
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Proactive and reactive approaches for
non-critical tasks scheduling under thermal
constraints in the avionics domain

Radek Bumbálek

Supervisor: Ing. Ondřej Benedikt
Field of study: Open Informatics
Subfield: Software Engineering
January 2022

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

459128Osobní číslo:RadekJméno:BumbálekPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Softwarové inženýrstvíSpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Proaktivní a reaktivní přístupy pro rozvrhování nekritických úloh respektující tepelná omezení v
avionické doméně

Název diplomové práce anglicky:

Proactive and reactive approaches for non-critical tasks scheduling under thermal constraints in the
avionics domain

Pokyny pro vypracování:
With increasing demands for the high performance of embedded systems, thermal management has become an inseparable
part of the system’s design.
One of the techniques used in thermal management is task scheduling.
It is well known that there exists a trade-off between the system’s performance and temperature. Consequently, new
scheduling methods are being developed (i) to maximize the system’s performance while respecting the given thermal
envelope, or (ii) to minimize the system’s temperature while guaranteeing that the critical tasks will be completed in time.
The performance and complexity of the methods vary, depending on the amount of information they use; for example, by
fully analyzing the behavior of the tasks, one can create very complex models (with very limited scalability) and pre-compute
the schedule offline. On the other hand, one can react to the changes of the system’s state by following relatively simple
rules.
The goal of this thesis is to evaluate different techniques used for task scheduling under thermal constraints. The evaluation
will be done using real hardware. Also, the student should assess which of the techniques are suitable for scheduling the
non-critical workloads in the avionics domain, where the tasks are executed within time windows, securing their temporal
isolation.
Student will:
- Review the existing works on periodic tasks scheduling under thermal constraints.
- Select suitable methods for use on real hardware (consider, for example, GRUB-PA [1], and MultiPAWS provided by the
supervisor), and evaluate the trade-offs between their complexity (addressing both – implementation complexity and
computational complexity) and performance.
- Propose a new method for periodic task scheduling under thermal constraints assuming the time windows imposed by
an application in the avionics domain.
- Implement the proposed method, design testing scenarios, and prepare benchmark instances for testing.
- Experimentally evaluate the proposed method on real hardware (e.g., i.MX 8QuadMax), and compare it with existing
methods.

Seznam doporučené literatury:
[1] Scordino, Claudio, et al. “Energy-Aware Real-Time Scheduling in the Linux Kernel.” Proceedings of the 33rd Annual
ACM Symposium on Applied Computing, ACM, 2018, pp. 601–08. DOI.org (Crossref), doi:10.1145/3167132.3167198.
[2] Mascitti, Agostino, et al. “An Adaptive, Utilization-Based Approach to Schedule Real-Time Tasks for ARM Big.LITTLE
Architectures.” ACM SIGBED Review, vol. 17, no. 1, July 2020, pp. 18–23. DOI.org (Crossref),
doi:10.1145/3412821.3412824.
[3] Hanumaiah, V., et al. “Performance Optimal Online DVFS and Task Migration Techniques for Thermally Constrained
Multi-Core Processors.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no.
11, Nov. 2011, pp. 1677–90. DOI.org (Crossref), doi:10.1109/TCAD.2011.2161308.
[4] Zhou, Junlong, et al. “Thermal-Aware Task Scheduling for Energy Minimization in Heterogeneous Real-Time MPSoC
Systems.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 35, no. 8, Aug. 2016,
pp. 1269–82. DOI.org (Crossref), doi:10.1109/TCAD.2015.2501286.

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZDP-2015.1

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Ondřej Benedikt, katedra řídicí techniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: _____________Datum zadání diplomové práce: 24.06.2021

Platnost zadání diplomové práce: 19.02.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Ondřej Benedikt

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZDP-2015.1

Acknowledgements

Primarily I would like to thank my su-
pervisor Ing. Ondřej Benedikt for his
guidance and willingness to help, espe-
cially in theoretical aspects of my work.
Because of COVID pandemics, most of my
work was done over the distance, which
was only possible thanks to Michal Sojka
PhD., who guided my work on remote
devices.

Declaration

I declare that the presented work was
developed independently and that I have
listed all sources of information used
within it in accordance with the method-
ical instruction for observing the ethical
principles in the preparation of university
thesis.

V Praze, 4. January 2022

v

Abstract
The goal of this diploma thesis is to use
best-effort task scheduling to lower the
temperature. To achieve this goal, the
problem is formulated as a linear program.
Our formalization respects characteristics
of tasks and heterogeneous architecture
of target multiprocessor system on chip
(MPSoC). The main tool to achieve a re-
duction of produced heat is dynamic volt-
age and frequency scaling (DVFS). The
scheduler is evaluated on real hardware
and measured results are put in compar-
ison to state-of-the-art Linux scheduler
SCHED_DEADLINE. Moreover, reactive
techniques are proposed, to avoid possi-
ble overheating caused by a change of the
environmental conditions or imprecisions
of the model at runtime.

Keywords: scheduling, MPSoC, DVFS,
linear programming, proactive
scheduling, offline scheduling, reactive
policy, hardware experiments, best-effort
task scheduling

Supervisor: Ing. Ondřej Benedikt

Abstrakt
Cílem této diplomové práce je vytvořit
rozvrhovač best-effort úloh, který sníží
teplotu zařízení při stejném množství vy-
konané práce. Abychom toho dosáhli, for-
mulujeme problém pomocí lineárního pro-
gramování. Naše reprezentace respektuje
vlastnosti heterogenní architektury vybra-
ného procesoru i vlastnosti úloh samot-
ných. Hlavním nástrojem použitým pro
docílení teplotní redukce je dynamické
škálování frekvence. Rozvrhy vytvořené
rozvrhovačem jsou otestovány na reálném
zařízení a porovnány s výsledky systémo-
vého rozvrhovače SCHED_DEADLINE.
Součástí práce jsou i návrhy reaktivních
přístupů, které využívají již zmíněné roz-
vrhy a jsou schopné reagovat na změny
okolních podmínek.

Klíčová slova: rozvrhování, MPSoC,
DVFS, lineární programování, proaktivní
rozvrhování, offline rozvrhování,
rozvrhování best-effort úloh, reaktivní
přístupy, experimenty na reálném
zařízení

Překlad názvu: Proaktivní a reaktivní
přístupy pro rozvrhování nekritických
úloh respektující tepelná omezení v
avionické doméně

vi

Contents
Part I

Theory

1 Introduction 3

2 Related work 5

2.1 Tools for thermal management . . 5

2.2 Proactive approach 6

2.3 Reactive policies 6

2.4 Previous work 7

3 Problem statement 9

3.1 General problem 9

3.2 Platform. 10

3.3 Further assumptions 11

3.4 Formalization 12

4 Scheduler 15

4.1 Model . 16

4.2 Creating the schedule 18

4.3 Reactive policies 19

Part II
Implementation and experiments

5 Environment 23

5.1 Hardware . 23

5.2 Hardware dependent constants . 24

5.2.1 Efficiency coefficient 24

5.2.2 Power consumption 26

5.3 Linux scheduler
SCHED_DEADLINE 27

6 Implementation and tools 29

6.1 DEmOS . 29

6.2 Thermobench 30

6.3 Autobench 2.0 30

6.4 Scheduler . 31

6.4.1 Generating problem instance 32

6.4.2 Scheduling 33

6.5 Reactive policies 36

7 Experiments 39

7.1 Proactive scheduling 39

7.1.1 Experimental setup 39

7.1.2 Results 40

7.2 Reactive scheduling 45

7.2.1 Static experiments 45

7.2.2 Reacting to external condition 47

8 Conclusion 49

8.1 Future work 50

Bibliography 51

Appendices

A Experiments 57

A.1 Proactive scheduling - Gantt
charts . 57

A.2 Proactive scheduling -
temperature measurements 59

A.3 Proactive scheduling - power
consumption measurements 60

A.4 Proactive scheduling - Work
comparison . 61

vii

Figures
3.1 Global schedule and best-effort

subproblem . 10

3.2 Illustration of thermal profile
during task execution 11

4.1 Relation between average power
consumption P and relative
temperature (i.e., difference between
steady state temperature T_inf and
ambient temperature T_amb) 15

4.2 Illustration of settings 16

4.3 Task to core allocation 18

6.1 Scheme of our instance generating
and solving program 31

6.2 Scheme of our scheduler 33

6.3 Scheme of McNaughton’s
algorithm . 34

6.4 Scheme of creating slices 35

6.5 Scheme of cutting slices across
cluster schedules during merging . . 36

6.6 Scheme of reactive policy 37

7.1 Gantt chart of one BEC window
(10 000 ms) of DEmOS schedule for
problem problem instance usage 70 41

7.2 Gantt chart of one BEC window
(10 000 ms) of SCHED_DEADLINE
schedule for problem instance usage
70 . 41

7.3 Temperature plot for problem
instance usage 70. 42

7.4 Power consumption plot for usage
70% of the total CPU bandwidth . 43

7.5 Work comparison for usage 70% of
the total CPU bandwidth 44

7.6 Temperature profiles of chosen
reactive policies with firm settings 46

7.7 Work comparison of chosen
reactive policies with firm settings 47

7.8 Frequency throttling policy with
upper bound temperature of 58°C . 48

7.9 Task skipping policy with upper
bound temperature of 58°C 48

A.1 DEmOS schedule of 3 BEC
windows (30s runtime) of problem
instance usage 50 57

