19937 generator ( random_dev ());
3 std :: uniform_real_distribution <double > dist (-0.5, 0.5);
4
5 for(int i = 0; i < n; i++)
6 array[i] = ( double ) dist( generator );

Listing 4.1: Generation of random numbers via uniform distribution

4.2.1.2 Comparison of values

Comparison is made on calculated values of SLE variables, i.e. matrix C(see
Section 2.1) of given solver, with the results(matrix C) obtained by reference
solution.

Algorithm 10 illustrates a function of comparison of two values that will
be used to compare results of different solvers with a reference solution of SLE
that will be computed via reference solver:

• z1 is a number from the matrix C of the reference solver and z2 is a
number from the matrix C of the solver that is tested. See Section 2.1
for explanation of matrix C.

• precision is chosen as 10−6 for double precision values and 10−2 for
single precision values.

• Function abs() return absolute value of a number and min() returns
minimum between 2 given numbers.

Algorithm 10 Comparison of two values
1: if abs(z1 − z2) ≤ precision · abs(min(z1, z2)) then
2: return true
3: end if
4: return false

4.2.2 Problem with basic Gaussian elimination

Problem with Gaussian elimination consists of round-off errors during calcu-
lations, see [10].
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As in Gaussian elimination algorithm, updating a given entry of the ma-
trix, for example, entry in row y and column x with given current pivot row
at index i, consists of 2 parts:

1. Calculation of ratio: mult ← matrix[y][i]/matrix[i][i], as illustrated in
line 3 and 11 of Algorithm 1.

2. Updating given entry with regards to obtained ratio: matrix[y][x] ←
matrix[y][x]−mult ·matrix[i][x] as illustrated in lines 5 and 13 of Al-
gorithm 1.

When 2nd step of updating a given entry is done, the new value of entry
matrix[y][x] depends on the ratio mult, as if that ratio is evaluated in a large
value, the multiplication mult·matrix[i][x] will be quite large too, in that case
the whole subtraction matrix[y][x]−mult·matrix[i][x] will evaluate in a small
number, in some cases, depending on a ratio mult, that subtraction operation
could evaluate in ϵ : ϵ → 0, i.e. to a very small number and given particular
precision used in a computer, calculation of such a small number could lead to
a truncature effect or a round-off error, that could even, potentially, lead to 0.
This round-off error would lead to numerical instability caused by standard
Gaussian elimination algorithm.

4.3 Partial pivoting

To overcome round-off errors, described in Section 4.2.2, partial pivoting strat-
egy could be used.

As value of the ratio mult, could get large given a current pivot that
consists of a small value, that would lead to a round-off error, another pivot,
with maximum value in the pivot column, under pivot row, must be chosen,
so that the pivot, used in the ratio, would be of a large value, that would lead
to a ratio mult to be of a small value that could solve a resulting round-off
error.

When a value in the pivot column under pivot row is chosen as a new
pivot, current pivot row and row of the new chosen pivot with larger value,
must be swapped. To read more about partial pivoting, see [11].

Naive way of finding entry in pivot column with maximum value(to be
chosen as a pivot), would be of O(n) complexity: traverse the whole pivot
column below pivot row and iteratively compare values with each other. That
can be achieved via one loop. As in Partial Pivoting strategy, an entry, in
the pivot column, with maximum is chosen at each iteration over the rows of
Gauss-Jordan algorithm, this added complexity will be an overhead. A better
approach than a naive iteration over the pivot column must be chosen to find
an entry with maximum value.
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4.4 Parallel Reduction

Parallel reduction algorithms are such algorithms that given an array of ele-
ments, produce a single result. As examples of such algorithms could serve:
finding sum of elements in an array, finding minimum/maximum element in
an array. See [12] for detailed explanation of parallel reduction algorithms.

