
Instructions

1) Review existing libraries for multithreaded sparse matrix-vector multiplication (SpMV) at least [1,2]. 

2) Review existing approaches to distributed SpMV [1]. 

3) Discuss distributed SpMV with selected libraries from point 1).  

4) Implement ideas from point 3) using OpenMP and MPI libraries.   

5) Measure the resulting performance and speedup. Compare the performance of the implementation 

with similarly focused libraries. 
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Abstrakt

Ćılem práce bylo prozkoumat možnosti distribuovaného násobeńı ř́ıdké matice
vektorem několika procesy s použit́ım MPI a CSR5. Výsledkem tohto výzkumu
je C++ knihovna dim, která poskytuje potřebné stavebńı bloky pro distribuované
násobeńı ř́ıdkých matic vektorem za pomoci formátu CSR5. Potencionálni
zrychleńı distribuovaného násobeńı ř́ıdké matice vektorem pak bylo meřeno na
implementaci metody konjugovaných gradient̊u a porovnávano s jednoprocesovou
implementaćı založenou na CSR5 i distribuovanou implementaćı pomoćı
PETSc.

Kĺıčová slova násobeńı ř́ıdké matice vektorem, C++, OpenMP, MPI, metoda
konjugovaných gradient̊u, CSR5, HDF5
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Abstract

The aim of this thesis is to research possibilities of distributing sparse matrix-
vector multiplication among multiple processes using MPI and CSR5 storage
format. The result of this research is a C++ library dim, which provides the
building blocks for distributed SpMV using CSR5. The potential speedup of
distributed SpMV is then benchmarked on a conjugate gradient algorithm
implementation against a single-process CSR5 based implementation as well
as PETSc based multi-process implementation.

Keywords sparse matrix-vector multiplication, C++, OpenMP, MPI, conjugate
gradient method, CSR5, HDF5
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Introduction

Sparse matrix-vector multiplication is a fundamental computational kernel
used for many scientific computations, such as graph algorithms, numerical
analysis, conjugate gradients as well as some machine learning algorithms, such
as support vector machines. While matrix-vector multiplication is a simple
multiplication task, it is non-trivial to load balance properly for every sparsity
structure matrix when parallelized.

The conjugate gradient algorithm is one of the best-known iterative methods,
which can be used to solve large symmetric positive definite linear systems.
With sparse matrix-vector multiplication being the most computationally
intensive step of a conjugate gradient iteration, parallelizing the kernel and
distributing the computation across multiple nodes can result in significantly
shorter iteration times.

The goals of this thesis are to:

1. Review existing sparse matrix storage formats.

2. Review existing approaches to parallel SpMV.

3. Implement the parallel SpMV algorithm introduced in [2].

4. Introduce efficient on-disk storage format for sparse-matrix format outlined
in [2] suitable for distributed version.

5. Implement a distributed version of parallel SpMV (D-CSR5) using the
parallel implementation and storage format introduced in this thesis.

6. Measure and review the viability of distributing SpMV.

7. Benchmark the distributed implementation against PETSc suite.
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Chapter 1
Overview of used technologies

This chapter introduces the technologies used in the implementation of this
thesis. SIMD parallel processing, as well as SSE/AVX instructions sets, are
defined in Section 1.1. Section 1.2 introduces OpenMP API, used to parallelize
the computation. Section 1.3 introduces MPI, a Message Passing Interface,
used for inter-process communication in the distributed SpMV implementation.
Lastly Section 1.5 introduces Matrix Marked Exchange Format for storing
sparse and dense matrices, and Section 1.6 introduces Hierarchical Data Format
v5, used for efficient sparse matrix on-disk storage as described in Section 3.5.

1.1 SIMD

As defined in Flynn’s taxonomy, Single Instruction Multiple Data (or SIMD) is
a type of parallel processing, where a single instruction is applied to multiple
data streams.

0 1 2 3xmm0

3 2 1 0xmm1

+ + + +

3 3 3 3xmm2

vpaddd xmm2, xmm2, xmm1

L0 L1 L2 L3

Figure 1.1: Example of SIMD addition using SSE

Modern CPUs provide Streaming SIMD Extensions (or SSE) Instruction
Set Extensions which work on 16 byte registers, as well as Advanced Vector
Extensions (or AVX), which work with 32-byte registers. To illustrate, Figure 1.1
shows addition (single instruction) of two four-integer arrays (multiple data)

7



1. Overview of used technologies

using the vpaddd instruction from SSE. The data streams are sometimes
referred to as lanes (marked as L0-L3 in Figure 1.1).

In C++, there are several ways to achieve vectorization1. First of these
are SIMD intrinsics. Intrinsics are assembly-coded functions that let you use
C++ function calls and variables in place of assembly instructions, improving
readability. To generate the vpaddd instruction from Figure 1.1 intrinsic
_mm_add_epi32 can be used.

Vectorization may also be achieved by using a pragma directive from
OpenMP described in Section 1.2, as shown in Figure 1.2.

#pragma omp simd
for (int lane = 0; lane < 4; ++lane)

c[i] = a[i] + b[i]

Figure 1.2: Vectorization using OpenMP

Lastly, standard C++ may be used to produce vectorized code by utilizing
<execution> header and its par_unseq and unseq execution policies. However,
these only aid the compiler auto-vectorization and do not guarantee the vector
instructions will actually be used.

1.2 OpenMP

OpenMP API is defined by a collection of compiler directives, library routines,
and environment variables. It provides a model for parallel programming
that is portable across architectures from different vendors. Compilers from
numerous vendors support the OpenMP API[3]. OpenMP uses the fork-join
model of parallel execution.

For C++ the directives have the form of preprocessor #pragma directives,
with the following syntax.

#pragma omp <directive-name> [clause[[,]clause]...] new-line

To enable the use of OpenMP, the compiler must be invoked with the
-fopenmp switch for GCC/clang-based compilers, while MSVC accepts the
/openmp flag.

1.2.1 parallel directive

parallel directive marks a region to be executed in parallel. A team within
the parallel region is a set of one or more threads participating in the execution

1Note that the target architecture needs to be specified for the compiler to enable vector
instructions.
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1.2. OpenMP

of this region. If the team has at least two active threads, the parallel region
is active, else it is called inactive.

The threads in OpenMP have a numerical identifier. In this thesis, this
numerical identifier will be referred to as thread id2. The thread which has
thread id equal to 0 is called the master thread within the team while other
consecutive thread ids are assigned to remaining threads. It can be obtained
by calling omp_get_thread_num.

1.2.2 for directive

Referred to as Worksharing-Loop Construct in [3]. It specifies that the
iterations of the associated loop(s) will be executed in parallel by the threads
of the currently active team. As a result, the execution is only parallelized if
the loop is performed inside of a parallel region in the first place.

All of the allowed clauses for the directive can be found in [3]. The only
relevant clause for this thesis is schedule, specified as
schedule([modifier [, modifier]:]kind[, chunk size]).

Modifier isn’t immediately relevant but kind is. kind specifies, how the
work is distributed among the threads. When dynamic kind is specified, the
iterations are distributed among threads dynamically. Meaning when a thread
finishes processing its assigned chunk (of chunk size elements), it requests a
new chunk until no chunks remain.

static kind distributes chunks of chunk size among the participating
threads in a round-robin fashion. This kind is used heavily in the computational
kernel described in Section 3.3.

parallel and for directives may be combined as shown in Figure 1.3, to
create a so-called parallel worksharing-loop construct. Which is a shortcut for
specifying parallel construct containing a worksharing-loop.

#pragma omp parallel for
for (int i = 0; i < num_iters; ++i)

// performed in parallel

Figure 1.3: Loop parallelized using OpenMP directives.

OpenMP contains many other primitives for parallel programming such
as atomics, barriers and semaphores and can also be used to vectorize loops
using the simd construct as shown in Figure 1.2.

2Not the thread id in the context of an OS.
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1. Overview of used technologies

1.3 MPI

MPI (Message-Passing Interface) is a message-passing library interface specifica-
tion. All parts of this definition are significant. MPI addresses primarily the
message-passing parallel programming model, in which data is moved from the
address space of one process to that of another process through cooperative
operations on each process.

Extensions to the “classical” message-passing model are provided in collective
operations, remote-memory access operations, dynamic process creation, and
parallel I/O, which is used to speed-up loading sparse matrices from disk
as described in Section 4.1. MPI is a specification, not an implementation;
there are multiple implementations of MPI. This specification is for a library
interface; MPI is not a language, and all MPI operations are expressed as
functions, subroutines, or methods, according to the appropriate language
bindings which, for C and Fortran, are part of the MPI standard. [4]

1.3.1 Initialization

Before invoking any MPI routines, a participating process must call MPI_Init
which initializes internal state of an MPI implementation, which must then be
freed by calling MPI_Finalize.

1.3.2 Communicators

Most MPI routines require a communicator. In MPI a communicator a
communicator is a context for a communication operation [4]. Participating
processes are also referred to as process group and are each process is assigned
a non-negative rank within this group.