A.2 DEmOS schedule of 3 BEC
windows (30s runtime) of problem
instance usage 60 57

A.3 DEmOS schedule of 3 BEC
windows (30s runtime) of problem
instance usage 70 58

A.4 DEmOS schedule of 3 BEC
windows (30s runtime) of problem
instance usage 80 58

A.5 DEmOS schedule of 3 BEC
windows (30s runtime) of problem
instance usage 90 58

A.6 SCHED_DEADLINE execution of
3 BEC windows (30s runtime) of
problem instance usage 50 58

A.7 SCHED_DEADLINE execution of
3 BEC windows (30s runtime) of
problem instance usage 60 58

A.8 SCHED_DEADLINE execution of
3 BEC windows (30s runtime) of
problem instance usage 70 59

A.9 SCHED_DEADLINE execution of
3 BEC windows (30s runtime) of
problem instance usage 80 59

viii

A.10 SCHED_DEADLINE execution
of 3 BEC windows (30s runtime) of
problem instance usage 90 59

Tables
5.1 Efficiency measurements A53 . . . 25

5.2 Efficiency measurements A72 . . . 25

5.3 Average power consumption
measurements per core for a2time
benchmark . 26

6.1 Scheduler runtime measurements 35

7.1 Measured average temperatures . 42

7.2 Measured average power
consumption 43

7.3 Work comparison 44

7.4 Work comparison 45

7.5 Temperature averages of reactive
policies under firm level 46

7.6 Work done by reactive policies
under firm level 47

ix

1

..

Part I

Theory

2

Chapter 1

Introduction

Modern systems grow in complexity every year due to demand for higher
performance. This phenomenon leads to the employment of Multiprocessor
System on Chip (MPSoC), where often heterogeneous architecture allows
for higher efficiency and computational throughput. However, the high
performance of embedded MPSoC leads to heating the hardware. While
active cooling offers a great potential to keep the temperature on a stable
level without introducing additional needs for hardware or software changes, in
some cases an additional device may not be desirable. Its size and additional
energy consumption reduce its viability in the field of portable devices,
whereas in safety-critical domains such as aerospace, any additional device
might increase the possibility of a mechanical failure, especially under harsh
conditions tied up with this field.

Software solutions are not burdened with these disadvantages. Further-
more, multiple techniques can be introduced. In general, we distinguish
between proactive (sometimes also referred to as offline) and reactive (online)
approaches. A proactive approach strives to prevent an undesirable event
to happen (i.e. a system overheating). Static scheduling belongs among
proactive techniques. With prior knowledge of tasks, an elaborate schedule
can be prepared, which would lower the produced heat with low or no impact
on the task execution.

The other set of approaches is called reactive. A reactive technique is
triggered at the moment when an undesirable event happens. Reactive
techniques can be provided through a set of policies, which are to be used
based on the imminent state of the device. These reactive techniques offer
great flexibility in thermal management; however, it often leads to lowering
the performance. Unlike scheduling, reactive policies are less burdened with
assumptions and more reflect the real state of the device.

Even in safety-critical systems, not all tasks are rated as critical. There are
also so-called best-effort tasks present. Scheduling these tasks allows for a
less restrictive approach, while a successful solution improves the efficiency of

3

1. Introduction
the whole system. Even though reactive approaches introduce performance
reduction and lack of execution guarantee, which poses a serious drawback
for critical tasks, they can be admissible for best-effort tasks.

In this thesis, we focus on best-effort tasks. Our goal is to design, imple-
ment and evaluate a best-effort task scheduler, which minimizes the heat
produced and allows for better thermal management. We demonstrate the
efficiency of our scheduler by comparison with Linux deadline scheduler
(SCHED_DEADLINE) which is a standard part of Linux kernel since version
3.14.

Moreover, we implement several reactive policies, which can prevent system
overheating in runtime. We compare reactive policies with precomputed
schedules, where the workload is scaled down. We discuss these approaches
as possibilities to keep the system running under thermal constraints.

In Chapter 2 we describe existing research in the field. Chapter 3 explains
the problem we are solving in more detail. In Chapter 4 we describe our
model and scheduling algorithm used for the scheduler in detail. Chapter 5
summarizes the environment used for experiments. This includes the hardware
we are using and environment-specific constants which has to be measured in
advance. Methodologies and results of these measurements are also presented
here. Implementation of our scheduler, as well as our test instance generator
and additional tools which made this work possible can be found in Chapter 6.
Finally, Chapter 7 consists of experiments and their results. Conclusion and
future work is presented in Chapter 8.

4

Chapter 2

Related work

There have been many works submitted in the field of CPU task scheduling
since resource allocation is one of the key components of any operating system.
Moreover, with new techniques in the semiconductor industry, smaller and
more powerful hardware is being made. With higher frequencies and smaller
sizes, power density scales up, which makes energy-aware scheduling even
more relevant.

In Section 2.1 we discuss the usage of various tools for thermal management
seen in other works. Because our work combines proactive and reactive
approaches, we describe related work in these two fields in Section 2.2 and
Section 2.3 respectively. Works of significant impact are summarized in
Section 2.4.

2.1 Tools for thermal management

First, the most prevalent tool for thermal management is Dynamic Voltage
and Frequency Scaling (DVFS). DVFS is nothing rare in modern hardware.
Multiple thermal or energy-aware scheduling approaches take advantage of it
([7], [10], [12], [13], [14], [15], [16], [17]).

There are often limits of real hardware, which are not considered in theo-
retical works. Frequency scaling is often not continuous as assumed in [7], but
only certain discrete frequency levels are allowed. Also, it is not always possi-
ble to change frequency per core. In our case, we work with heterogeneous
architecture, where only a per-cluster frequency setting is permitted.

The second tool is a task to core allocation or migration. In MPSoC, some
migrating between cores or clusters may contribute to better thermal profile,
due to spatial heat distribution, as shown in [6] and [7]. More commonly
heterogeneous architecture is used. A detailed description of taking advantage
of ARMs big.LITTLE architecture can be found in [18]. Similar approaches

5

2. Related work.....................................
can be found in [4], [8] and [5]. While we do not assume task migration due to
strict cluster affinity of tasks in our model, we discuss the possible utilization
of heterogeneous MPSoC in future work (Section 8.1).

For the sake of completeness, we also mention task reclamation as another
technique, frequently used with best-effort task scheduling. Often task dura-
tion is described by Worst-Case Execution Time (WCET), however in case
that execution time is shorter than WCET, the remaining time can be utilized
to lower the temperature as shown in [1], [3], [15], [17] and [18].

2.2 Proactive approach

Proactive (offline) scheduling is not as strictly restricted in means of
computational complexity as reactive (online) scheduling, where the schedule
is being created at runtime. Therefore, it allows for the usage of more complex
models. We describe these models with an algebraic modeling language. This
representation can be solved via modern solvers and in general, it presents
an optimization problem. The schedule is refined from its solution, as seen in
[2], [4], [5], [8], [10] and [13].

Models are often created to allow for easy extraction of the final solution (e.g.
in our case we utilize McNaughton’s algorithm). Therefore, most works focus
on solving the optimization problem itself. In [2] Artificial Neuron Networks
are used to speed up the computation. With achieved speedup, authors there
discuss possible usage in online scheduling. The same discussion can be seen
in [13], where the speedup is achieved by approximation techniques.

Another option to avoid the high complexity of optimization is by relaxation
of the integral constraints as shown in [5], where the Mehepu algorithm is
presented. After solving a relaxed problem, the final task distribution is
solved via multiple bin-packing approaches.

A different approach uses the mathematical model to derive an algorithm
or a heuristic, solving the task allocation problem. Zhou et al. [16] derive
a two-stage algorithm, where energy-aware task allocation is performed in
the first stage, while the second stage focuses on lowering peak energy. The
final solution is then enhanced by a slack distribution which effectively lower
temperature peaks.

2.3 Reactive policies

Proactive approaches can be difficult, or sometimes even impossible to
utilize, specifically when some part of the problem remains unknown until the
execution, such as external conditions, task real execution time or even tasks

6

.................................... 2.4. Previous work

in general. Therefore, reactive (online, real-time) approaches are in focus of
many works ([1], [3], [6], [7], [11], [12], [14], [15], [17], [18]).

If the optimization problem is solved fast enough, a similar approach as
in offline scheduling can be utilized. This can be achieved for example by
approximative methods as seen in [7]. Similarly to our work, Paterna et
al. in [11] created a model, which can be solved in linear time by linear
programming. Even less common approach can be found in [12], where the
model is solved via game theory.

Reactive approaches are commonly tied with best-effort (BE) task schedul-
ing because BE tasks are often perceived as a source of uncertainty. We
already mentioned a case when WCET and actual runtime differs and allows
for reclamation. Another approach described in [14] considers the lack of
strict deadline and uses Jensen’s benefit function instead [9].

Change of external conditions can lead to unexpected temperature raises,
for example, due to change of ambient temperature. Reactive policy to
borderline temperature values can be found in [6].

Moreover, in our work, we focus on a practical evaluation of our solution.
Unlike most works in the field, which are either purely theoretical or were only
tested in simulations, our solution is evaluated on real hardware, in comparison
to an up-to-date Linux scheduler (SCHED_DEADLINE). We found the work
of Scordio et al. [17], where similar experiments were performed, as very
helpful in that regard.