We are interested in finding a maximum element in an array, where pivot
column, could be referred as an array, maximum element of which, will be
found. With GPU and CUDA kernels, finding maximum via parallel reduction
algorithm could be achieved in O(log(n)) time complexity:

1. Start with an array of pivot column entries below and including pivot
row, as we should also take into account current pivot, in case if it is an
entry with maximum value in the pivot column.

An array with pivot column values will start from current pivot row and
will be of size N = matrix size−pivot id, where matrix size is the size
height and width of the matrix and pivot id is an index of current pivot
row.

Besides an array with pivot column entries, an additional array of indices
will also be needed, as each entry of that additional array of indices, will
contain index of an entry with maximum value, compared to another
entry, as a result of max() function, illustrated in Figure 5.

For the first run of the algorithm, indices of entries from pivot column
will be copied to array of indices and in further steps of an algorithm,
only an array of indices will be used to refer to the pivot column entries.

2. Parallel reduction kernel should be called that will find an entry with
maximum value between 2 entries, i.e. for each kernel call, every thread
of that kernel, will compare 2 entries, that is why, number of threads
needed for comparison is half the number of elements in the array, as
illustrated in Equation 3, where T is number of threads:

T =


N

2 , N mod 2 = 0
N

2 + 1, N mod 2 ̸= 0
(3)

3. Each thread will find a maximum entry between 2 entries, so, for each
given entry, its mirror entry is found and only then, thread compares
given entry with its mirror entry.

To calculate mirror entry, first, starting position of threads, must be
calculated, i.e. the top entry of the green entries illustrated in Figure 5.
Equation 4 illustrates the calculation of starting position of threads.
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start pos =


matrix size− N

2 , N mod 2 = 0

matrix size− N

2 − 1, N mod 2 ̸= 0
(4)

After starting position of threads is calculated, current thread, can calcu-
late an id of mirroring entry given current entry of an array. Equation 5
illustrates calculation of an index of mirroring entry, given and index of
current entry(entry id).

mirror id =
{

start pos− (entry id− start pos)− 1, N mod 2 = 0
start pos− (entry id− start pos), N mod 2 ̸= 0

(5)
After mirroring entry to the given entry is calculated, values under given
entry and its mirror entry are compared and an index of an entry with
greater value is written into array of indices into the position of a current
entry, as illustrated in Equation 6, where array is an array with values
of pivot column entries that will be compared between each other.

indices[entry id] =
{

mirror id, array[indices[mirror id]] > array[indices[entry id]]
entry id, array[indices[mirror id]] ≤ array[indices[entry id]]

(6)

4. N(number of elements to be compared) will be divided by 2, i.e. N = N

2 ,
as each thread compares 2 entries at once, and, if N > 1, steps 1-3 are
repeated.

As, in step 4 of parallel reduction algorithm, number of compared values is
divided by 2 during each iteration, algorithm will run ⌈log(n)⌉ times, where n
is an initial number of elements in the pivot column below pivot row including
the current pivot itself.
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Figure 5: Parallel reduction algorithm

23



4. Algorithms on GPU

4.5 Full Partial Pivoting

In full partial pivoting strategy, the maximum pivot for given pivot entry is
searched in an entire pivot column under pivot row. If an entry in the pivot
column, below pivot row, with a value greater than current pivot, is found,
an entire row of newly found pivot, with maximum value, compared to other
pivot candidates, is swapped with current pivot entry. After rows have been
swapped, algorithm should continue the same as in the Basic Gauss-Jordan
algorithm on GPU:

1. Array of multiplicatives is calculated.

2. Matrix is updated.

The process of finding maximum pivot and processing matrix(finding array
of multiplicatives and updating matrix entries below pivot row) must be done
at every iteration over rows to bring matrix in row echelon form.