0 1 2 3

MPI_COMM_WORLD

0 1

MPI_Comm_split

Figure 1.4: Splitting a communicator to create a new one

MPI implementations provide some predefined communicators such as
MPI_COMM_WORLD which contains every process accessible after initialization
described in Section 1.3.1 and MPI_COMM_SELF which contains only the calling
process (self). One of the most common methods for creating new communicators
is splitting an existing one. This can be done by calling MPI_Comm_split
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(Shown in Figure 1.4) and is utilized for synchronization of sub-results as
explained in Section 4.2.

1.3.3 MPI operations

An MPI operation is a sequence of steps performed to establish and enable
data transfer/synchronization[4]. It consists of four stages:

• Initialization hands over the argument list to the operation, but not
the content of the data buffers.

• Starting hands over the control of the data buffers.

• Completion returns control of the content of the data buffers and
indicates that output buffers and arguments may have been updated.

• Freeing returns the control of the rest of the argument list to the caller.

1.3.4 MPI Allgatherv

MPI_Allgatherv is a collective, blocking operation; useful for distributing
arrays of data between processes. A collective operation in MPI is an
operation in which a group of processes participates, for which the completion
stage may or may not finish before all processes in the group have started
the operation. A blocking operation combines all four stages outlined in
Section 1.3.3.

0 1 2

0

0

2

2

3

3

4

4

3

3

2

2

MPI Allgatherv

displs = {0, 1, 4}, recvcounts = {1, 3, 2}

Figure 1.5: Distributing data with MPI Allgatherv

The routine takes an input array, its size, an output array, displs and
recvcounts. The last two arrays contain offset into the output array and the
amount of contributed data for each participating process respectively and
have to be the same for every participating process.
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1.3.5 MPI Allreduce

MPI_Allreduce performs parallel reduction among all participating processes.
Different reduction operators can be used, such as MPI_SUM, MPI_PROD, MPI_MAX
etc. The implementation produced alongside this thesis mostly uses its non-
blocking counterpart, MPI_Iallreduce. A non-blocking operation combines
the first two MPI operation stages into a single non-blocking call. It then must
be finished by either waiting by calling MPI_Wait (or MPI_Waitall if waiting
on multiple operations). This operation is the backbone of synchronization for
parallel SpMV outlined in Section 4.2.

0 1 2

1 3 2

MPI Allreduce(MPI SUM)

6

Figure 1.6: Performing parallel reduction with MPI Allreduce

1.4 PETSc

Portable, Extensible Toolkit for Scientific computation (PETSc) is a suite of
data structures and routines for scalable solutions of scientific applications
modeled by partial differential equations. It supports MPI, and GPUs through
CUDA, HIP or OpenCL, as well as hybrid MPI-GPU parallelism [5].

PETSc contains three main algebraic objects Mat for matrices, Vec for
vectors and IS for index sets indexing into the previous two. While it also
contains many other components, only Mat and Vec are immediately relevant
to this thesis.

1.5 Matrix Market Exchange Format

Matrix Market Exchange Format is a textual format, used as a native format
in Matrix Market3. It has two flavors, Array format for dense matrices,
Coordinate format for sparse matrices [6].

3Matrix Market is a repository of sparse matrices, which can be found at
https://math.nist.gov/MatrixMarket/
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1.5.1 General Format Specification

All Matrix Market exchange format files contain three sections, which must
appear in order:

1. Header First line of a file, must follow the template:

%% MatrixMarket object format [ qualifier ...]

Where object type indicates the mathematical object (e.g., vector or
matrix) stored in the file. Type indicates the format (array or coordinate)
used to store the object. Qualifiers are used to indicate special properties
of the stored object (e.g., symmetry, field). Their number, as well as
allowed values, depends on the stored object.

2. Comments Zero or more line of comments4.

3. Data Remainder of the file contains data representing the object. The
format of data is dependent on the stored object, but for simplicity, each
data entry should occupy a single line.

1.5.2 Coordinate Format for Sparse Matrices

Header format for sparse matrices:

%% MatrixMarket matrix coordinate <field > <symmetry >

Where:

• field determines the type and number of values listed for each entry and
is one of: Real, Complex, Integer or Pattern.

• symmetry determines how to interpret matrix entries and is one of:
General, Symmetric, Skew-Symmetric or Hermitian.

While data is specified as:

M N L
I J A(I, J)
I J A(I, J)
...

First line of data contains exactly three integers:

• M - number of rows.

• N - number of columns.

• L - number of non-zero entries that follows.
4Comments are lines starting with %.
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The following L lines each contain I - the row index, J - the column
index and the corresponding value. Indices are 1-based. Entries not explicitly
provided are considered to be zero, except for those known by symmetry.

1.6 HDF5

HDF5 is a data model, library, and file format for storing and managing data.
It supports an unlimited variety of data types and is designed for flexible and
efficient I/O for high volume and complex data. HDF5 is portable and is
extensible, allowing applications to evolve in their use of HDF5. The HDF5
Technology suite includes tools and applications for managing, manipulating,
viewing, and analyzing data in the HDF5 format. [1] HDF5 is defined by
HDF5 File Format Specification, which specifies the bit-level organization of
an HDF5.

1.6.1 HDF5 Abstract Data Model

The HDF5 data model defines building blocks for data organization and
specification in HDF5. It’s two primary objects are groups and datasets.

1.6.1.1 Group

HDF5 groups organize data. Every file contains at least a root group. Each
group can contain other groups or be linked to objects in other files.

Figure 1.7: HDF5 Group (Source: [1])

Working with groups and their members is similar to working with files
and directories in UNIX. Objects are described by giving their pathnames (e.g.,
/Viz).

14



1.6. HDF5

1.6.1.2 Dataset

Datasets organize and contain the ”raw” data. They consist of raw data and
metadata needed to describe it. The metadata needed to describe a dataset
consists of datatypes, dataspaces, properties, and optionally attributes.

Figure 1.8: HDF5 Dataset (Source: [1])

1.6.1.3 Datatype

Datatypes describe individual elements in dataset. There are two groups of
datatypes:

• pre-defined - created by HDF5, contain standard datatypes that are
stable across platforms (e.g IEEE-754 encoded floating point), as well as
native datatypes (e.g. double on platform on which the application is
running).

• derived - created or derived from pre-defined datatypes (e.g. a string).

1.6.1.4 Dataspace

Dataspaces describe the layout of datasets elements. It may be empty (NULL),
contain a single element (scalar), or an array5. They provide a logical layout
of the dataset stored in a file (including rank and dimensions). As well as the
application’s data buffers and data elements participating in I/O. Thus an
application can select subsets of a dataset.

5The number of dimensions of the array is referred to as rank of the dataspace.
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Figure 1.9: HDF5 Dataspace (Source: [1])

1.6.1.5 Attribute

Attributes may optionally be associated with objects. An attribute consists
of a name-value pair. They are similar to datasets in that they too have a
datatype and dataspace. However, they do not support partial I/O and cannot
be compressed or extended.
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Chapter 2
Sparse matrix storage formats

Section 2.1 of this chapter introduces sparse matrices. Sections 2.2 and 2.3
provide a quick overview of the two most used storage formats for sparse
matrices in Coordinate format (COO) and Compressed Sparse Row (CSR).
Compressed Sparse Row 5 introduced in [2] is then outlined in Section 2.4.

2.1 Sparse matrices

A matrix is a rectangular array of numbers. The numbers in the array are
called the entries in the matrix [7]. Matrix entries are usually addressed by
the column and row in the rectangle they occupy.

In numerical analysis and scientific computing, a sparse matrix or sparse
array is a matrix in which most of the elements are zero. There is no strict
definition regarding the proportion of zero-value elements for a matrix to
qualify as sparse, but a common criterion is that the number of non-zero
elements is roughly equal to the number of rows or columns. By contrast, if
most elements are non-zero, the matrix is considered dense. The number of
zero-valued elements divided by the total number of elements (e.g., m × n for
an m × n matrix) is sometimes referred to as the sparsity of the matrix. [8]
The number of non-zero elements of a sparse matrix is usually denoted as nnz

number of columns as n and the number of rows as m.
To better illustrate the storage formats, let us define sparse matrix A.

A =


1 0 2 0
0 3 0 0
4 0 5 0
6 0 0 7
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2. Sparse matrix storage formats

2.2 Coordinate (COO)

Coordinate storage format, commonly referred to as COO, is the simplest
of the three formats presented in this chapter. COO stores the matrix in a
structure consisting of three arrays of length nnz[9]:

vals an array containing all the real (or complex) values of the nonzero
elements of A in any order.

row idx an integer array containing their row indices.

col idx a second integer array containing their column indices.

vals 1 2 3 4 5 6 7
row idx 0 0 1 2 2 3 3
col idx 0 2 1 0 2 0 3

Table 2.1: A stored in COO format

As shown in Algorithm 1, to perform SpMV with a matrix stored in the
COO format, it is necessary to iterate over all non-zero elements, extracting
their value, column index, and row index from the relevant arrays in the COO
structure. Then performing the multiplication value · x[col] and finally add
the sub-result to y[row]. This algorithm is not well suited for parallelization,
as all the additions to the result vector y would have to be atomic operations. It
may also degrade single-thread performance as the order of non-zero elements
is not specified, meaning accesses to x as well as y are random and thus may
not have the best cache locality.