2.4 Previous work

Our work aims to enhance the approach from the diploma thesis of Ing.
Hornof [8] and paper [4], where the main focus is Safety-critical workload.
Also, DEmOS tool Section 6.1, which is utilized in both works, served us
as a core part of our experiments. For the sake of continuity, we assume
a similar environment and we even use the same hardware. However, the
problem we are solving differs greatly. Best-effort tasks are not weighted by
strict assumptions as safety-critical ones. Therefore, DVFS, preemption and
task migration is fully utilized in our solution.

7

8

Chapter 3

Problem statement

To describe the problem thoroughly, we have to differentiate between the
general view (see Section 3.1) and specific features concerning the actual
system used for experiments (see Section 3.2). Multiple assumptions were
made, regarding the model as well as tasks. Thorough description and
explanation can be found in Section 3.3 The formalization of the problem
follow in Section 3.4.

3.1 General problem

We assume an embedded safety-critical system responsible for periodic
execution of various workloads which consist of individual tasks. Tasks are
to be executed within time windows. A periodically repeating set of time
windows is called a major frame.

We divide tasks into two groups, the Safety-Critical (SC) and Best-Effort
(BE). SC tasks are isolated from BE tasks in their time windows, which span
across all CPU cores. Due to their strict isolation, we can tackle BE task
scheduling as a separate problem.

Furthermore, we assume that BE tasks are preemptive. We do not consider
tasks to be dependent upon each other, nor multi-threaded. Therefore, we can
approach best-effort time windows distributed across the major frame as a
homogeneous time frame. We call this time frame the Best-effort Cumulative
window (BEC window). The major frame and BEC window composition are
illustrated in Figure 3.1.

While we assume looser conditions concerning BE tasks, which allows for
postponing their execution, migration, preemption, etc., BE tasks are still
assumed as a part of the system and are needed for their proper functionality.
However, the execution of these tasks must not negatively influence SC tasks.

9

3. Problem statement

Best-effort task
#3

Best-effort
task #3

Best-effort
task #2

Safety-critical
task #1

Safety-critical
task #2

Safety-critical task #3

Safety-critical
task #4

Best-effort task #1
Best-effort

task #4

cp
u

1
cp

u
2

... Best-effort task #3
Best-effort

task #2

Best-effort task #1
Best-effort

task #4
cp

u
1

cp
u

2
...

Safety-critical
task #1

Safety-critical
task #2

Major frame

Best-effort
scheduling
subproblem

Safety-critical
window

Best-effort
window Best-effort

window

Best-effort Cumulative window

Figure 3.1: Global schedule and best-effort subproblem

Despite the software isolation, both workloads are still being executed at
the same hardware and both must respect some thermal budget. Overstepping
thermal boundaries (often referred to as a thermal envelope) might cause
system throttling. Therefore a thermal envelope is being considered as an
important condition when determining a safety-critical system.

The thermal envelope can be regarded as a shared resource. Reducing the
produced heat by one part of the system allows the higher performance of
the other part. Hence we target to reduce this heat via best-effort scheduling.
We illustrate that dependency in Figure 3.2.

3.2 Platform

Multiple characteristics are influencing the schedule. Scheduling is depen-
dent on the platform, upon which the schedule will be executed, therefore
there are several properties we expect the platform to meet:

. The expected platform is Multiprocessor System on Chip (MPSoC).. The expected platform may have one or more heterogeneous CPU clusters,
each consisting of one or more identical CPU cores.. The expected platform allows for Dynamic Voltage and Frequency Scaling
(DVFS) per cluster.

10

................................. 3.3. Further assumptions

Safety-critical workload
Best-effort
workload

Safety-critical
workload

Te
m

pe
ra

tu
re

Time

Thermal profile without effectively
scheduled Best-effort tasks

Thermal profile with effectively
scheduled Best-effort tasks

Thermal envelope

Figure 3.2: Illustration of thermal profile during task execution

. Each cluster can be set to multiple discreet frequency levels.

Note that our platform expectations are rather strict, therefore our scheduler
should be usable for most of the hardware currently in use. With less strict
conditions, we can adjust our scheduler, to meet them. For example, if per-
core frequency scaling is available, we can approach each CPU core as a cluster
consisting of only 1 core, continuous frequency scaling can be approached the
high amount of discreet frequency levels, etc.

3.3 Further assumptions

To present our scheduler, multiple assumptions were made. We are delib-
erately assuming simple problem setting to demonstrate our ideas. We are
trying to remain consistent with previous work ([4], [8]), which also leads to
some assumptions to be made. Limited time and format of the diploma thesis
were also a factor. Moreover, multiple assumptions were made to allow a
direct comparison with the SCHED_DEADLINE scheduler. Note that some
assumptions are rather strict, however can be lifted with small changes in
the design of the scheduler. We discuss these options in Section 8.1.

As previously mentioned, our focus is best-effort (BE) tasks, which we
consider preemptive, single-threaded and independent. These characteristics
are based on the context of previous work.

Moreover, fixed affinity to the cluster for each task is assumed to allow
for better comparison, because the SCHED_DEADLINE implementation
does not operate well with the heterogeneous architecture. When our initial

11

3. Problem statement
tests were run on the hardware without specifying the cluster, the amount
of work done by each task was changing erratically, which would make any
comparison inconsistent. This decision also allows for solving each set of
cluster assigned tasks separately, simplifying the problem; however, we are
confident that our solution can solve the mixed affinity problem as well (see
Section 8.1).

The last task-related assumption influences start time and deadline. We
require each task to be executed during the BEC window, but we do not
make further demands on specific deadlines or star times of each task. BE
task scheduling is often tied up with soft deadlines and therefore we do not
focus on removing this particular constrain. Moreover, we would have to
respect the location of BEC window partitions within the major window when
estimating start times and deadlines. However, we think that deadlines and
start times could be added by further dividing the BEC window into smaller
parts (see Section 8.1).

3.4 Formalization

We model previously mentioned problem, platform and assumptions. First
of all we need to describe physical capabilities of used MPSoC:

.We assume a set of m CPU clusters C = {c1, ..., cm}.. For each cluster cj , there is a finite ordered set containing n possible
frequency settings Fj = {f1, ..., fn}, f1 < f2 < ... < fn.. Each cluster cj consists of Kj identical cores.. Each cluster cj has set Uj of possible core utilizations (number of active
cores), Uj = {1, ..., Kj}..We define "CPU settings" Sj as a set of unique combinations of core
utilization and frequency setting. Note, that there is a special case of
CPU idle state sidle. Sj = {Uj ×Fj} ∪ {sidle}..We use fs as a reference to frequency of given s ∈ Sj ..We use us as a reference to core utilization of given s ∈ Sj .

The problem is divided between clusters and each cluster is solved separately.
Results of each separate problem are later merged into the final schedule. We
describe our tasks in the following manner:

.We assume a set of BE tasks Tj for each cluster cj . Each task denoted
as τ ∈ Tj .

12

.................................... 3.4. Formalization

. Each task τ ∈ Tj has a prescribed amount of work Wτ .. For each task τ ∈ Tj we measured efficiency coefficient Eτ,f , which
describes how well it performs under frequency f in comparison to fn.. For each task τ ∈ Tj we measured average power consumption of the
platform under the given task execution πτ,s on each CPU setting s ∈ Sj .

We need to formalize external conditions:

.We denote the length of BEC window by L..We denote the value of temperature threshold (thermal envelope) as ∆.

The outputs (variables) of our model are time constraints describing each
window and task allocation:

.We devide BEC window into intervals of length as for each CPU setting
s ∈ Sj .. The runtime of each task τ ∈ Tj is then divided into these windows,
where it will run for time interval dτ,s for each s ∈ Sj \ sidle. Note that
in the idle state sidle, no task is being executed.

13

14

Chapter 4

Scheduler

To solve the problem of BE task scheduling under thermal constraints, we
propose the offline scheduler. Our scheduler works in two phases. In the first
phase, the problem is decomposed per cluster, modelled as an optimization
problem and solved separately. In the second phase, we parse results from
models. We create per-cluster schedules via McNaughton’s algorithm and
then we merge separated schedules into the final schedule.

The most important part of each optimization problem is the objective
function, which represents the goal of the optimization process. Our main
goal is to lower the temperature of the whole system. However, temperature
modelling is very complex, while we strive for an approximative description,
which can be easily solved even for big instances. Therefore, we use to our
advantage measured relation between the power and relative temperature,
which relies on some assumptions (e.g. the length of hyper period), from [4].
In Figure 4.1 we can clearly observe the linear relation between the average
power consumption and the steady-state temperature [4].