When matrix is being brought in reduced row echelon form, it is not pos-
sible to choose maximum pivot in a pivot column. The reason being that all
entries, below the main diagonal, consist of 0 values.

aj =
{

0, j < i ∨ j > i

x, x ̸= 0 ∧ j = i
(7)

Equation 7 illustrates pivot row entry values with the pivot at the index i.
If this pivot row gets swapped with another row at the index k, as this row is
above pivot row(when bringing matrix to reduced row echelon form, algorithm
runs in bottom-up fashion, so, pivot row is always below the rows that will be
updated), i.e. i > k, pivot entry at the row k will be 0 and calculations won’t
succeed, as to calculate values of SLE variables, right-hand side gets divided
by pivot entries of the right hand side and division by 0 will be encountered,
as illustrated in Equation 8.

m B[k]
m A[k][k] = ∅ : m B[k] ̸= 0 ∧m A[k][k] = 0 (8)

For the reason, indicated above, pivot with maximum value will be chosen
only when matrix is brought in row echelon form, i.e. the first part of the
Gauss-Jordan algorithm, whereas, the second part, when matrix is brought
into reduced row echelon form, will be left the same, as in Basic Gauss-Jordan
algorithm on GPU.

At each iteration over matrix rows, to choose a pivot with greatest value
in the pivot column, parallel reduction algorithm will be used.
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4.5.1 Parallel Reduction Kernel

As explained in Section 4.4, parallel reduction algorithm runs only ⌈log(n)⌉
times, where n is the number of elements in a pivot column to be compared
with each other. Algorithm 11 illustrated the preamble of calling parallel
reduction kernel:

1. Number of entries of the pivot column below the pivot row including the
pivot entry is calculated(line 1).

2. Array of indices is instantiated(line 2): indices of pivot column entries
below pivot row including pivot row is copied into array of indices. Ar-
guments are:

• array indices — array, where indices of pivot column entries will
be copied to.

• matrix size — height and width of the matrix.
• pivot id — current pivot index.

3. Parallel reduction kernel is executed with arguments(line 4):

• m A — left-hand side matrix.
• array indices

• partial pivot id — index of an entry with the maximum value(result
of parallel reduction algorithm).

• elements count

• pivot id

• matrix size

4. Elements count is divided by 2 and iteration continues, if elements count
is bigger than 1(lines 5-9).

Algorithm 11 Preamble for parallel reduction kernel
1: elements count← matrix size− pivot id
2: create array of indices(...)
3: while elements count > 1 do
4: parallel reduction kernel(...)
5: if elements count mod 2 = 0 then
6: elements count← elements count/2
7: else
8: elements count← elements count/2 + 1
9: end if

10: end while
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Algorithm 12 illustrates a kernel for copying indices of pivot column entries
into an array of indices:

1. Absolute Y position of a matrix entry that will be processed by current
thread is calculated(line 1).

2. Check if calculated position of an entry is out of bounds of a matrix(lines
2-4).

3. Copy an index of current entry that into array of indices(line 5).

Algorithm 12 Kernel for copying pivot column entry’s indices into array of
indices

1: pos y ← blockIdx.y · blockDim.y + threadIdx.y + pivot id
2: if pos y ≥ matrix size then
3: return
4: end if
5: array indices[pos y]← pos y

Algorithm 13 illustrates parallel reduction kernel itself:

1. Starting position of threads is calculated(lines 1-5). As the number of
needed threads is half of the number of elements in an array, threads
will execute on second half of an array of indices(lower part of the pivot
column, see green entries, that indicate entries where threads run, illus-
trated in Figure 5).

2. Absolute Y position of current entry that current thread processes is
calculated(line 6).

3. If current thread processes a pivot column entry that is out of boundaries
of a matrix, thread stops execution(lines 7-9).

4. Index of mirror entry to the current entry, processed by current thread,
is calculated(lines 10-14). Current entry’s value will be compared with
mirror entry’s value.