Algorithm 1 SpMV for matrix stored in COO format
function spmv(A, x)

y← result vector
for i = 0; i < nnz; ++i do

value← A.vals
col← A.col idx[i]
row← A.row idx[i]
y[row] += value · x[col]

end for
return y

end function
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2.3 Compressed Sparse Row (CSR)

Compressed Sparse Row is probably the most popular format for storing
general sparse matrices. [9] Similarly to the coordinate format, it too consists
of three arrays.

vals a real array of size nnz containing all the real (or complex) values of the
nonzero elements of A stored in row major order.

col idx a second integer array of size nnz containing their column indices.
row ptr an integer array of size m + 1 containing offsets into vals and col_idx,

at which each row of the matrix begins.

Storing only m + 1 elements in row_ptr array, leads to non-negligible
storage savings.

vals 1 2 3 4 5 6 7
col idx 0 2 1 0 2 0 3

row ptr 0 2 3 5 6

Table 2.2: A stored in CSR format

SpMV with matrix in CSR format lends itself to parallelization better than
the COO format. Since CSR groups the non-zero elements by their rows, the
outer loop of Algorithm 2 can be parallelized with no synchronization necessary
(no overlapping outputs in y). The issue with the parallelized version of this
algorithm is load-balancing, as some rows may have disproportionately more
non-zero elements than others.

Algorithm 2 SpMV for matrix stored in CSR format
function spmv(A, x)

y← result vector
for row = 0; row < m; ++row do

start← A.row ptr[row]
stop← A.row ptr[row + 1]
row result← 0
for i = start; i < stop; ++i do

col← A.col idx[i]
value← A.vals[i]
row result += value · x[col]

end for
y[row]← row result

end forreturn y
end function
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2.4 Compressed Sparse Row 5 (CSR5)

To achieve near-optimal load balance for matrices with any sparsity structures,
CSR5 partitions all nonzero entries to multiple 2D tiles of the same size. It
has two tuning parameters: ω and σ, where ω is a tile’s width and σ is its
height [2].

Further, extra information is needed to efficiently compute SpMV. For each
tile, a tile pointer tile_ptr and a tile descriptor tile_desc are introduced.
Meanwhile, the three arrays, i.e., row pointer row_ptr, column index col_idx
and value val, of the classic CSR format are directly integrated. The only
difference is that the col_idx data and the vals data in each complete tile
are in-place transposed (i.e., from row-major order to column-major order) for
coalesced memory access from contiguous SIMD lanes.

Each column of a tile has three characteristics:

• y_offset - relative offset into the Y for a column of tile (equal to number
of rows that started in previous columns).

• scansum_offset - number of consecutive empty columns to the right of
current column.

• bit_flag - of size σ where i− th bit is set if i− th value of this column
is the first non-0 entry of its row or it is the 0th bit of 0th column.

The tile further may have an empty_offset array of size O(ω · σ), if it
contains empty rows, because y_offset will be incorrect for such tile. Thus
the correct offsets into Y for each segment of such a tile are stored in in
empty_offset. The actual size of this array is number of segments in a tile
(the number of bits set to 1 in bit_flag).

Figure 4: The CSR5 storage format of a sparse matrix A of size 8× 8. The five groups of information include
row_ptr, tile_ptr, col_idx, val and tile_desc.

3. THE CSR5 STORAGE FORMAT

3.1 Basic Data Layout
To achieve near-optimal load balance for matrices with

any sparsity structures, we first evenly partition all nonzero
entries to multiple 2D tiles of the same size. Thus when ex-
ecuting parallel SpMV operation, a compute core can con-
sume one or more 2D tiles, and each SIMD lane of the core
can deal with one column of a tile. Then the main skeleton
of the CSR5 format is simply a group of 2D tiles. The CSR5
format has two tuning parameters: ω and σ, where ω is a
tile’s width and σ is its height. In fact, the CSR5 format
only has these two tuning parameters.

Further, we need extra information to efficiently compute
SpMV. For each tile, we introduce a tile pointer tile_ptr

and a tile descriptor tile_desc. Meanwhile, the three ar-
rays, i.e., row pointer row_ptr, column index col_idx and
value val, of the classic CSR format are directly integrated.
The only difference is that the col_idx data and the val

data in each complete tile are in-place transposed (i.e., from
row-major order to column-major order) for coalesced mem-
ory access from contiguous SIMD lanes. If the last entries
of the matrix do not fill up a complete 2D tile (i.e., nnz
mod (ωσ) 6= 0), they just remain unchanged and discard
their tile_desc.

In Figure 4, an example matrix A of size 8 × 8 with 34
nonzero entries is stored in the CSR5 format. When ω = 4
and σ = 4, the matrix is divided into three tiles including
two complete tiles of size 16 and one incomplete tile of size
2. The arrays col_idx and val in the two complete tiles are
stored in tile-level column-major order now. Moreover, only
the first two tiles have tile_desc, since they are complete.

3.2 Auto-Tuned Parameters ω and σ

Because the computational power of the modern multicore
or manycore processors is mainly from the SIMD units, we
design an auto-tuning strategy for high SIMD utilization.

First, the tile width ω is set to the size of the SIMD exe-
cution unit of the used processor. Then an SIMD unit can
consume a 2D tile in σ steps without any explicit synchro-
nization, and the vector registers can be fully utilized. For
the double precision SpMV, we always set ω = 4 for CPUs
with 256-bit SIMD units, ω = 32 for the nVidia GPUs,

ω = 64 for the AMD GPUs, and ω = 8 for Intel Xeon Phi
with 512-bit SIMD units. Therefore, ω can be automatically
decided once the processor type used is known.

The other parameter σ is decided by a slightly more com-
plex process. For a given processor, we consider its on-chip
memory strategy such as cache capacity and prefetching
mechanism. If a 2D tile of size ω × σ can empirically bring
better performance than using the other sizes, the σ is sim-
ply chosen. We found that the x86 processors fall into this
category. For the double precision SpMV on CPUs and Xeon
Phi, we always set σ to 16 and 12, respectively.

As for GPUs, the tile height σ further depends on the spar-
sity of the matrix. Note that the “sparsity” is not equal to
“sparsity structure”. We define “sparsity” to be the average
number of nonzero entries per row (or nnz/row for short). In
contrast, “sparsity structure” is much more complex because
it includes 2D space layout of all nonzero entries.

On GPUs, we have several performance considerations on
mapping the value nnz/row to σ. First, σ should be large
enough to expose more thread-level local work and to amor-
tize a basic cost of the segmented sum algorithm. Second,
it should not be too large since a larger tile potentially gen-
erates more partial sums (i.e., entries to store to y), which
bring higher pressure to last level cache write. Moreover, for
the matrices with large nnz/row, σ may need to be small.
The reason is that once the whole tile is located inside a ma-
trix row (i.e., only one segment is in the tile), the segmented
sum converts to a fast reduction sum.

Therefore, for the nnz/row to σ mapping on GPUs, we
define three simple bounds: r, s and t. The first bound r
is designed to prevent a too small σ. The second bound s
is used for preventing a too large σ. But when nnz/row is
further larger than the third bound t, σ is set to a small
value u. Then we have

σ =















r if nnz/row ≤ r
nnz/row if r < nnz/row ≤ s
s if s < nnz/row ≤ t
u if t < nnz/row.

The three bounds, r, s and t, and the value u are hardware-
dependent, meaning that for a given processor, they can
be fixed for use. For example, to execute double precision
SpMV on nVidia Maxwell GPUs and AMD GCN GPUs, we

Figure 2.1: Matrix A stored in CSR5 format (Source: [2]).

Section 3.3 outlines the algorithm for performing parallel SpMV using
matrices stored in CSR5 format.

20



Chapter 3
Implementation

This chapter introduces dim. dim is a library/toolkit which is the result of the
research done for this thesis. dim is implemented in C++20 using OpenMP
and MPI introduced in Sections 1.2 and 1.3 respectively.

While the implementation supports COO and CSR as storage formats for
sparse matrices, the main storage format used is CSR5 described in Section 3.1.
The SpMV algorithm for matrices stored in CSR5 format, introduced in [2] is
further described in Section 3.3.

Lastly, an efficient on-disk storage format used by MATLAB for CSR
matrices, storing the matrices in binary format using HDF5, described in
Section 3.4 and its extension to support matrices stored in CSR5 is outlined
in Section 3.5.

3.1 CSR5

A common issue of parallel SpMV is load balancing. Storing matrices in CSR5
format avoids this by grouping data into tiles of a fixed size. Furthermore,
the tiles are independent, allowing for a high degree of parallelism and small
critical sections. For this reason dim, stores all matrices in CSR5 format and
implements sparse vector multiplication algorithm introduced in [2].

Since the implementation of CSR5 SpMV in dim utilizes AVX2 instructions,
it has some preconditions. Namely alignment of data passed to the AVX2
intrinsics. Most AVX2 instructions either require data to be aligned on a
32-byte address or have significantly worse performance for unaligned data.

To facilitate this, C++ offers a customization point in its own contiguous
data container std::vector. By specifying an allocator, which returns
allocated addresses with a specified alignment as the second template argument,
the implementation can retain the interface of vector and satisfy preconditions
of AVX2 instructions. Any usage of vector in this thesis in code examples
will refer to a std::vector with a custom-aligned allocator.
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3.1.1 In memory layout

As described in 2.4, CSR5 storage format, retains the original three arrays of
CSR, with column index and values being in-place transposed. This forms
the first part of CSR5 structure in dim.