Figure 4.1: Relation between average power consumption P and relative tem-
perature (i.e., difference between steady state temperature T_inf and ambient
temperature T_amb)

15

4. Scheduler
4.1 Model

When any workload execution is inspected, we can describe it as a series
of time intervals, where each time interval has some frequency and core
utilization setting. We call this combination of frequency and CPU core
utilization a "CPU setting". Switching between "CPU settings" and especially
between frequencies creates overhead, which we strive to lower, to make the
schedule more effective. Therefore, we aggregate those small intervals into
larger time windows of length as. Moreover, we order these time windows by
frequency to lower frequency switching overhead even further. We illustrate
our schedule structure in Figure 4.2, where a1 marks the first window of
frequency f1 and core utilization u1 = 1.

cp
u

1
cp

u
2

cp
u

3
cp

u
4

Task #1 Task #2

Task #3 Task #4

Task #1

Task #5

Task #2 Task #2

Task #4

Task #5

a
1

a
2

a
s

f nf 1

Figure 4.2: Illustration of settings

Both frequency and core utilization have an impact on power consumption,
therefore for each CPU setting s ∈ Sj , we can measure some average power
consumption Ps. Because of the linear relation, we can use average power
consumption in the objective function instead of temperature. Minimizing
the overall power consumption will lead to minimizing the temperature as
well.

min
∑
s∈Sj

Ps · as (4.1)

We observed (see Section 5.2.2) that the average overall task is not very
precise. Some tasks have much higher power consumption πτ,s than others.
Therefore we wanted to use a weighted average ϵs for each window.

min
∑

s∈Sj\sidle

ϵs · as + Psidle
· asidle

(4.2)

where: ϵs =
∑
τ∈T

πτ,s · dτ,s

us · as
(4.3)

16

....................................... 4.1. Model

We can substitute:

λτ,s = πτ,s

us
(4.4)

After substitution Equation (4.4) into the equation 4.2, we can simplify
the equation into following objective function:

min
∑

s∈Sj\sidle

∑
τ∈T

λτ,s · dτ,s + Psidle
· asidle

(4.5)

Note that λτ,s and Psidle
are constants, therefore the objective function

Equation (4.5) is linear.

The whole BEC window of length L is divided into windows, therefore:

∑
s∈Sj

as = L (4.6)

No task can run in the window s longer than is the length of the window
itself, therefore:

dτ,s ≤ as ∀τ ∈ T , ∀s ∈ Sj (4.7)

Also in each window can only be executed as much work as the length of
the window and amount of core running allows:

∑
τ∈T

dτ,s ≤ us · as ∀s ∈ Sj (4.8)

In Section 3.4 we denoted Wτ as an amount of prescribed work. We quantify
Wτ as an equivalent of the runtime of the task τ under the highest possible
frequency. Runtime intervals dτ,s are scaled by efficiency ratio Eτ,fs , to obtain
the maximum frequency runtime equivalent.

∑
s∈Sj

dτ,s · Eτ,fs = Wτ ∀τ ∈ T (4.9)

All constants and variables are assumed not to be negative. While this
might seem like a strong assumption from a mathematical point of view, it is
only natural, that we do not assume negative time, power or effectiveness.
Our proposed model as amended is linear with continuous variables and thus
it can be solved in linear time by linear programming (LP) solver.

17

4. Scheduler
Note that our model is aproximative. The average power consumption

presented is an upper bound, which presents the case of 100% CPU bandwidth
being utilized. Measured constants present averages over limited time periods
and fixed temperatures. There are additional time and power demands on
task migration and frequency switching which we deliberately omit in our
model, due to complexity. Our experiments are conducted on a device with
an operating system and we can not prevent system operations during the
scheduling.

4.2 Creating the schedule

The result of the model is not only the value of the objective function,
which in our case is estimated average power consumption but values of our
variables as and dτ,s which describe the length of each window corresponding
to each CPU setting s ∈ Sj and length of execution interval of each task in
given window respectively.

In order to create the schedule, we have to prepare time windows of
length as, with a given "CPU setting" s, which we order by frequency. For
each window, we allocate execution intervals for each task, given by dτ,s.
Because our tasks are preemptive and can be migrated between cores, to
allocate intervals, we utilize McNaughton’s algorithm (which we illustrate in
Figure 4.3).

cp
u

1
cp

u
2

...

Task #1

Task #3

a
s

Task #2Task #1 Task #3

#2

#2

d
1,s

d
2,s

d
3,s

Figure 4.3: Task to core allocation

Once time windows are created for each cluster, we merge solutions together.
In order to reduce temperature spikes, we order windows of each cluster in a
different manner. Windows with high frequency will produce more heat than

18

................................... 4.3. Reactive policies

those with lower frequency, thus we want to prevent the simultaneous run of
the highest frequencies on all clusters.

4.3 Reactive policies

Our scheduler works as long as the problem is solvable and it tries to lower
the average power consumption and thus lowers the temperature. However,
in real-world applications rather than a demand for lowering the temperature,
a strict thermal envelope ∆ is given. With a given amount of work, a feasible
solution might not exist. Moreover, external conditions (e.g. change of
ambient temperature) might influence the validity of the solution and the
scheduler in a critical system must be able to reflect it. Therefore, we propose
three reactive policies.

Thermal throttling in case of overstepping thermal boundaries is present
in most of today systems. Commonly, in the case of temperatures over the
threshold on a CPU, a CPU frequency is lowered. This behaviour is reflected
by our first DVFS policy, which we call "soft throttle".

Our second policy is called the "skip" policy and its control of temperatures
is based on imminent lowering of executed workload. Tasks are skipped in
case of overheating.

The final policy also strives to achieve temperature control through workload
reduction, however in a more elaborate way. Instead of skipping individual
tasks, we try to utilize a new reduced schedule.

There are three aspects we focus on. Besides the temperature control,
we also want our solution to achieve the best possible efficiency. Therefore
instead of flat reduction of frequency or workload, we try to lower them
gradually. Our goal is to not only create flexible policies with high efficiency,
but we also want our policies to be "fair" in the sense that the ratio between
tasks is preserved.

19

20

Part II

Implementation and experiments

21

22

Chapter 5

Environment

We hold real experiments in high regard. Therefore, we focus on their
reproducibility. We describe the environment and tools in great detail. We
also report all our experiments’ settings and raw measured data besides
processed data.

We describe our hardware used for all experiments in Section 5.1. The
device runs the operating system Debian GNU/Linux 10 (Buster). We can
not prevent system operations during our measurements, for that reason,
all our measurements are weighted by error. We run all our experiments
in multiple cycles or in multiple separated runs and for long time periods
to diminish the influence of unexpected OS operations and other external
conditions.

Our model depends on multiple hardware-dependent constants, which we
summarize in Section 5.2. On the software side, we used Linux operating
system. Its scheduler served us as a baseline for our experiments. More
detailed description is in Section 5.3.

5.1 Hardware

Our platform used for experiments is i.MX 8QuadMax Multisensory En-
ablement Kit (MEK).

The i.MX8 board implements ARM’s big.LITTLE architecture. Big.LITTLE
technology is a heterogeneous processing architecture that uses two types
of processors. ”LITTLE” processors are designed for maximum power ef-
ficiency while ”big” processors are designed to provide maximum compute
performance. [21]

The "LITTLE" ARM Cortex-A53 CPU cluster consists of 4 cores, offering
frequencies 600 MHz, 896 MHz, 1104 MHz and 1200 MHz. The "big" ARM

23

5. Environment
Cortex-A72 CPU cluster consists of 2 cores, offering frequencies 600 MHz,
1056 MHz, 1296 MHz and 1596 MHz. The frequency of each cluster is always
the same for all of its cores.

The temperature measurements were provided by built-in sensors of i.MX8
chip. We also used HTU21D ambient temperature sensor, which is not part
of the i.MX8, but we consider it as a vital part of our test-bed, as well as the
power consumption measurement module INA219 [28].

We specify formalization from Section 3.4 as follows.

. C = {a53, a72}. Fa53 = {600 MHz, 896 MHz, 1104 MHz, 1200 MHz}. Fa72 = {600 MHz, 1056 MHz, 1296 MHz, 1596 MHz}. Ua53 = {1, 2, 3, 4}. Ua72 = {1, 2}

The specification can be also found in processor.json file, which contains
the processor settings for our scheduler.

5.2 Hardware dependent constants

Constants Eτ,f and πτ,s used in Section 3.4 has to be measured to reflect
the nature of the hardware and tasks. We use benchmarks to represent our
tasks.

5.2.1 Efficiency coefficient

The first parameter which needs to be measured is task efficiency Eτ,f .
We use the highest available frequency as a baseline (1200 MHz for A53,
1596 MHz for A72). Thermobench [23](described in detail in Section 6.2) is
used to collect data from each benchmark. We estimated iterations done per
second and calculated the ratio Eτ,f , for each task, for each cluster, as seen
in Table 5.1 and Table 5.2 respectively. Detailed results can be found in the
attached file: task_efficiency_measurements.ods. Measured values are also
part of the benchmark specification file benchmarks.json.