5. In case if there are 2 entries to be compared(lines 15-19), compare
their values and write an index of an entry with greatest value into
partial pivot id that is a variable that stores result of parallel reduc-
tion algorithm — newly chosen pivot with greatest value that will be
swapped with current pivot in the matrix(line 16). Comparison of values
is done via function abs max id() that return an index of the greatest
from two compared values.
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6. If number of elements in the array of indices, that must be compared, is
greater than 2, compare current entry’s value with mirror entry’s value
and write an index of an entry with maximum value into an array of
indices(lines 17-21).

Algorithm 13 Parallel reduction kernel for full pivoting
1: if elements count mod 2 = 1 then
2: threads start pos← matrix size− elements count/2− 1
3: else
4: threads start pos← matrix size− elements count/2
5: end if
6: pos y ← blockIdx.y · blockDim.y + threadIdx.y + threads start pos
7: if pos y ≥ matrix size then
8: return
9: end if

10: if elements count mod 2 = 0 then
11: pos y mirror ← start pos− (pos y − threads start pos)− 1
12: else
13: pos y mirror ← start pos− (pos y − threads start pos)
14: end if
15: if elements count = 2 then
16: partial pivot id← abs max id(

m A[array indices[pos y]][pivot id], array indices[pos y],
m A[array indices[pos y mirror]][pivot id],
array indices[pos y mirror]

)
17: else
18: if elements count mod 2 ̸= 1 ∨ pos y ̸= threads start pos then
19: array indices[pos y]← abs max id(

m A[array indices[pos y]][pivot id], arrayindices[pos y],
m A[array indices[pos y mirror]][pivot id],
arrayindices[pos y mirror]

)
20: end if
21: end if
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4.6 Local Partial Pivoting

Local partial pivoting works the same way as full partial pivoting with only
difference that, instead of finding an entry in the pivot column with the great-
est value to swap with current(default) pivot, only limited number of entries
in pivot column below pivot row will be processed. This will limit the number
of entries that must be processed therefore will speed up calculations.

The whole algorithm is the same as in the full partial pivoting with the
only difference being in parallel reduction algorithm:

1. Number of entries in line 1 of Algorithm 11 will be a predefined value:
limited number of rows, below pivot row that will be processed.

2. If statement condition in line 2 of Algorithm 12 will be substituted with
pos y ≥ matrix size ∨ pos y ≥ pivot id + elements count.

3. Starting position of threads will be different in lines 1-5 of Algorithm 13,
these lines will be substituted with threads start pos ← pivot id +
elements count/2.

4. Absolute position Y of current thread to be processed will also be dif-
ferent, so, line 6 in Algorithm 13 will be substituted with pos y ←
blockIdx.y · blockDim.y + threadIdx.y + threads start pos.

5. If statement condition in line 7 of Algorithm 13 will be substituted with
pos y ≥ matrix size ∨ pos y ≥ pivot id+elements count, as any thread
should also ensure that it doesn’t process an entry out of boundaries of
given limit on rows to be processed.

4.7 cuBLAS

cuBLAS is a library, written by NVIDIA developers(see [13]) that contains
function for solving matrix in triangular form(row echelon form) with mul-
tiple right-hand sides, namely cublasDtrsm() for double precision type and
cublasStrsm() for single precision type.

All cuBLAS functions work with matrices in column major order, see [14],
so, before solving matrix with cublasDtrsm() or cublasStrsm(), matrix of
coefficients, in row echelon form, should be converted to column major order.

Conversion of matrix in row major order to column major order could be
implemented via custom CUDA kernel, as illustrated in Algorithm 14:

1. Absolute X and Y positions of current processed entry via current thread
are calculated(lines 1-2).

2. Current thread stops execution, if currently processed entry is out of
boundaries of the matrix or if it is a pivot entry, as pivot entries stays
in its default entry after transposition(lines 3-5).
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3. Positions X and Y of a transposed entries are calculated(lines 6-7).

4. Only threads that are executed above the matrix’s main diagonal is
needed for transposition. All the threads that process entries below the
main diagonal will stop their execution(lines 8-10).