The CSR5 structure is templated on floating point type it should use
to represent values, as well as on unsigned type used to represent indices.
It also uses concepts, a feature introduced in C++20, to ensure the passed
in types satisfy these constraints. With plain typename, the UnsignedType
could be an int or FloatingType a std::string and the compiler would
only produce an error if a substitution failed. It is also templated on Sigma
and Omega, the two tuning parameters of CSR5, passed in as non-type
template parameters. The defaults are FloatingType = double, Sigma = 16,
Omega = 4 and UnsignedType = uint32_t. This limits the size of matrix to
be 232 × 232 but can be easily changed to uint64_t or another type if storage
for a bigger matrix is required.

template<std::floating_point FloatingType = double,
size_t Sigma = 16,
size_t Omega = 4,
std::unsigned_integral UnsignedType = uint32_t>

struct csr5 {
// same as CSR.
UnsignedType num_cols;
vector<FloatingType> vals;
vector<UnsignedType> col_idx;
vector<UnsignedType> row_ptr;
// explained in following section.
csr5_info csr5_info;

};

Figure 3.1: Pseudo-code for structure holding CSR5 matrix
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3.2 CSR5 info

csr5_info structure contains CSR5 specific information, introduced in 2.4.
Namely, tile pointer, tile descriptor and optionally empty offset pointer
and empty offset arrays. Each of these will be explained in a separate section.

3.2.1 Tile pointer

The tile pointer array contains the index of the row of the first element. It
works similarly to a CSR row pointer. The range of rows covered by a tile
is obtained by querying tile_ptr[tid] and tile_ptr[tid + 1] for the first
and last rows respectively (range is open from the top).

The most significant bit of the tile pointer, used as a flag, is set if a tile
is dirty. A tile is dirty if it contains any empty rows. This flag bit must be
stripped when the pointer is used for indexing into row pointer array. The
pointer is wrapped by a structure with is_dirty and idx methods to force
the call site to specify the required usage explicitly, making the interface less
error-prone.

struct tile_ptr {
bool is_dirty();
UnsignedType raw();
UnsignedType idx();

};

Figure 3.2: Tile pointer pseudo-interface

3.2.2 Tile descriptor

Amid the new additions to C++20 are bit-manipulation functions in <bit>
header. One of the new functions is std::bit_width which takes N and
returns M such that values up to N can be stored in M bits. This function
can be used in conjunction with bit-fields and non-type template parameters
to pack descriptors very efficiently while retaining readability when using them.
Since y_offset may be at most σ · ω (the number of new sections is at most
the same as the number of elements in a tile) and scansum_offset may be at
most ω − 1 (as it is the number of empty consecutive columns to the right of
current column), the descriptor column and the descriptor itself can be defined
as shown in Figure 3.3.

As CSR5 tile descriptors contain bit flag maps, std::popcount can be
used to obtain the number of set bits, denoting the number of sections started
in a column. Using this function allows the compiler to optimize the call to
the instruction of the same name if the target ISA supports it.
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template<size_t Sigma, size_t Omega>
struct descriptor_column {

StorageT y_offset: bit_width(Sigma * Omega);
StorageT scansum_offset: bit_width(Omega);
StorageT bit_flag: Sigma;

};

template<size_t Sigma, size_t Omega>
struct descriptor {

descriptor_column<Sigma, Omega> columns[Omega];
};

Figure 3.3: Tile descriptor pseudo-code.

Previous research about CSR5 [2] concluded, that for modern CPUs with
AVX2 extensions, the optimal CSR5 tuning parameters are σ = 16 and ω = 4.

3.2.3 Empty offset

With empty offset being dependent on number of sections in a tile (and being
completely absent in tiles which don’t contain empty rows), it would be
inefficient to store it in the descriptor itself. To avoid too many allocations, two
supporting arrays are added. An empty_offset_ptr of size num_tiles + 1,
which contains offsets for each tile into the second array, empty_offset at which
their empty_offset array begins. Thus for each tile, it’s empty offset array is
defined as empty_offset[empty_offset_ptr[i]:empty_offset_ptr[i+1]].

The csr5_info structure combines these four arrays.

struct csr5_info {
vector<tile_ptr> tile_ptr;
vector<tile_descriptor> tile_desc;
vector<UnsignedType> empty_offset_ptr;
vector<UnsignedType> empty_offset;

};

Figure 3.4: csr5_info pseudo-code.
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3.3 Sparse matrix vector multiplication

dim uses CSR5 storage format, described in Section 2.4, which was purposefully
designed to achieve better performance when performing parallel SpMV. This
section provides an overview of this parallel SpMV algorithm (introduced in [2])
for CSR5 when performed on a multi-threaded CPU, which supports AVX2
extensions.

t0

i0 i1 i2 i3

t1

i0 i1 i2 i3

t2

i0 i1 i2 i3

t3

i0 i1 i2 i3Tiles:

Figure 3.5: Processing tiles using 4 threads

Using N threads, each thread gets a contiguous chunk of tiles of the same
size (except possibly the last thread) as shown in Figure 3.5. The computational
kernel of CSR5 SpMV can be split into three main parts. First, each thread
processes its tile chunk. Then the necessary synchronization of sub-results
from all threads is performed. Lastly, the tail partition of the matrix, which
was not in any tile (at most σ · ω elements) is processed.

Algorithm 3 Corpus of the CSR5 SpMV
function spmv(A, x)

y← result vector
calib←
spmv full tiles(A, x, calib, y)
spmv sync(calib, y)
spmv tail(A, x, y)
return y

end function

3.3.1 Processing full tiles

Each thread processes its assigned tile chunk sequentially. The notion of sub-
segments within a tile column needs to be established before tile processing
can be described. [2] defines three types of sub-segments.

A green sub-segment is a segment that contains all of the elements of a
single row. Meaning, it starts with a set bit in bit_flag and ends with another
set-bit (denoting start of a new row) in bit_flag. A blue sub-segment is a
segment unsealed from the bottom (column does not end with a set bit in
bit_flag). Red sub-segments are segments unsealed from the top (column
does not start with a set bit in bit_flag). A tile column with no set bits
is also marked as a red segment. Green sub-segments require no further

25



3. Implementation

are independent of each other as well. So we assign a thread
on GPU cores or an SIMD lane on x86 cores to each column
in a tile.

While running the CSR5-based SpMV, each column in a
tile can extract information from bit_flag and label the
segments in its local data to three colors: (1) red means a
sub-segment unsealed from its top, (2) green means a com-
pletely sealed segment existed in the middle, and (3) blue
means a sub-segment unsealed from its bottom. There is an
exception that if a column is unsealed both from its top and
from its bottom, it is colored to red.

Algorithm 8 shows the pseudocode of the CSR5-based
SpMV algorithm. Figure 6 plots an example of this pro-
cedure. We can see that the green segments can directly
save their partial sums to y without any synchronization,
since the indices can be calculated by using tile_ptr and
y_offset. In contrast, the red and the blue sub-segments
have to further add their partial sums together, since they
are not complete segments. For example, the sub-segments
B2, R2 and R3 in Figure 6 have contributions to the same
row, thus an addition is required. This addition operation
needs the fast segmented sum shown in Algorithm 6 and
Figure 5. Furthermore, if a tile has any empty rows, the
empty_offset array is accessed to get correct global indices
in y.

Figure 6: The CSR5-based SpMV in a tile. Partial
sums of the green segments are directly stored to y.
The red and the blue sub-segments require an extra
segmented sum before issuing off-chip write.

Consider the synchronization among the tiles, since the
same matrix row can be influenced by multiple 2D tiles run-
ning concurrently, the first and the last segments of a tile
need to store to y by atomic add (or a global auxiliary array
used in device-level reduction, scan or segmented scan [15,
28]). In Figure 6, the atomic add operations are highlighted
by arrow lines with plus signs.

For the last entries not in a complete tile (e.g., the last
two nonzero entries of the matrix in Figure 4), we execute
a conventional CSR-vector method after all of the complete
2D tiles have been consumed. Note that even though the
last tile (i.e., the incomplete one) does not have tile_desc

arrays, it can extract a starting position from tile_ptr.
In Algorithm 8, we can see that the main computation

(lines 5–21) only contains very basic arithmetic and logic
operations that can be easily programmed on all mainstream
processors with SIMD units. As the most complex part in
our algorithm, the fast segmented sum operation (line 22)

Algorithm 8 The CSR5-based SpMV for the tidth tile.