Even though we did not observe a big fluctuation in efficiency scaling
in the selected group of benchmarks, we consider using separate values as
a good practice (instead of using an average for example), because some
specific tasks might not scale as linearly as shown. For example tasks with

24

............................. 5.2. Hardware dependent constants

Cluster: A53
Frequency: 600 MHz 896 MHz 1104 MHz 1200 MHz
a2time 50.69 % 75.38 % 92.46 % 100 %
aifirf 50.02 % 74.67 % 91.97 % 100 %
bitmnp 49.93 % 74.68 % 92.01 % 100 %
candrdr 50.36 % 74.98 % 92.19 % 100 %
idctrn 49.92 % 74.60 % 91.95 % 100 %
iirflt 50.00 % 74.69 % 92.13 % 100 %
matrix 50.98 % 75.68 % 92.60 % 100 %
pntrch 49.97 % 74.69 % 92.02 % 100 %
puwmod 49.95 % 74.67 % 92.06 % 100 %
rspeed 51.87 % 76.25 % 92.45 % 100 %
tblook 50.28 % 75.20 % 92.44 % 100 %
ttsprk 49.89 % 74.61 % 91.97 % 100 %
membench 90.04 % 95.12 % 98.37 % 100 %

Table 5.1: Efficiency measurements A53

Cluster: A72
Frequency: 600 MHz 1056 MHz 1296 MHz 1596 MHz
a2time 37.53 % 66.08 % 81.22 % 100 %
aifirf 37.47 % 66.04 % 81.19 % 100 %
bitmnp 37.38 % 66.03 % 81.23 % 100 %
candrdr 37.57 % 66.11 % 81.35 % 100 %
idctrn 37.45 % 65.99 % 81.17 % 100 %
iirflt 37.45 % 65.95 % 81.21 % 100 %
matrix 40.16 % 68.17 % 82.61 % 100 %
pntrch 37.40 % 65.88 % 80.95 % 100 %
puwmod 37.46 % 65.96 % 81.20 % 100 %
rspeed 37.49 % 65.96 % 81.21 % 100 %
tblook 37.40 % 65.73 % 81.08 % 100 %
ttsprk 37.59 % 66.01 % 81.12 % 100 %
membench 79.86 % 92.21 % 96.04 % 100 %

Table 5.2: Efficiency measurements A72

high memory usage will not scale well with higher CPU frequency due to
the bottleneck in memory accesses. We present this behaviour by synthetic
benchmark membench, which has a high amount of memory access. Poor
scaling is clearly visible from measured results in last rows of Table 5.1 and
Table 5.2.

Moreover, using specific Eτ,f for each task does not increase computational
complexity because the Eτ,f values figure in our model as constants.

25

5. Environment
5.2.2 Power consumption

The second hardware dependent constant is average power consumption
πτ,s. For each CPU setting s on each cluster (A53, A72) we conducted a series
of experiments, measuring benchmarks’ (tasks’) average power consumption
for 100 seconds. We sample the power consumption with period of 1 second,
the provided samples are averages over that period. Since we use 2 clusters,
with 8 and 16 CPU settings respectively and 12 different benchmarks, we had
to conduct 288 measurements ((8 + 16)× 12). Detailed measurements can be
found in the attached file: task_efficiency_measurements.ods and summarized
results in benchmarks.json.

Due to observation in Equation (4.4), we use λτ,s. We show an example of
computed values of λa2time,s in Table 5.3.

A53
Cores: 1 2 3 4
600 MHz 6.05 W 3.11 W 2.17 W 1.62 W
896 MHz 6.13 W 3.17 W 2.23 W 1.69 W
1104 MHz 6.41 W 3.35 W 2.32 W 1.81 W
1200 MHz 6.55 W 3.44 W 2.40 W 1.87 W
A72
Cores: 1 2
600 MHz 6.48 W 3.41 W
1056 MHz 6.78 W 3.68 W
1296 MHz 7.10 W 3.92 W
1596 MHz 7.61 W 4.37 W

Table 5.3: Average power consumption measurements per core for a2time
benchmark

Measurements are in line with our expectation of energy consumption
growing with higher frequency and with higher core utilization. Note that
λτ,s values presented are πτ,s divided by the utilized core count.

In our model, we use πτ,s values in weighted average (see Section 4.1). We
are aware that a combination of different tasks running at the same time on
the chip may result in values varying from the weighted average, however
testing all combinations of tasks would lead to |U| ×

∑K
i=0 |T |i combinations,

which in our case is over 90 000 combinations for A53 cluster alone, where
each combination would need its measurement for at least several benchmark
iterations to estimate power consumption with reasonable precision. If we
assume the same period of 100 seconds, it would take over 100 days to
conduct such an experiment. Such a level of detail would make the solution
unpractical for use while we do not expect any major improvement of the
solution. Moreover, a different mathematical model would have to be used,
which would need logical variables and thus it would lose its linear properties

26

.......................... 5.3. Linux scheduler SCHED_DEADLINE

(it would lead to a mixed-integer programming which has higher complexity).

5.3 Linux scheduler SCHED_DEADLINE

CPU scheduler is a vital part of every operating system. Linux sys-
tems nowadays offer multiple different schedulers, such as SCHED_FIFO,
SCHED_OTHER, SCHED_RR, etc. We chose SCHED_DEADLINE for
comparison due to multiple reasons. Mainly it reflects our use case, where
tasks are periodically executed with firm deadlines, runtimes and periods.

The SCHED_DEADLINE scheduler is built upon two algorithms. Earliest
Deadline First (EDF) algorithm runs the task with the closest deadline
first. This algorithm can schedule tasks up to 100% utilization of a single
processor; however, its guarantees drop significantly for a multi-processor
problem. Therefore for multi-processor usage, a variant of global EDF is used,
which has better guarantees, especially in a case where period and deadline
is identical (which is our case) [29].

The second part of the scheduler is based on Constant Bandwidth Server
(CBS), which provides protection for real-time sporadic tasks during the
scheduling. Moreover, SCHEAD_DEADLINE can be enhanced by the Greedy
Reclamation of Unused Bandwidth (GRUB) algorithm, which allows for CPU
reclamation of unused bandwidth; however, bandwidth reclamation is needed,
when a task finishes sooner than its Worst-Case Execution Time (WCET)
estimates. While this is a rather common event in a real system, we do
not assume this to happen. Our tasks are run in infinite loops, utilizing all
system time given by the scheduler. The algorithm does not allow for WCET
overstepping and in such case, the task is throttled until the next period.

We conducted our baseline experiments via Linux tool chrt [25]. Chrt
is a ready-to-use command-line tool that allows for easy scheduling policy
assignment to a process. Unfortunately, its lightweight design does not allow
for setting system flags, which among other features decide which reclamation
algorithm is used (CBS is the default choice).

The SCHED_DEADLINE also has multiple strict limitations, which we
had to respect when creating our test cases and presenting measured values.
The SCHED_DEADLINE does not allow processes to fork. All processes
scheduled by it have the same priority level 0. On one hand, this allows our
experiments to run with less interruption (only system-level tasks has higher
priority), but on the other side, it also poses a disadvantage in means of
measuring. Multiple metrics such as the CPU temperature and frequency are
being gathered via the Thermbench tool (see Section 6.2), which is getting
limited in the case of high CPU usage.

27

28

Chapter 6

Implementation and tools

Multiple tools were used during the preparation and execution of our
experiments. In spite of the reproducibility of our work, we reference all
external tools and we include all scripts used in the attached files.

We describe DEmOS, the vital tool for scheduled task execution in Sec-
tion 6.1. We also want to highlight Thermobench, the main tool for all
measurements in Section 6.2. We refer to the benchmark suite Autobench
substituting our tasks in Section 6.3.

Finally, we talk about our own work, the scheduler and scheduling policies
in Section 6.4 and Section 6.5 respectively.

6.1 DEmOS

DEmOS is an open-source tool for scheduling in the Linux environment [22].
It takes care of resource allocation for tasks specified in the YAML-formated
configuration file. The configuration is divided into two parts. The first part
contains the schedule. The schedule is described as a periodically repeating
sequence of windows. Each window has a time budget and consists of slices
for each CPU cluster available. Both SC and BE partitions can be present in
slices; however, we only use BE partitions in our case. BE partitions also may
contain frequency settings. In that case, a special "imx8_per_slice" policy
(or any of our reactive policies) must be defined to take the frequency setting
into account.

Partitions encapsulate one or more processes and they form the second
part of the configuration file. Each process describes the task to be executed.
Processes are stored and run as shell commands. The time budget is also
part of the process description.

DEmOS has been used for our experiments with both online and offline

29

6. Implementation and tools
scheduling. Our scheduler outputs DEmOS YAML configurations. Reactive
policies we propose are implemented as a part of the DEmOS tool.

6.2 Thermobench

Thermobench [23] is open-source software for capturing execution profiles of
user-defined workloads [19]. It allows for gathering multiple statistics during
the run of a task and it was a vital tool for all our experiments. Thermobench
allows for gathering not only temperatures on cores but also program outputs,
CPU load, CPU frequencies and characteristics gathered by external devices,
such as ambient temperature and power consumption. Moreover, all data are
automatically timestamped.

Unfortunately, the thermobench tool creates some overhead. While this
overhead does not negatively influence our comparison experiment, because
it is run in both cases (for our scheduler as well as for SCHED_DEADLINE),
there is a lack of consistency at SCHED_DEADLINE experiments, in cases
where utilization of CPU bandwidth is very high.

6.3 Autobench 2.0

The vital part of most experiments in programming is a benchmark suite.
We use benchmarks to simulate our best-effort tasks. Tasks must be preemp-
tive and allow for easy observability. After initial attempts with MiBench
[20], which were very helpful to get familiar with the environment due to
their implementation simplicity, we decided to opt for AutoBench 2.0. [24].
While both suites follow the Embedded Microprocessor Benchmark Consor-
tium (EEMBC) model, previous works at thermobench [19] allow usage of a
wrapper for easier control of Autobench iterations.

We used 12 benchmarks to represent our best-effort tasks (see e.g. Ta-
ble 5.1). Each benchmark is being executed in an endless loop. Thanks to
the thermobench wrapper, we can easily track iterations done for the final
comparison of completed work. However, one iteration of each benchmark
takes a different amount of time. To make a comparison between benchmarks
simpler, we measured the average time of one iteration of each benchmark
and then we set control prints accordingly, so every benchmark would report
after the same amount of execution time.