5. Thread swaps current entry with its transposed entry(lines 11-13).

Algorithm 14 Conversion of matrix to column major order
1: pos x← blockIdx.x · blockDim.x + threadIdx.x
2: pos y ← blockIdx.y · blockDim.y + threadIdx.y
3: if pos x ≥ matrix size ∨ pos y ≥ matrix size ∨ pos x = pos y then
4: return
5: end if
6: pos x transposed← pos y
7: pos y transposed← pos x
8: if pos x transposed < pos x then
9: return

10: end if
11: tmp val← matrix[pos y][pos x]
12: matrix[pos y][pos x]← matrix[pos y transposed][pos x transposed]
13: matrix[pos y transposed][pos x transposed]← tmp val

Algorithm with usage of cuBLAS consists of bringing matrix in row eche-
lon form(basic Gaussian elimination) when algorithm runs in top-down fash-
ion, but, instead of down-top part of Gauss-Jordan algorithm, matrix will
be converted to column major order and processed via cublasDtrsm() or
cublasStrsm() for double or single precision types correspondingly.

4.8 cuSOLVE

cuSOLVE is a library, written by NVIDIA developers(see [15]), which contains
functions for LU decomposition(see [16]) of dense matrices.

As an additional solver, cuSOLVE solver will. Namely, the LU decompo-
sition for dense matrices implemented via cuSolverDN functions will be used
as a cuSOLVE solver.

As LU decomposition from cuSolverDN functions is implemented via NVIDIA
developers, it is quite efficient in time consuming for solving SLEs.
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Chapter 5
Testing and evaluation of results

For testing, all the discussed solvers on GPU will be used, with the total of 7
solvers:

1. cuSOLVE solver.

2. Basic Gauss-Jordan algorithm.

3. Basic Gaussian algorithm with cuBLAS.

4. Full Partial Pivoting Gauss-Jordan algorithm.

5. Full Partial Pivoting Gaussian algorithm with cuBLAS.

6. Local Partial Pivoting Gauss-Jordan algorithm.

7. Local Partial Pivoting Gaussian algorithm with cuBLAS.

5.1 Reference solution

Full partial pivoting implementation of Gauss-Jordan algorithm on CPU with
long double type of values will be used as a reference solver, as it is imple-
mented with long double(extended double precision) type that makes it more
precise than other algorithms with double(double precision) and float(single
precision) types. Results of all solvers on GPU will be compared with refer-
ence solver on CPU for establishing correctness of calculations of those solvers
on GPU.

5.2 GPU for testing

GPU, used for testing, is the same as it was for testing of Basic Gauss-Jordan
algorithm in Section 4.2.1.
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5.3 Types of tests

As in Section 4.2.1, 2 types of tests will be done: time of execution of each
solver for given matrix size and average correctness of calculations. Tests will
be done on values with double and single precision types.

Matrix sizes will range from 250–4000 with step 250, i.e. set of matrix
sizes that consists of 16 matrices: matrix size set = {250, 500, 750, ..., 4000}.

Values, used for matrices, are generated randomly, as described in Sec-
tion 4.2.1.1.

5.4 Local Partial Pivoting

For algorithms with local partial pivoting, 10 rows will be used for parallel
reduction algorithm to choose an entry in the pivot column with largest value:
1 for the current pivot row and 9 more rows under pivot row.

5.5 Double precision

5.5.1 Time of execution

As it could be observed in Figure 6, Gauss-Jordan algorithms with partial
pivoting are only slightly slower than basic Gauss-Jordan algorithm without
partial pivoting.

As expected, Full Partial Pivoting is slower than Local Partial Pivoting,
but, as parallel reduction algorithm, used in partial pivoting approaches, is
only O(log(n)) time complexity, the difference is very subtle.

cuBLAS variations of partial pivoting strategies of Gaussian algorithm
proved to be much faster than standard Gauss-Jordan algorithm with partial
pivoting.