1: malloc(*tmp, ω)
2: memset(*tmp, 0)
3: malloc(*last_tmp, ω)
4: /*use empty_offset[y_offset[i]] instead of

y_offset[i] for a tile with any empty rows*/

5: for i = 0 to ω − 1 in parallel do
6: sum ← 0
7: for j = 0 to σ − 1 do
8: ptr← tid× ω × σ + j × ω + i
9: sum ← sum + val[ptr] × x[col_idx[ptr]]
10: /*check bit_flag[i][j]*/
11: if /*end of a red sub-segment*/ then
12: tmp[i− 1] ← sum

13: sum ← 0
14: else if /*end of a green segment*/ then
15: y[tile_ptr[tid] + y_offset[i]] ← sum

16: y_offset[i] ← y_offset[i] +1
17: sum ← 0
18: end if
19: end for
20: last_tmp[i] ← sum //end of a blue sub-segment

21: end for
22: fast segmented sum(*tmp, *seg_offset) ⊲ Alg. 6
23: for i = 0 to ω − 1 in parallel do
24: last_tmp[i] ← last_tmp[i] + tmp[i]
25: y[tile_ptr[tid] + y_offset[i]] ← last_tmp[i]
26: end for
27: free(*tmp)
28: free(*last_tmp)

only requires a prefix-sum scan, which has been well-studied
and can be efficiently implemented by using CUDA, OpenCL
or x86 SIMD intrinsics.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup
We evaluate the CSR5-based SpMV and 11 state-of-the-

art formats and algorithms on four mainstream platforms:
dual-socket Intel CPUs, an nVidia GPU, an AMD GPU and
an Intel Xeon Phi. The platforms and participating ap-
proaches are shown in Table 1.

Host of the two GPUs is a machine with AMD A10-7850K
APU, dual-channel DDR3-1600 memory and 64-bit Ubuntu
Linux v14.04 installed. Host of the Xeon Phi is a machine
with Intel Xeon E5-2680 v2 CPU, quad-channel DDR3-1600
memory and 64-bit Red Hat Enterprise Linux v6.5 installed.
The two GPU platforms use the g++ compiler v4.8.2. The
two Intel machines always set the Intel C/C++ complier
15.0.1 as default.

Here we evaluate double precision SpMV. So cuDPP li-
brary [16, 28], clSpMV [29] and yaSpMV [34] are not in-
cluded since they only support single precision floating point
as data type. Two recently published methods [20, 30] are
not tested since the source code is not available to us yet.

We use OpenCL profiling scheme for timing SpMV on the
AMD platform and record wall-clock time on the other three
platforms. For all participating formats and algorithms, we
evaluate SpMV 10 times (each time contains 1000 runs and
records the average) and report the best observed result.

Figure 3.6: Synchronization of sub-segments within a tile (Source: [2]).

synchronization. Their sum can be written to the result vector y directly by
combining tile_ptr and y_offset information. Red and blue sub-segment
sub results must be synchronized as they do not form a complete segment.

Algorithm 4 Processing assigned tile chunk CSR5 SpMV
function spmv full tiles(A, x, calib, y)

for tile id ∈ assigned tiles do
row← A.tile ptr[tile id]
desc← A.tile desc[tile id]
direct← desc starts with red sub-segment
spmv single tile(A, desc)
if first tile in assigned tiles and !direct then

calib[tid]← first output element
else

if direct then
y[row]← first output element

else
y[row] += first output element

end if
end if

end for
end function

Each tile having 4 columns (ω) and 16 rows (σ), the thread will perform
σ iterations, processing ω non-zero elements in each iteration using SIMD
instructions, in other words, each column is assigned a SIMD-lane and processed
in parallel. This is the reason for ω = 4 as AVX2 instructions can work on
4 double precision floating point numbers at once as well as the reason for
data being in-place transposed. Algorithm 5 shows how a single tile column is
processed.
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3.3. Sparse matrix vector multiplication

Algorithm 5 Single tile column processing CSR5 SpMV
function spmv single tile(A, desc)

any segment← desc.bit flag[0]
sum← tile vals[0] · x[tile col idx[0]]
red segsum← 0
for tile row ∈ range(1, σ) do

segment end← desc.bit flag[tile row]
if segment end then

if any segment then
store to y, green segment

else
red segsum← sum

end if
sum← 0
any segment← true

end if
sum += tile vals[tile row] · x[tile col idx[tile row]]

end for
▷ Here, sum will hold the blue sub-segment and red segsum will

hold the red sub-segment partial results. Except when no no segment has
started (any segment is false), then sum holds the red-subsegment partial
result and there is no blue sub-segment. The synchronization between lanes
is shown in Figure 3.6.
end function

3.3.2 Synchronizing overlapping elements

CSR5 SpMV minimizes the critical sections. The tiles within the chunk
assigned to a thread do not have to be synchronized since they are processed
sequentially in the context of the owning thread. Only a single element of y
may be overlapping between neighboring chunks of tiles, which only happens
if the first tile of the chunk starts with a red sub-section. Synchronization
is a two-step process. First, each thread stores its first output element in a
calibrator (see Algorithm 4) during the parallel computation. Second, after
the parallel part of the algorithm is over, each threads calibrator is added to
the result to perform the final synchronization as shown in Algorithm 6.

3.3.3 Tail partition

If the number of non-zero elements for a matrix isn’t divisible by σ · ω, there
is a “tail” partition which does not form a full tile. The algorithm introduced
in Section 2.3 for CSR matrices is used to process this tail partition.
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3. Implementation

Algorithm 6 Synchronizing the overlapping elements in y CSR5 SpMV
function spmv sync(calib, y)

for tid ∈ threads do
y idx← tile ptr of first tile assigned to thread
y[y idx] += calib[tid]

end for
end function

3.4 Selecting on disk storage format

The matrices for which parallelized (and distributed) matrix-vector multiplication
has the biggest benefit, have large on-disk size. This section compares Matrix
Market Exchange Format [6] introduced in Section 1.5 and HDF5 backed
format introduced by Matlab 7.3 for storing sparse matrices, comparing both
on-disk size and throughput measured by the number of elements loaded in a
second.

3.4.1 Matrix Market storage format

Matrix Market exchange format is designed to be easy to parse. It provides a
library to parse the header and matrix dimensions [10]. The numerical entries
need to be parsed manually, for which most implementations use variations of
scanf.
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Figure 3.7: Loading times of MMEF

Initial implementation in dim used scanf as well. However, this proved to be
a bottleneck as the average throughput was only 4.52×106 elements/s. Profiling
has shown that parsing the string representation was the most computationally
intensive step as 97.89% of time spent was in scanf itself. To improve the
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3.4. Selecting on disk storage format

loading times, to shorten the iteration times the process of benchmarking, an
implementation using scnlib6 was created. With an average throughput of
6.07 × 106 elements/s it resulted in 1.34x speed up, which was still a major
development bottleneck.

3.4.2 Matlab compatible HDF5 sparse matrix storage

Loading matrices stored in binary format using HDF5 file format introduced
in 1.6 is supported by MATLAB, as well as PETSc7. The matrices are stored
in CSR format, represented as a single HDF5 group containing 3 datasets:

• data - values of elements.

• aj - column index.

• ir - row pointer.

And a single attribute MATLAB sparse containing the number of columns of
the stored matrix.

/A

data aj ir MATLAB Sparse

Figure 3.8: Layout of a sparse matrix stored as a HDF5 group

Storing the matrices in this format yielded a throughput of 1.10 × 108

elements/s which is 24.36x speedup over scanf based implementation of reading
matrices stored in Matrix Market Exchange Format and 18.12x speedup over
scnlib implementation.

Since MMEF uses the coordinate format to store sparse matrices, it may
omit elements from symmetrical matrices8, which can result in significant
on-disk size reduction. Matrices 2, 3 and 4 in Figure 3.10 are symmetrical.
Thus their on-disk size can be smaller with MMEF compared to HDF5.

However, the HDF5 format supports dataset compression by LZMA.
Setting chunk size to 4096 and compression level to 5 for each of the three
datasets, it is possible to achieve considerable storage savings (the largest
matrix is 7.8x smaller stored as compressed HDF5 compared to MMEF)
while maintaining better loading performance, with average throughput being
2.71× 107 elements/s, about 4x slower than HDF5 with no compression, but
still 4 and 6 times faster than scnlib and scanf implementations respectively.

6scnlib is a modern C++ alternative to scanf.
7PETSc has to be configured with HDF5 support when it is built
8Those can be inferred from their symmetrical counterparts.
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Figure 3.9: Load times of HDF5 and MMEF storage formats.
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Figure 3.10: On-disk size of HDF5 and MMEF storage formats.
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3.5 On disk storage for CSR5 matrices

With HDF5 proving to be the faster alternative to textual MMEF format, it
is also used for storing sparse matrices in CSR5 format.

Each of the sequential data members row ptr, col idx, vals, tile ptr, empty offset,
empty offset ptr, are stored as one dimensional datasets of same name and
same datatype9. num cols is stored as an attribute.

/A

vals row ptr col idx empty offset ptr

tile ptr empty offset tile desc num cols

Figure 3.11: Layout of a sparse matrix stored as a HDF5 group

tile desc is stored as a one-dimensional dataset, with datatype being an
array of 4 little-endian unsigned 32-bit integers. In essence, storing the data
to the HDF5 file as they appear in memory. This decision does put a soft
requirement on the code storing the CSR5 matrix to a file and the code loading
it compiled by the same version of a compiler, as the bit-field in-memory layout
is implementation-defined but allows faster loading. Furthermore, both Clang
and GCC implement this in the same way, so the requirement is only a soft
one, as compatibility can be easily tested.

9H5T_STD_U32LE for all the index arrays and H5T_IEEE_F64LE for values
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Chapter 4
Distributed Sparse

Matrix-Vector Multiplication

Using the principles described in Section 3.3, sparse matrix-vector multiplication
can be distributed across multiple processes. The tiles are first divided among
processes as they would be among threads in a single process implementation
(see Figure 3.5). Then, these chunks assigned to processes are further subdivided
among the threads of each process. Furthermore, the same synchronization
principles apply, thus only processes that have the first tile starting with
red-subsegment (as defined in 3.3) need to synchronize with the process to the
left10. This implementation will be referred to as D-CSR5.