30

...................................... 6.4. Scheduler

6.4 Scheduler

We create a command-line tool for problem generating and scheduling. Our
implementation is done in Python programming language and can be found
in attached files, in scheduler directory. The user entry-point is generator.py,
to list of all possible settings, run the program with option --help. We
illustrate the structure of our program in Figure 6.1.

Program
arguments

Hardware
description

Task
description

Generate
problem
instance

Generate script for
SCHED_DEADLINE

Scheduler

Figure 6.1: Scheme of our instance generating and solving program

There are three main input points for our program. The first is the hardware
description file (for detailed structure see processor.json in attached files). Our
program does not rely on specific hardware and in theory, it could be usable
for other CPU architectures, but note that the final schedule is created as a
YAML configuration file for DEmOS, where portability might be an issue.
The hardware description file contains basic information about the target
platform with a separate description of each cluster, including numbering of
cores, available frequencies and name. The name of the cluster can be chosen
arbitrary, but for usage with SCHED_DEADLINE (due to lack of affinity
setting described in Section 5.3) we have to create CPU groups in advance.
Names of these groups must be the same as the names we chose for clusters.

The second input is the task description file (for detailed structure see
benchmarks.json in attached files). The benchmark file must contain a list of all
benchmarks with their hardware-dependent constants (see Section 5.2). Note
that the structure must respect the hardware description file. Furthermore,
running benchmarks (tasks) might be again platform-dependent (e.g. on a
different platform, a different file structure can be expected, leading to a
different command being used for running the given benchmark). Therefore,
we created a Task abstract class in task.py, which needs to be implemented
for usage on a different platform (for example see our Autobench class in the

31

6. Implementation and tools
same file).

Finally, command line input options are gathered. These options influence
problem instance generation.

6.4.1 Generating problem instance

Problem instances are generated separately for each cluster, since each
cluster is solved separately. We can formalize the problem instance for cluster
j as mathcalIj = ⟨L, Tj ,Wj⟩, where L is the length of the BEC window, Tj is
set of tasks τ for given cluster and Wj contains workloads of tasks allocated
to cluster j (Wj = {Wτ |∀τ ∈ Tj}).

While it would be possible to create problem instances manually, we do not
consider this option in our program because we want to test our scheduler
with intricate problems considering tens of tasks, which would be tedious to
create by hand. Therefore, we create an automatic problem generator, which
creates problem instances based on multiple values:

. Length of the BEC window L (--period) set in milliseconds.. Core count of the cluster K (loaded from hardware description file).. CPU usage U (--usage). CPU usage serves as an estimate of CPU load.∑
τ∈T Wτ = L ·K · U.Maximum task runtime M (--maximum). Wτ ≤M : ∀τ ∈ Tj.Minimum task runtime N (--minimum). Wτ ≥ N : ∀τ ∈ {Tj \ τlast}.

The minimum value might be violated at last task τlast to fit bandwidth
given by L, K and U .. Seed S (--seed). Tasks and their runtimes are chosen pseudo-randomly
based on seed value, to allow for replication of the same instance.

Our algorithm first quantifies the CPU usage in milliseconds as a bandwidth
B (B =

∑
τ∈T Wτ = L ·K ·U). Tasks are then chosen pseudo-randomly from

T (T is determined by task description file), with pseudo-randomly given
runtimes to fill the given bandwidth. Due to the randomness of selecting tasks
and their workloads, the number of tasks might vary for the same instance
setting with a different seed. We demonstrate our approach by Algorithm 1.

With work assigned to each randomly chosen task, for each cluster, the
problem instance is complete. The instance then serves as an input for
the SCHED_DEADLINE script generator (bash.py), which creates bash
scripts. This bash script simply runs all tasks with a given setting under
SCHED_DEADLINE by Linux chrt tool. Finally, the problem instance is
also the main input of our scheduler.

32

...................................... 6.4. Scheduler

Algorithm 1 Generating the problem instance for cluster j

B ← K · L · U
Tj ← {}
Wj ← {}
while B > 0 do

τ ← pseudo-random choice from T
if B > M then

Wτ ← pseudo-random choice from interval [N, M]
else

Wτ ← B
end if
B ← B −Wτ

Tj ← {Tj ∪ τ}
Wj ← {Wj ∪Wτ}

end while
return ⟨L, Tj ,Wj⟩

6.4.2 Scheduling

Scheduler

Per-cluster problem instances

Linear equations

Gurobi solver

Allocate windows

Create slices
(McNaughton's)

Parse processes

Generate YAML

Merge per-cluster
solutions

Cut slices across
clusters

Figure 6.2: Scheme of our scheduler

33

6. Implementation and tools
We illustrate the run of the scheduler in Figure 6.2. In this case, we assume

multiple clusters, where each problem is solved separately and the solution is
merged in the end. In the case of a single CPU cluster, YAML configuration
is created after application of McNaughton’s algorithm (there is no need for
merging and cutting across clusters).

The scheduling process starts separately for each cluster. In the first phase,
the scheduler creates a set of linear equations (constraints and the objective
function as seen in Section 3.4). Then Gurobi optimizer is called to solve
the resulting Linear Program (LP). The Gurobi Optimizer is a mathematical
programming solver available for multiple languages, including libraries in
Python.

After solving the set of linear equations, we finally obtain values of as and
dτ,s. From dτ,s we can create processes for the final YAML configuration file
(we need a sum of dτ,s for setting the budget of each task). Variables as allow
us to allocate the windows. If for some window defined by s ∈ Sj : as = 0,
we can skip this window completely. For all windows of non-zero length, we
call McNaughton’s algorithm to fill these windows with task intervals dτ,s.
We illustrate this process in Figure 6.3.

cp
u

1
cp

u
2

...
cp

u
1

cp
u

2
...

cp
u

1
cp

u
2

...

Task #1

Task #3

Task #2Task #1

Task #2

Task #2

Task #3

McNaughton's algorithm

Task #1

Task #3

Task #2

Task #2

Task #1

Task #3

Task #2

Task #2

Task
#1

 Slice cutting

Task
#3

Figure 6.3: Scheme of McNaughton’s algorithm

Moreover, we cut windows by delimiters obtained for each core, to create
slices as also shown in Figure 6.4. We need slices to represent the YAML
configuration settings for DEmOS. Each slice contains a unique combination
of tasks and frequency.

Once processes and sliced windows for each cluster are prepared, we can
finally merge our solution into the final schedule. The merging of processes
is straightforward (by simply appending); however, merging windows is a
bit more intricate. First of all, the frequency setting for each cluster is
independent of each other. Therefore, we switch the order of frequencies
at the second cluster, from ascending to descending order of frequency. We
reduce the thermal spikes by pairing a low frequency of one cluster with a
high frequency of the other one. Then we finally merge windows of both

34

...................................... 6.4. Scheduler

cp
u

1
cp

u
2

...
cp

u
1

cp
u

2
...

cp
u

1
cp

u
2

...

Task #1

Task #3

Task #2Task #1

Task #2

Task #2

Task #3

McNaughton's algorithm

Task #1

Task #3

Task #2

Task #2

Task #1

Task #3

Task #2

Task #2

Task
#1

 Slice cutting

Task
#3

Figure 6.4: Scheme of creating slices

clusters. New slices are made again, as previously because some delimiters
between slices in each cluster are likely to be different. We illustrate a simple
case in Figure 6.5. The schedule is exported to the YAML configuration
afterwards.

One very promising feature of our mathematical model is linearity. In our
definition of the problem, all variables are continuous and all of our equations
are linear. Therefore, the problem rates as an LP problem. LP can be solved
in polynomial time. This means, that our scheduler is potent to solve even
large instances in a reasonable time.

We enlarged potential problem instances by an increasing amount of tasks
and we measured the complete runtime of the program. In Table 6.1 we
can observe, that our scheduler is capable of solving instances of hundreds
of tasks in less than a second. Overall we estimated polynomial complexity
growth O(n2) of our scheduler. Solving the LP alone was scaling even better,
but despite better results, the complexity of the Gurobi LP solver is still
estimated as a polynomial.

tasks 8 54 114 555 1107 2776 5541
runtime [ms] 34.34 62.74 108.95 512.25 1 510 5 340 16 590
Gurobi [ms] 2.17 5.14 11.02 100.58 422.29 1 290 2 670

Table 6.1: Scheduler runtime measurements

While the overhead of the scheduler can be considered too big for real-
time usage, we focus on offline scheduling and therefore our implementation
is imperfect. More overhead is caused by file creation for experiments,
preparation of the problem instance and some steps in our program are
needed for the DEmOS interface, but not for scheduling itself. However, our
mathematical model allows for a fast solution.

35

6. Implementation and tools

Task
#4

cp
u

1
cp

u
2

...

Task #1

Task #3

Task #2

Task #2

Task
#1

Task
#3

cp
u

5
cp

u
6

Cluster A53

Cluster A72

Task #5

cp
u

1
cp

u
2

...

Task
#1

Task #3

Task #2

Task
#2

Task
#1

Task
#3

cp
u

5
cp

u
6

Cluster A53

Cluster A72
Task
#5

Task #5Task
#5

Task
#4

Task
#2

Task
#1

 Cut across clusters

Slice

Figure 6.5: Scheme of cutting slices across cluster schedules during merging

6.5 Reactive policies

We use the schedule precomputed by our scheduler for the main run. On
top of that, our reactive policies gather temperature readings from the CPU
and measure an average temperature over the recent period. As previously
mentioned, we want our policies to act gradually, to achieve high efficiency
while respecting the thermal envelope. Therefore, we introduce policy levels.