Reference solver on CPU graph is not included into the plot, as CPU is
very slow compared to GPU for SLE solving, so reference solver would shift
plot high enough and all GPU solver’s graphs would collide with each other.

As to solve a SLE via Gaussian elimination algorithms, CUDA kernels
are called for every pivot rows from host code, there will be a lot of host to
device context switches which is a overhead. Because of abundance of context
switches of Gaussian elimination algorithms, cuSOLVE is much faster than
Gaussian elimination algorithms. One more reason for cuSOLVE solver to
be much faster than Gauss-Jordan solvers is that LU decomposition is faster
than Gauss-Jordan method.
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Figure 6: Time of execution with values of double precision type

5.5.2 Correctness of calculations

For establishing correctness of calculations, the same Algorithm 10 that was
implemented in Section 4.2.1.2 is used, but with different precisions: 10−6,
10−8, 10−10, 10−12.

As it could be observed in Figure 7 and Figure 8, partial pivoting ap-
proaches are much more accurate than basic Gauss-Jordan implementation.

cuBLAS implementations of Gaussian algorithms of those partial pivoting
strategies produce accuracy close to implementations of Gauss-Jordan algo-
rithm with partial pivoting strategies.

With precision increasing from 10−6 to 10−12, the difference between full
partial pivoting strategy and cuSOLVE gets bigger in favor of full partial
pivoting strategy. With the increase of precision, correctness of local par-
tial pivoting gets close to basic Gauss-Jordan algorithm without any pivoting
strategy, whereas correctness of full partial pivoting strategy remains high.
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Figure 7: Average correctness of calculations with precisions 10−6 and 10−8
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Figure 8: Average correctness of calculations with precisions 10−10 and 10−12
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5.6 Single precision

5.6.1 Time of execution

As illustrated in Figure 9, calculations with values of single precision type
are much faster, but overall picture remains the same as it was for values of
double precision type.

Figure 9: Time of execution with values of single precision type

5.6.2 Correctness of calculations

For values of single precision type Algorithm 10 from Section 4.2.1.2 is used
with precisions: 10−1, 10−2, 10−3, 10−4.

Figure 10 and Figure 11 illustrate that overall picture stays the same as it
was for testing with double precision: partial pivoting algorithms are still much
more precise than basic Gauss-Jordan algorithm, but cuSOLVE and full par-
tial pivoting strategy have quite similar correctness of calculations, although
with precision 10−4 the overall correctness is quite low for all algorithms.
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Figure 10: Average correctness of calculations with precisions 10−1 and 10−2
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Figure 11: Average correctness of calculations with precisions 10−3 and 10−4
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Chapter 6
Conclusion

The goal of this work was to implement SLE solvers on GPU via various
Gaussian elimination strategies, compare Gauss-Jordan implementation on
GPU with CPU, study the difference of time and correctness of execution of
different solvers.

NVIDIA’s CUDA technology on GPUs was used to implement CUDA
kernels that would run on GPU to achieve parallelism.

Basic Gauss-Jordan algorithm on GPU and CPU were implemented and
results of GPU algorithm are compared with CPU algorithm. Tests showed
that, implementation of Gauss-Jordan algorithm on GPU was much faster
than on CPU that proved the use of high parallel environment for efficient
solving of SLEs.

To prevent loss of precision(round off errors) during calculations, partial
pivoting strategies were implemented, namely full partial pivoting and local
partial pivoting. To find an entry in the pivot column with the largest value,
parallel reduction algorithm for finding maximum in a given pivot column of
the matrix was implemented.

cuBLAS library with cublasDtrsm() function for double precision type
and cublasStrsm() function for single precision type were used to substitute
down-top part of Gauss-Jordan algorithm. cuBLAS variation of Gaussian
elimination algorithm was implemented on full and local partial pivoting al-
gorithms.