Section 4.1 outlines the algorithm used to load the chunks for each process
using HDF5 and MPI-IO. Then, the synchronization algorithm for edge
elements of the result vector as well as an algorithm for distributing the
result vector amongst the processes is introduced in 4.2.

4.1 Loading the matrices

Since CSR5 partitions the non-zero elements of a matrix into tiles of size σ · ω,
each node can load only data relevant for tiles assigned to it. This is enabled
by two features of HDF5, the first of which is reading hyperslabs. A hyperslab
is a subset of an HDF5 dataset, so nodes do not have to read whole datasets.

The second feature enabling this is HDF5s ability to utilize MPI-IO, allowing
concurrent reads from every process rather than reading the matrix in the main
process and distributing it amongst the rest of the processes. This imposes a
minor limitation on how the matrix can be stored, or rather how the dataset
needs to be structured. Since MPI-IO was introduced in MPI revision 2.0 [11]
in 1997, its API takes the size of data to be read as an integer argument,
thus limiting the maximum amount of data read in a single call to 2GiB. The

10In the sense of MPI topology.
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4. Distributed Sparse Matrix-Vector Multiplication

dataset needs to be chunked to avoid exceeding this limit 11, else HDF5 tries
to read all of it at once, resulting in an error in MPI-IO.

The first step of loading a CSR5 matrix is obtaining the number of tiles
of the matrix. This can be done by querying the dimensions of tile_desc
dataset, which contains a descriptor for each tile. The number of tiles is then
divided by the number of processes, meaning every process gets equal number
of tiles (bar the last process, which can have less), which in turn means an
equal number of non-zero elements.

Algorithm 7 Computing partition size for each process
function calculate partition(tile count, proc id, proc count)

partition size← ⌈tile count
proc count⌉

first← partition size · proc id
count← min(partition size, tile count− first)
return (first, count)

end function

Then, tile descriptors from tile_desc dataset, tile pointers from tile_ptr
dataset and empty offsets pointers from tile_desc_offset_ptr can be loaded.
Sizes of slabs are #tilesproc, #tilesproc + 1 and #tilesproc + 1 respectively, as
*_ptr datasets use n + 1st element to denote end of values belonging to nth

element. Lastly empty offsets from tile_desc_offset are loaded. This forms
complete information about CSR5 tiles, and as such, it is stored in a separate
structure named csr5_info. This information is useful even on its own, for
example queries about a certain tile, matrix element or row of matrix and its
parent tile can be made just with this information.

Algorithm 8 Loading CSR5 info
function load csr5 info(datasets, first, count)

tile desc← datasets["tile desc"][first:count]
tile ptr← datasets["tile ptr"][first:count+1]
empty off ptr← datasets["empty offset ptr"][first:count+1]
empty off← datasets["empty offset"][e ptr[0]:e ptr[-1]]

end function

Lastly, slab of row_ptr is loaded, starting at tile_ptr[0] and ending at
last output row of chunk of this matrix. This varies, if it is the last process,
the last output row is simply last row of the matrix. For every other tile,
y_index in last column + number of bits set in the bit flag of last column
(equal to number of started rows) gives relative offset, which, when added to
tile_ptr of the tile will result in absolute offset in y where next row would
be. This model maps onto C++ iterator model, where end denotes element

11experimentally, chunks of 1000000 elements or 8MiB of double-precision floating-point
numbers performed best
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one past the end of the range. With this information, row_ptr can be loaded.
Since, row_ptr has the same meaning as in CSR, hyperslabs for values from
vals dataset, and column indices from col_idx dataset are both starting at
row_ptr[0] and ending at row_ptr[-1].

Algorithm 9 Loading CSR data
function last out idx

lid← ‘last tile id’
last desc← tile desc[lid]
secs starting← popcount(last desc[lid].bit flag)
rel off← last desc[lid].y index + secs starting
if dirty(last desc) then

empty start← empty off ptr[lid]
rel off← empty off[empty start + rel off]

end if
return tile ptr[lid] + relative offset

end function
function load csr data(datasets, first, count)

fr id← tile ptr[0]
lr id← last out idx()
row ptr← datasets["row ptr"][fr id:lr id]
values← datasets["vals"][row ptr[0]: row ptr[-1]]
col idx← datasets["col idx"][row ptr[0]: row ptr[-1]]

end function

4.2 Synchronization

Section 3.3 has established that a tile can share at most one output element
with its neighbor, so a process has to synchronize at most two elements in its
output range in y. The synchronization mechanism is explained in Section 4.2.
If all processes need the whole result vector, it can be distributed as explained
by Section 4.2.2.

To illustrate, let A be a 4 × 4 square matrix with 8 non-zero elements,
multiplied by a vector x, while SPmV is distributed across four processes
labeled p1-p4 and let σ = 2 and ω = 1. Thus, each process gets one CSR5 tile
containing 2 non-zero elements.

4.2.1 Synchronizing overlapping output ranges

Let output index be an index into result vector y of sparse matrix vector
multiplication Ax = y and output range be a pair of output indices, denoting
first and last output index for each process.
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Figure 4.1: Distribution of A across 4 processes

p1 = {0, 0} p2 = {1, 2} p3 = {2, 3} p4 = {3, 3}

y =

Figure 4.2: Output ranges for processes p1-p4

Neighboring processes may share an output index. In the case of Ax = y
established in the previous section, y2 and y3 are partially computed by
processes p2, p3 and p3, p4 respectively. An ownership model needs to be
defined before the synchronization can be described. The process with the
lowest rank (in terms of MPI ranks) that writes to an output index owns the
element of y. Thus y2 is owned by p2 while y3 is owned by p3.

y =

Owned by: p1 p2 p3 p4

Figure 4.3: Ownership of y

Each process has two MPI communicators to synchronize the elements.
One for synchronizing the element it owns referred to as OWN, and one for
synchronizing the element it does not own referred to as LEFT. Either of these
communicators can be MPI_COMM_NULL if no synchronization is necessary for
the owned (or non-owned) element.

The first step in creating synchronization communicators is participating
processes exchanging their output ranges. Output ranges consist of indices of
the first and last output elements for each process. From these, each process
can check if it needs to synchronize to the left and if it needs to create a
communicator on which processes to the right of it will sync.

MPI_Comm_Split splits a communicator according to a color and a key.
color is used to group processes, and key is used to create ordering within
processes of same color. Furthermore, if only a single process is present, the
returned communicator will be MPI_COMM_NULL. Thus if all processes first
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Output ranges: {{0, 0}, {1, 2}, {1, 2}, {2, 2}}
Left sync rank: {0, 1, 1, 3}

Figure 4.4: Pre-computation step of synchronizing y

compute the process which will own the first output index in their output
range, then it is possible to iterate over every rank and allow every process
to establish an owning communicator in the iteration in which i = rank and
for all the processes which need to synchronize the element this process owns,
to register to this communicator. If no process registers, the communicator
returned is MPI_COMM_NULL, and no synchronization is performed.

Algorithm 10 Creating communicators for syncing edge elements
function create syncs(my rank, comm size)

output ranges← ranges from all processes
syncs to← my rank
this node range← output ranges[my rank]
while syncs to ̸= 0 and elements overlap do

syncs to← syncs to− 1
end while
for rank = 0; rank < comm size; ++rank do

if rank ≡ my rank then
own sync← MPI Comm Split(comm, my rank, my rank)

else if rank ≡ syncs to then
left sync← MPI Comm Split(comm, syncs to, my rank)

else
MPI Comm Split(comm, MPI UNDEFINED, MPI UNDEFINED)

end if
end for

end function

Depending on values of LEFT and OWN communicators the processes can
be split into 4 categories:

• (NULL, NULL) - self-contained, not sharing any output indices (p1).

• (NULL, !NULL) - doesn’t share first output element (p2).

• (!NULL, NULL) - doesn’t share last output element (p4).

• (!NULL, !NULL) - shares both first and last elements (p3).

With the communicators established, processes that have at least one
non-NULL communicator call MPI_Allreduce with either first, last, or both
elements to synchronize the edge elements in every participating process.
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Figure 4.5: Synchronization communicators
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3 3 4 5 6 15
synchronization

ypx (no sync)
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3 3 9 9 21 21ypx (sync)

Figure 4.6: Synchronization of result of Ax = y assuming x = 1

4.2.2 Distributing the result

After synchronizing overlapping output ranges, the result can be distributed
to every process. Ownership rules established in the previous section apply
when distributing the result vector. The first process that writes an element
owns it and is the only process broadcasting it to others.

p1 p2 p3 p4

3 3 9 9 21 21
MPI_Allgatherv

ypx (sync)

3 3 9 21y (sync)

Figure 4.7: Distribution of result of Ax = y assuming x = 1

Before partial results can be distributed, output ranges must be exchanged
(which is done for the edge element synchronization). From these ranges, an
array of offsets into the complete result vector are computed. Each process
either broadcasts its whole output range or skips the first element of the range
if it is owned by a process to the left. The actual distribution of results is
performed by calling MPI_Allgatherv, introduced in Section 1.3.5, with offsets
and sizes computed as explained previously.
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Algorithm 11 Synchronizing partial results across processes
function compute offsets

output ranges← ranges from all nodes
recvcounts[0]← output ranges[0].count
displs[0]← output ranges[0].first idx
for rank = 1; rank < comm size; ++rank do

skip first← range overlaps
if skip first then

output ranges[rank].first idx += 1
end if
recvcounts[rank]← output ranges[rank].count
displs[rank]← output ranges[rank].first idx

end for
return recvcounts, displs

end function
function sync(owned partial result, full result, comm)

displs, recvcounts← compute offsets()
MPI Allgatherv(owned partial result, full result, recvcounts, comm)

end function
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Chapter 5
Benchmarks

To measure real-world performance of distributed sparse matrix-vector multiplication
three implementations of numerical solvers using conjugate gradient method
briefly explained in Appendix A, were produced. Single and multi process
implementations using the dim toolkit and a PETSc based multi process
implementation.