Based on the temperature average, the policy level is set accordingly. Higher
policy level forces more strict rules. Each policy reacts to the policy level in
a different way. We depict the workflow in Figure 6.6. In the case of policy
level 0, all policies execute the schedule without any changes.

While policy level change influences schedule execution instantly, the
temperature will change with a delay due to the thermal capacity of the chip.
To prevent overreacting to a temperature growth, we create a cooldown timer,

36

................................... 6.5. Reactive policies

which blocks further policy-level changes for a selected period of time.

Gather temperature
data

Calculate moving
average

Compare
temperature to

thresholds

Increase policy levelDecrease policy level

Temperature too highTemperature too low

Policy
level above

zero ?

Execute
reactive
policy

Execute
standard
schedule

Yes No

Policy
change cooldown? No

Update
cooldown

Yes

Temperature
in limits

Set cooldown

Figure 6.6: Scheme of reactive policy

Our first policy is called the "soft throttle" policy and it utilizes DVFS.
Unlike strict frequency throttling often deployed in today CPUs, which lowers
frequency to the minimum level, our policy reduces the frequency gradually,
until thermal boundaries are reached. We lower all tasks frequencies level by
level (fn −→ fn−1), in order to preserve the bandwidth ratio of each window,
thus preserving fairness. In our case, our hardware offers 4 frequencies,
therefore there are up to 4 levels of reaction.

The second reactive policy takes advantage of core utilization by task
skipping. In case of overheating, task execution is skipped, leaving thus some
core in an idle state, which is thermally less demanding. In order to sustain
the fairness of the solution, the task to be skipped are chosen in a round-robin
manner. The number of skipped tasks at any time grows with policy level
(e.g. policy level 2 means that 2 tasks are skipped in each slice, thus leaving
2 cores idle).

The last proposed policy utilizes offline scheduling. In advance we create
multiple schedules, gradually scaling down the total work amount Wτ for
each task τ ∈ Tj . This way we achieve an ideal task execution ratio. However,

37

6. Implementation and tools
switching between multiple schedules is not possible at the moment due to
the implementation of DEmOS, which is used to execute all our schedules
and policies. Therefore, we use a static level for our comparison tests, leaving
the actual reactive aspect of the proposed policy for future work.

38

Chapter 7

Experiments

In this chapter, we describe our experiments and results. Experiments on
real hardware are rather rare in the field; however, we believe that practical
experiments are the best way to prove our approach. Moreover, we pay close
attention to the experimental setting, since we strive to make our experiments
reproducible. We tested proactive and reactive approaches separately.

7.1 Proactive scheduling

7.1.1 Experimental setup

We implemented our scheduler as a part of a more complex tool for problem
generation. We wanted to evaluate our schedules under different amounts of
CPU load, therefore we assume the changing usage as the biggest difference
between our problem instances (we refer to instances by their usage, e.g.
usage 70). Moreover, we used different seeds in each case, providing a better
variety of our experiments, as shown in Section 7.1.1.

In our initial experiments, we observed that benchmarks in our schedules
performed a lower amount of iterations by up to 2% than SCHED_DEADLINE.
We attribute this behaviour to DEmOS overhead, which is larger than the
overhead of SCHED_DEADLINE. The increased overhead of DEmOS is not
a surprise. First of all, DEmOS is a rather robust and complex program when
compared to SCHED_DEADLINE. Moreover, SCHED_DEADLINE as a
part of the Linux kernel is highly optimized, when compared to a user-space
tool DEmOS. While some difference is expected, due to the unpredictability
of OS operations, we wanted to compensate for this difference. Therefore,
we increased the scheduled amount of work for DEmOS by 2 % (efficiency
compensation variable set to 102 %). We show test case-specific settings
in Section 7.1.1. For idea, we also show the number of scheduled tasks;

39

7. Experiments
however, we can influence the task count only indirectly (e.g. by setting lower
maximum runtimes).

Test case 1 2 3 4 5
Usage 50 % 60 % 70 % 80 % 90 %
Seed 100 101 102 103 104
No. of tasks 9 13 14 19 24

The rest of the values were left the same for all problem instances:

. Period (--period): 10 000 [ms].Maximum Wτ (--maximum): 5 000 [ms].Minimum Wτ (--minimum): 500 [ms]. Task report (--task_duration): 500 [ms]. Efficiency compensation (--efficiency): 102 [%]

Our tool creates not only schedules, as a DEmOS YAML configuration,
but also bash scripts that execute benchmarks under SCHED_DEADLINE.
Both can be found in the attached files.

Because SCHED_DEADLINE does not support CPU core/cluster affinity
by default, the Linux CPU groups (cgroups) mechanism has to be utilized.
We created a separate CPU group for each cluster.

7.1.2 Results

Each experiment was executed for 1200 seconds (20 minutes). This rather
high experiment run is caused by heat distribution on the hardware. The
iMX8 board is equipped with a heat sink on top of the processor, which
prolongs achieving steady-state temperature significantly. We repeated each
experiment 3 times to present accurate values.

Test execution schema

We present Gantt charts of our schedule and SCHED_DEADLINE in
Figure 7.1 and Figure 7.2, respectively. Gantt charts in both cases capture
the detail of one period (10 seconds). Both charts were created via trace-cmd
Linux command-line tool and later exported in the kernelshark program.
Gantt charts for the rest of the instances are listed in Appendix A.1. It is
apparent, that our schedule utilizes the available bandwidth better, by spread-
ing tasks over longer periods, leaving the CPU less often idled. Prolonging
task execution period allows for usage of lower frequency, which is less power
demanding.

40

................................. 7.1. Proactive scheduling

Figure 7.1: Gantt chart of one BEC window (10 000 ms) of DEmOS schedule
for problem problem instance usage 70

Figure 7.2: Gantt chart of one BEC window (10 000 ms) of SCHED_DEADLINE
schedule for problem instance usage 70

Temperature

Since our main focus is temperature reduction, we deem the measured
temperature plot as the most demonstrative. In Figure 7.3 it can be clearly
seen that the temperature of the processor was lowered significantly (by more
than 5°C on average) at problem instance usage 70. Similar achievement
can be observed on all usage settings. We also display measured ambient
temperatures, to prove that the difference was not caused by a change of
external conditions. Ambient temperatures for both experiments are almost
identical and therefore they overlap in Figure 7.3.

Not only that average temperature reduction was achieved, but we can
also clearly smaller temperature fluctuation. This is also a very good sign
of more stable task execution. Note that thermal boundaries are commonly
dependent on imminent temperature rather than average temperature. More
temperature stable execution thus offers a better guarantee of respecting the
thermal envelope. All temperature comparison plots for all bandwidth usages
can be found in the Appendix A.2.

We list measured temperatures for all experiments in Table 7.1. Tempera-
ture averages were measured after 600 seconds warm-up (we can observe only
a small temperature grow after the first 10 minutes of run in Figure 7.3).

Power consumption

We also measured the average power consumption of each solution for each
task. We show power consumption behaviour for problem instance usage

41

7. Experiments

0 200 400 600 800 1000 1200
Time [s]

30

40

50

60

70

Te
m

pe
ra

tu
re

 [°
C]

Temperature comparison (70% CPU bandwidth)

DEmOS
SCHED_DEADLINE
Ambient temperature DEmOS
Ambient temperature SCHED_DEADLINE

Figure 7.3: Temperature plot for problem instance usage 70.

Instance DEmOS [°C] SD [°C]
Usage 50 56.17± 0.27 60.04± 0.74
Usage 60 57.07± 0.25 62.13± 0.54
Usage 70 60.66± 0.28 65.79± 0.54
Usage 80 61.83± 0.38 65.34± 0.47
Usage 90 64.33± 0.51 65.66± 0.77

Table 7.1: Measured average temperatures

70 in Figure 7.4. Power consumption seems less stable than temperatures.
This is mainly caused by two reasons. Temperatures may not raise or decline
drastically in a short period of time due to the thermal capacity of the
material. However, the power consumption of the processor is not limited in
this way. Moreover, a different tool was used for power consumption data
gathering. The external device which measures average power consumption
is accessed through ssh protocol, which is more demanding than reading
temperatures from the internal sensor on the chip. This prove to be an even
bigger problem for thermobench, where despite high priority settings, data
readings were sparse. Therefore, we created a specific script for ssh access
only (power_measurement.sh), which was run under SCHED_DEADLINE to
achieve equal priority settings.

Despite unstable measurements, we can still clearly observe higher average
power consumption in all CPU bandwidth usage settings. All power consump-
tion plots can be found in Appendix A.3. Again we put our measurements in
numbers in Table 7.2. The difference in power consumption is also significant

42

................................. 7.1. Proactive scheduling

0 200 400 600 800 1000 1200
Time [s]

0.7

0.8

0.9

1.0

1.1

1.2
Po

we
r [

W
]

1e7 Power comparison (70% CPU bandwidth)

SCHED DEADLINE
DEmOS

Figure 7.4: Power consumption plot for usage 70% of the total CPU bandwidth

Instance DEmOS [W] SD [W]
Usage 50 8.04± 0.55 8.9± 1.0
Usage 60 8.21± 0.47 9.4± 1.0
Usage 70 9.12± 0.22 10.31± 0.8
Usage 80 9.33± 0.4 10.1± 0.7
Usage 90 10.25± 0.38 10.6± 0.75

Table 7.2: Measured average power consumption

(almost 1.2 W on average in case of problem instance usage 70). In Figure 7.4
we can observe that not only temperature of the processor is dependent on
the power consumption, but also the power consumption is influenced by
temperature (even though this dependency is much weaker). Therefore, all
averages were measured after 600 seconds of the warm-up period.