During testing, it was established that due to parallel reduction algorithm
being of O(log(n)) time complexity, differences in time of execution were quite
subtle between basic algorithm implementation on GPU and partial pivoting
variations of it, although correctness of calculation was much higher on partial
pivoting strategies.

cuBLAS variation of Gaussian elimination algorithm with partial pivoting
strategies proved to be close to 2 times faster than standard Gauss-Jordan
algorithm with partial pivoting strategies and correctness of calculations with
algorithms with cuBLAS with partial pivoting strategies was approximately
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the same as it was for partial pivoting algorithms without cuBLAS.
When it comes to correctness of calculations, full partial pivoting algo-

rithms(both with cuBLAS and without it) proved to be a bit more precise
than cuSOLVE algorithm. As testing was done with different precisions, with
greater precision, difference in correctness of calculations between full partial
pivoting strategies and cuSOLVE is bigger in favor of full partial pivoting
strategy. So, given drawback in time of execution of full partial pivoting al-
gorithms compared to cuSOLVE algorithm, full partial pivoting algorithms
are more precise than cuSOLVE algorithm and as cuBLAS variation of full
partial pivoting algorithm is nearly 2 times faster than an algorithm without
cuBLAS, it makes full partial pivoting algorithm with cuBLAS the best solver
on GPU when it comes to correctness of calculations.
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Chapter 7
Possible improvements

As an improvement of partial pivoting strategy, complete pivoting strategy
could be implemented, when not only rows get swapped, but also columns:
first, maximum value throughout all columns of a given row is found, then it
is swapped with pivot column entry of this row and only then maximum value
in the pivot column is found for swapping with current pivot row. For more
information about complete pivoting, see [17].
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Appendix

A Gauss-Jordan method on CPU

A.1 Bringing matrix in reduced row echelon form

Algorithm 15 Down-top triangulation on CPU
1: for i = matrix size− 1 downto 0 do
2: pivot← matrix A[i][i]
3: for y = 0 to i− 1 do
4: row pivot← matrix A[y][i]
5: mult← row pivot/pivot
6: for x = 0 to i do
7: m A[y][x]← m A[y][x]−mult ·m A[i][x]
8: end for
9: m A[y][i]← 0

10: m B[y]← m B[y]−mult ·m B[i]
11: end for
12: end for
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Appendix

B Gauss-Jordan implementation on GPU

B.1 Kernel for calculation of multiplicative values in
top-down fashion

Algorithm 16 Kernel for calculation of multiplicative values in down-top
fashion

1: pos y ← blockIdx.y · blockDim.y + threadIdx.y
2: if pos y ≥ pivot id then
3: return
4: end if
5: mult[pos y]← matrix[pos y][pivot id]/matrix[pivot id][pivot id]
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Acronyms

API Application Programming Interface. 7

CPU Central Processing Unit. 1, 7, 13, 16–18, 31, 32, 39

CUDA Compute Unified Device Architecture. 1, 7–9, 13, 14, 21, 28, 32, 39

GPGPU General Processing on Graphics Processing Unit. 7

GPU Graphics Processing Unit. 1, 7–9, 13, 16–18, 21, 24, 31, 32, 39, 40

SLE System of Linear Equations. 1, 3, 4, 10, 11, 15, 16, 19, 24, 29, 32, 39
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Chapter 8
Contents of enclosed CD

Thesis ................ the directory with latex source file and thesis pdf
thesis.pdf...................................thesis in PDF format
thesis.tex....................................latex file with thesis
Resources ........................ directory with images from thesis

src.......................................the directory of source codes
Doc.......................doxygen documentation of the source code
Execution Time ........................................... csv files
Graphs .............................. graphs generated from csv files
Main......................................implementation of solvers
Makefile..................................................makefile
README.md ........ readme with exlanation of makefile and directories
Scripts........................scripts used for generation of graphs
Test ......................... implementation of unit and main tests
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