5.1 Specification

Each implementation will load matrix A and perform 100 iterations of conjugate
gradient method, trying to find x satisfying Ax = 1.

Each step of conjugate gradient iteration is kept track of, and the total
time for each step is output in a JSON file.

5.1.1 Benchmark data

Three square matrices were selected for benchmarking.
name n nnz CSR5 on-disk size [GiB]

nlpkkt240 27993600 774472352 9.1
GAP-web 50636151 1930292948 22.6
GAP-kron 134217726 4223264644 49.6

5.1.2 Compilation options

The benchmarks were run on the RCI cluster, using AMD nodes.
CPU: 2 x AMD EPYC 7543
Network: 200GbE InfiniBand EDR
RAM: 1TB
Storage: 8TB NVMe

Compiler: GCC 10.3
Optimization level: -O3
March: native(znver2)
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5.2 Single process implementation

Single process implementation uses CSR5 format for storing the sparse matrix
and the SpMV algorithm described in Section 3.3 for the A · s step. It was
benchmarked with 16, 32, 64, and 128 CPUs available for each input matrix.
The naming of steps in the graphs follows the naming scheme introduced in
Section A.1.
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Figure 5.1: Scaling of single process implementation CG with CPU count

Benchmark results show that the sparse matrix-vector multiplication As is
the most computationally intensive step as it takes 68.5, 77.5, and 95.4% of
total iteration time for nlpkkt240, gap-web, and gap-kron matrices respectively
when the single process implementation is running on 16 threads.

It can further be observed that sparse matrix-vector multiplication scales
well with number of CPUs available.

5.2.1 IO

With the benchmarked matrices ranging in size from 9GiB up to 50GiB, loading
the matrices may become a non-negligible part of total computation time. The
following graphs show the impact of IO on total run-time of benchmark as
well as achieved throughput using the fastest single process configuration with
128CPUs available.

By using HDF5 to store matrices in binary format and utilizing fast NVMe
storage available on RCI nodes, the impact of IO on total run time can be
minimized. However even after doing so, for GAP-web matrix, loading the
matrix takes up 26% of the total benchmark runtime.
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Figure 5.2: Percentage of time spent in steps of CG (nlpkkt240, 16CPUs)
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Figure 5.3: Time spent doing IO vs conjugate gradient (128 CPUs used)
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5.3 Distributed conjugate gradient implementation

First, three MPI layouts were benchmarked, each totaling 128CPUs. A layout
in this text will mean a triplet of node count N , number of processes
per node P and number of CPUs per process C (usually abbreviated to
N-P-C). The benchmarked layouts were 2-1-64, 4-1-32 and 8-1-16, keeping
the same CPU count as the fastest single process implementation so that the
results can be compared directly.
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Figure 5.4: Average iteration times of single and multi process implementations

5.3.1 IO

RCI cluster provides BeeGFS parallel filesystem and by utilizing the algorithm
described in Section 4.1, the IO throughput can be improved considerably.
Using best-performing 8-1-16 layout results, throughput has improved by a
factor of 2.5, 5.6, and 6.9 for nlpkkt240, gap-web and gap-kron respectively.

5.4 PETSc

To compare the distributed sparse matrix-vector multiplication (D-CSR5)
implemented by dim to a state of the art BLAS library, an implementation of
conjugate gradient solver using PETSc (v3.15.1) introduced in Section 1.4 was
created.

PETSc supports multiple storage formats for sparse matrices such as
compressed sparse row, block compressed sparse row, etc. The default for
distributed sparse matrices, which is compressed sparse row (PETSc MatType
MATMPIAIJ [12]) was used for benchmarking.

Furthermore, since PETSc is a general-purpose library, some tradeoffs had to
be made in the benchmarking code. Even though PETSc has its own conjugate
gradient implementation (KSPCG), the goal of the benchmark is to compare
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Figure 5.5: Time spent doing IO vs CG (8-1-16 layout)

the performance of distributed sparse matrix-vector multiplication, not the
conjugate gradient implementation as a whole. To improve the granularity of
benchmarked sections, an alternative implementation was produced to enable
the timing of separate steps of the iteration instead of just timing the whole
iteration step.

As the benchmark is using CSR as a storage format, each process of
PETSc solver loads a sub-section of the input matrix’ rows of the same size
(except possibly the last process. Non-zero elements in the matrices used
for benchmarking are distributed fairly evenly across these sections12, so this
approach yields good load distribution across all processes.
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Figure 5.6: PETSc implementation benchmark results

12Heatmaps can be generated by running dim_cli generate_heatmap <input_matrix>.
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5. Benchmarks

The benchmark results show that a significant portion of time each iteration
is spent in the DCG1:distributing s step. This issue partly stems from a
design decision made in PETSc. The distributed vectors (such as s) have local
size (size of vector part physically present in process) and global size (size of
the whole vector). For vector-vector operations such as axpy or dot product,
PETSc requires the participating vectors to have the same local size. Since
each process may require any element from s13 it must have whole s in its
memory. To obtain a sub-vector of s, suitable for distributed sAs a process
must call VecGetSubVector and then restore said sub-vector in s by calling
VecRestoreSubVector.

However, VecGetSubVector may allocate new memory to store the sub-
vector in, releasing said memory when VecRestoreSubVector is called, thus
skewing the actual time needed for synchronization of s itself. For this reason,
the DCG1:distributing s step will not be considered when comparing the
two implementations.
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Figure 5.7: PETSc vs D-CSR5 benchmark results (no synchronization)

Even with the distributing s step removed, benchmark results (visualized
in Figure 5.7) show that D-CSR5 implementation performs better on all the
benchmarked configurations. The speedup of D-CSR5 based implementation
compared to PETSc ranges from 2.4 and 2.57x for iteration and SpMV steps
respectively up to 8.5 and 9.46x. Speedup over every layout and input matrix
combination is shown in Figure 5.8.

13Because any element in a row of sparse matrix can be non-zero.
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nlpkkt240 gap-web gap-kron

layout iteration As iteration As iteration As
2-1-64 3.72 4.81 2.75 4.69 3.4 3.83
4-1-32 3.14 5.04 6.27 9.04 2.43 2.57
8-1-16 3.72 4.81 5.57 7.03 8.53 9.46

Figure 5.8: Speedup of iteration and SpMV step of iteration using D-CSR5 vs
PETSc
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Conclusion

This thesis aimed to research and evaluate the viability of distributing sparse
matrix-vector multiplication among multiple computational nodes using MPI.
To that end, coordinate (COO) and compressed sparse row (CSR) formats
were reviewed, as well as Compressed Sparse Row 5 format introduced in [2].

On-disk storage formats for sparse matrices were reviewed. Namely Matrix
Market Exchange Format and HDF5 backed format used by MATLAB v7.3.
After reviewing existing formats, a storage scheme for CSR5 was devised using
HDF5 as underlying format, nullifying the need for conversion from CSR to
CSR5 each time a matrix is loaded.

The parallel SpMV algorithm outlined in [2] was implemented using C++20.
Routines for loading and storing sparse matrices as well as converting between
sparse matrix formats were also implemented. These were packaged into a
library/toolkit named dim.

The building blocks from dim were then used to build distributed SpMV.
Using MPI, SpMV was distributed among multiple processes, with the CSR5
SpMV re-implementation used to perform partial multiplication inside each
process. Leveraging the MPI-IO capabilities of HDF5 library [1] to load
only relevant parts of the matrix to minimize the time spent performing I/O
operations. An algorithm for synchronizing and distributing the partial results
was then outlined and implemented.

This distributed solution was then benchmarked, using conjugate gradient
method implementation, against the single-process solution. These benchmarks
clearly show that distributing the sparse matrix-vector multiplication for large
sparse matrices can lead to significant speed-up even though the result needs
to be synchronized and distributed amongst all processes each iteration.

To compare the performance of this solution against a battle-tested implemen-
tation conjugate gradient method was also implemented using PETSc toolkit
and then benchmarked. Comparing the average per-iteration times suggests
that the approach implemented in dim leads to non-negligible speed ups.

Future directions include researching algorithms other than conjugate
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Conclusion

gradient in which SpMV is the most computationally intensive task and the
viability of distributing it. The on-disk storage format introduced by this thesis
may also benefit from more generalization, as it is currently quite specific
to CPU-only implementation of SpMV and thus not suitable for GPU or
CPU/GPU heterogeneous implementations.
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Appendix A
Conjugate gradient method

The conjugate gradient algorithm (abbr. CG) is one of the best known iterative
methods which can be used to solve large symmetric positive definite linear
systems [9]. The algorithm in its iterative form is outlined in Alogithm 12.

Algorithm 12 Iterative conjugate gradient
function conjugate gradient(A, b, x)

r← b - Ax
s← r
r r← r · r
for i = 0; i < max iters; ++i do

As← A · s
alpha← r r

s’·As
x← x + alpha · s
r← r− alpha · As
r r new← r’ · r
if sqrt(r r new) < threshold then

break
end if
beta← r r new

r r
r r← r r new
s← r + beta · s

end for
end function

A.1 Distributed conjugate gradient implementation

Each process first obtains a full copy of s. Then the steps of the algorithm
above are performed as follows, with each step being labeled as CG<num> for the
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A. Conjugate gradient method

steps of the actual algorithm and DCG<num> for the steps only the distributed
version performs.

Step CG0: As← A · s. Each process can perform SpMV on its local part
of A. This SpMV will result, in each process having part of As, with some
overlapping output elements having only part of its value which needs to be
synchronized.

Step DCG0.1: edge sync. After SpMV is done, the synchronization for
overlapping edge elements described in Section 4.2 can begin.

Step CG1: alpha← r r
s·As . Since each process only has part of As and full

s, it can do its part of the s · As. Dot product of two vectors is computed as
x · y = ∑

xi · yi, so s · As can be rewritten as a ·As = ∑np
p=0

∑oep

i=osp
si ·Asi−osp

where np is number of processes, and osp and oep denote start and end
of output for process p respectively.The outer sum can be computed using
MPI_Allreduce, summing the results of inner sum for each process.

For the elements that need to be synchronized (multiple processes are
computing their sub-values), the resulting element is a sum of all of the sub-
results thus s · As = ∑

si · Asi term for i which is computed by multiple
processes can be rewritten as si · (Asip1 + ... + Asipn). As multiplication in R
is distributive, this can be rewritten as si ·Asip1 + ... + si ·Asipn so there is no
need to synchronize Asi as result will be synchronized when partial results for
each process are summed.

Step CG2: x← x + alpha ·s each process only has the part of x, coinciding
with the output ranges into As it owns. Thus thus each process only modifies
said part of x.

Step CG3: r ← r − alpha · As Similarly to previous step, each process
only modifies the part of residual vector r. Synchronization of overlapping
output elements for As must be done before this step, as process which owns
the element uses it to modify r in this step.

Step CG4: r r new← r’ ·r Same as in alpha computation, the dot product
can be divided into sub sums, which can then be summed across all processes,
using MPI_Allreduce.

Step DCG0.1: edge sync. The second part of DCG0, which calls MPI_Waitall
to wait until the sync is over as the owning processes need to have the correct
values in s.

Step CG5: s ← r + beta · s each process computes only part of new s,
corresponding to its output range in As.

Step DCG0.1: distributing s. The resulting s is then distributed to
all processes using the same algorithm as described in Section 4.2.2 using
MPI_Allgatherv. This distribution step is the most intensive in the context
of MPI communication.

Note that this algorithm may be further optimized as described in [13] but
since it is only used as a test-bed for benchmarking implementation in dim,
these are not implemented.
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Appendix B
Building dim

This chapter describes the process of obtaining dependencies, configuring, and
building dim as well as optional benchmarks.

B.1 Dependencies

dim uses cmake as its meta build-system. Only recent versions of CMake
(3.20-3.22) were tested.

The code uses C++20 features and as such, needs a C++20 capable
compiler. Tested compilers are:

• GCC 10.3.0 (available on RCI)

• GCC 11.1.0

• Clang 12.1.0 (available on RCI)

• Clang 13.0.1

dim is also built by GitHub Actions CI by clang 13 as well as linted by clang-tidy
on each commit.

conan is used for package management. conan is implemented in Python
and can be obtained from pip. The project will invoke conan automatically
when cmake configure step is running, so it should be transparent to the user.
If the code is built locally (meaning not on RCI cluster), some packages hosted
on a private Artifactory instance of the author are needed. The following
commands have to be executed to add the remote:

# the remote requires revisions to
# be enabled in local conan installation
conan config set general.revisions_enabled=1
# this hosts the PETSc package recipe as well
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B. Building dim

# as some prebuilt libraries.
conan remote add rurabori-conan \

https://rurabori.jfrog.io/artifactory/api/conan/rurabori-conan
cmake . -B build # cmake arguments as usual ...

When building on the RCI cluster, it may be beneficial to use the provided
libraries optimized for the nodes they will be running on. To enable this,
pass -Dsystem_scientific_libs="ON" to cmake when configuring. There is
a script at scripts/rci/slurm_cmake which will automatically load modules
needed for compilation and offload the configuration/compilation step to a
computational node.

B.2 Building the binaries

The project provides only two configuration options immediately relevant to
this thesis. The first one is enable_petsc_benchmark which is disabled by
default. If it is enabled, the PETSc implementation of the distributed conjugate
gradient will be built, and the project will require PETSc as a dependency. The
second option is system_scientific_libs which was explained in B.1. Both
of these options can be enabled/disabled by passing -D<option>="ON/OFF" to
cmake during configuration phase.

A typical RCI configuration might look like this:

cd <project_directory>
cmake . -B build \

-Dsystem_scientific_libs="ON" \
-Denable_petsc_benchmark="ON" \
-DENABLE_TESTING="OFF" \
-G "Unix Makefiles" \
-DCMAKE_BUILD_TYPE=Release

cmake --build build

The resulting binaries will be in the build directory, in subfolders matching
the structure of the repository i.e. dim_cli which is defined in folder apps/dim_cli
will be found in build/apps/dim_cli folder. Alternatively the project can be
installed as a SLURM module after it is built by running:

cmake --install build \
--prefix <install_dir>/dim

MODULEPATH="$MODULEPATH:<install_dir>"
# from here on, dim should behave as any other module
ml dim
dim_cli --version
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B.3. Available executables

B.3 Available executables

dim build produces multiple executables. Benchmarks which were used to
produce data for this thesis, as well as dim_cli, a command-line utility with
multiple subcommands for downloading/converting and working with sparse
matrices in general. Only the CLI will be explained as the benchmarks map
well to graphs in this thesis, so they should be pretty self-explanatory.

B.3.1 dim cli

dim_cli is a command-line utility which provides four subcommands 14:

• store_matrix

• compare_results

• download

• generate_heatmap

store_matrix subcommand takes a path to matrix in MMEF or Matlab
compatible HDF5 format, and stores the matrix in CSR or CSR5 format
(provided to the -f flag) into a HDF5 file. The command also requires a
configuration file, which describes properties for the HDF5 groups in which
the data will be stored. A sample config is stored in resources/config.yaml
and installed into share directory when dim is installed as a SLURM module.

# convert MMEF to CSR5.
dim_cli store_matrix matrix.mtx \

-f csr5 \
-c resources/config.yaml

# will produce matrix.csr5.h5

compare_results takes a path to HDF5 file (or two files) with result
vectors and compares them. This command is mainly useful for validating that
results are correct and stable across implementations.

# compare two result vectors.
dim_cli compare_results res.h5 -l "/Y1" -r "/Y2"

download subcommand retrieves a matrix from an URL provided as an
argument and unpacks it while downloading, saving some time as the used
matrices are fairly large.

14dim cli supports -h/--help for the top-level executable as well as for each subcommand
for more detailed argument listing.
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B. Building dim

# downlaod and unpack matrix from <URL> into
# resources/matrices directory.
dim_cli download <URL> -d resources/matrices

generate_heatmap expects a path to matrix in CSR5 format introduced in
Section 3.5. It will produce a black and white PNG image, with the brightness
reflecting the number of non-zero elements of the segment of the matrix the
pixel represents.

dim_cli generate_heatmap mat.csr5.h5
# mat.png will be produced

Figure B.1: Zoomed-in example of a generated heat/distribution maps.

However, this command will behave a bit differently when process count
-p is specified. It will not reflect the density structure as precisely as the black
and white output, coloring the pixels with a different color for each process
instead. Resolution can also be specified by providing -r <width> <height>
if a finer structure needs to be captured (or the matrix is large).
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Appendix C
Acronyms

COO Coordinate Format

CSR Compressed Sparse Row Format

CSR5 Compressed Sparse Row 5 Format

CLI Command Line Interface

nnz Number of non-zero elements in a sparse matrix

HDF5 Hierarchical Data Format v5

dim The library implemented during result for this thesis

PETSc Portable, Extensible Toolkit for Scientific computation

CG conjugate gradient method

SpMV Sparse Matrix-Vector multiplication

SSE Streaming SIMD Extensions

AVX Advanced Vector Extensions
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Appendix D
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src........................................the directory of source code

include ............................................... Header files
lib.......................................................Libraries
apps..................................................Applications
benchmarks ........................................... Benchmarks
resources......................................Auxiliary resources

benchmark data........Data from benchmarks ran on RCI cluster
config.yaml..........................Default config for dim cli

docs/paper........................ the thesis source in LATEXformat
tests ................................................... Unit tests

thesis.pdf..............................the thesis text in PDF format
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