Work comparison

Finally, to prove that our scheduler achieved comparable work efficiency,
we compare the workload executed. Once more, we present the result of
the experiment conducted on problem instance usage 70 in Figure 7.5.
From the plot, we can observe only minor differences in tasks iterations,
where most of them are in our favour (meaning that experiments under our
scheduler executed more work and still achieved better thermal and power
consumption properties). Work comparison for all experiments can be found
in Appendix A.4. One iteration (Y-axis) is an equivalent of 500ms runtime

43

7. Experiments

bit
mnp

bit
mnp

matr
ix

rsp
ee

d
rsp

ee
d

tts
prk

pu
wmod

bit
mnp

pn
trc

h
can

rdr

bit
mnp

a2
tim

e
rsp

ee
d

pu
wmod

0

200

400

600

800

1000

1200

Ite
ra

tio
ns

Work comparison (70% CPU bandwith)
DEmOS
SCHED_DEADLINE

Figure 7.5: Work comparison for usage 70% of the total CPU bandwidth

on the highest available frequency. We put a comparison of all settings in
numbers in Table 7.3. The difference in executed work is negligible and mostly
in favour of our scheduler.

Bandwidth usage 50 % 60 % 70 % 80 % 90 %
Total iterations DEmOS 7550 8117 10526 11342 12798
Total iterations S_D 7496 8039 10439 11274 12834
Diff absolute 54 78 87 68 -36
Diff percentage 0.72 % 0.97 % 0.83 % 0.6 % -0.28 %

Table 7.3: Work comparison

Power consumption estimation

As our scheduler solves linear equations, next to values of variables, it
also finds the value of object function, which should be the upper bound of
average power consumption. Because each cluster is solved separately, we
also conducted separate tests for each cluster and measured average power
consumption after an initial warm-up period of 600 seconds. We present our
results together with estimates in Table 7.4

We can observe that our estimations are not accurate. This is caused by
our λτ,s variables (see Section 5.2.2). We measured λτ,s on a cold processor
(around 50 °C), therefore increased power consumption due to increased
temperature is not accounted for.

44

..................................7.2. Reactive scheduling

Bandwidth usage 50 % 60 % 70 % 80 % 90 %
Cluster: A53
Estimated avg power [W] 6.06 6.32 6.44 6.67 7.11
Measured avg power [W] 6.38 6.78 6.93 7.17 7.69
Cluster: A72
Estimated avg power [W] 6.83 7.2 7.66 8.19 8.53
Measured avg power [W] 7.13 7.57 8.09 8.81 9.11

Table 7.4: Work comparison

7.2 Reactive scheduling

We initially evaluated our reactive policies on a firmly assigned policy level.
This way we can compare the efficiency and granularity of each solution in a
control environment. We show reactive behaviour in Section 7.2.2.

7.2.1 Static experiments

As previously mentioned, our policies execute the given schedule, until
the reaction is needed (policy level increase). We chose a schedule from the
previous experiment, problem instance usage 80. Higher CPU bandwidth
usage leads to higher temperatures and thus proposed changes are more
apparent. However, we decided not to opt for the highest possible setting
due to measurement difficulties which are tight up with it, that is why we
chose problem instance usage 80.

We proposed 3 different techniques for dynamic thermal management,
frequency throttling, task skipping and iterative schedules. Due to the
discrete, limited amount of available frequencies and cores, there is a limited
granularity of the first two proposed techniques. There are 4 available
frequencies, therefore we can lower the frequency only up to 3 times (we do
not count level 0, where no change in a scheduled run is done). Our hardware
offers 6 cores, therefore we assume the option of skipping up to 5 tasks at
any time, to leave only one core running.

In contrast, our iterative schedule has unlimited granularity. Therefore, we
create multiple iterative schedules, where each time we lowered the amount
of executed work by 10 %. To prevent confusion, we note that we still use
the initial problem instance usage 80, the same tasks in the same execution
ratio are expected to be executed, but we schedule less work to each of them
(e.g. iterative schedule of 50 % on problem instance usage 80 will create
CPU load of 40 %).

We executed each firmly set policy separately for 1200 seconds. We mea-
sured averages after the first 600 seconds of the warm-up period and put

45

7. Experiments
them into Table 7.5. We can observe a gradual lowering of temperatures.
Testing and evaluation of iterative schedules were done in the same manner
(firm setting, 1200 seconds, 600 seconds warm-up period).

Policy level: 1 2 3 4 5
Freq throttling [°C] 58.29 55.27 53.56 N/A N/A
Task skipping [°C] 61.11 59.85 58.26 55.19 50.54

Iterative 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 %
Avg [°C] 48.08 50.22 52.95 54.16 55.33 56.78 59.46 60.64

Table 7.5: Temperature averages of reactive policies under firm level

To put results into context, we decided to compare frequency throttling
level 2 with task skipping level 4 and iterative schedule of 60 % workload
(highlighted green in Table 7.5 and Table 7.6), due to a very small difference
in temperatures (0.25 % of a temperature difference between warmest and
coldest experiment).

For illustration, we show temperature profiles in Figure 7.6, but since
temperature averages are almost even, we mainly focus on work comparison
in Figure 7.7. Iterative schedules follow the ideal work ratio, thus they comply
with our definition of "fairness". We can see that frequency throttling is also
following given work prescription, however more loosely.

0 200 400 600 800 1000 1200
Time [s]

46

48

50

52

54

56

Te
m

pe
ra

tu
re

 [°
C]

Temperature comparison under firm setting

Iterative schedule (60%)
Task skipping (level 4)
Frequency throttling (level 2)

Figure 7.6: Temperature profiles of chosen reactive policies with firm settings

We put executed work into numbers to better represent our results in
Table 7.6. We can see that if we compare previously plotted policies (frequency
throttle level 2, task skipping level 4 and iterative schedule of 60% workload),

46

..................................7.2. Reactive scheduling

tts
prk

tts
prk

tts
prk
rsp

ee
d
tbl

oo
k
pn

trc
h
tbl

oo
k
pn

trc
h
bit

mnp
rsp

ee
d
a2

tim
e
aif

irf

rsp
ee

d
idc

trn
bit

mnp
tts

prk
can

rdraif
irf
can

rdr
0

100

200

300

400

500

600

700

Ite
ra

tio
ns

Work comparison
Iterative schedule
Frequency throttling
Task skipping

Figure 7.7: Work comparison of chosen reactive policies with firm settings

iterative schedule for the given setting beat frequency throttling by 207
iterations (3.07 %) and task skipping even by 2952 iterations (43.84 %).

Policy level: 1 2 3 4 5
Freq throttling [work done] 8790 6527 6319 N/A N/A
Task skipping [work done] 9482 7619 5706 3782 1929

Iterative 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 %
Work done 2219 3354 4487 5618 6734 7837 8921 10013

Table 7.6: Work done by reactive policies under firm level

7.2.2 Reacting to external condition

We also conducted experiments, displaying the desired reactive behaviour.
However, due to the current implementation of the DEmOS tool, we were
only able to test our task skipping and frequency throttling policies. We set
firm temperature bound and observed the behaviour of frequencies.

We can see an ideal case in Figure 7.8, where policy level was adjusted
to ideal level after the first temperature bound overstepping, leading to
temperature stable run. More violent policy level changes can be observed in
Figure 7.9, where multiple levels of the policy were often changed in quick
succession, leading to oscillating of the temperature. Vertical lines marks
changes in policy levels.

Oscillating between policy levels is not ideal. In Figure 7.9 we can see that

47

7. Experiments

0 200 400 600 800 1000 1200
Time [s]

48

50

52

54

56

58

Te
m

pe
ra

tu
re

 [°
C]

throttle_58

Figure 7.8: Frequency throttling policy with upper bound temperature of 58°C

0 200 400 600 800 1000 1200
Time [s]

48

50

52

54

56

58

Te
m

pe
ra

tu
re

 [°
C]

skip_58

Figure 7.9: Task skipping policy with upper bound temperature of 58°C

after 200 seconds of run, the policy was set too strictly and therefore we
lost part of CPU bandwidth. Choosing a correct policy level is not an easy
task. Creating a mechanism, that reacts too dynamically will lead to loss of
computational bandwidth. The reaction of too loose mechanism might not
be adequate and policy could lead to system failure.

48

Chapter 8

Conclusion

In conclusion, we successfully created an offline best-effort task scheduler.
Our scheduler is based on a linear model, which allows it to solve even big
instances effectively. We implemented the scheduler for general usage and it
should be portable to most processors.

Moreover, we experimentally evaluated the scheduler on a set of randomly
generated instances, where we managed to achieve thermal and power con-
sumption reduction, when compared to the state-of-the-art Linux scheduler
SCHED_DEADLINE. Our scheduler consistently achieved better results and
in some cases, it lowered the temperature of the processor by more than 8 %
and power consumption by more than 12 % while it executed an even higher
amount of iteration cycles on given tasks.

We also proposed and evaluated multiple reactive policies. We deem
reactive policy using iterative schedules as the most effective and flexible;
however, its dynamic behaviour is yet to be integrated with DEmOS. On
static experiments, it outperformed other proposed policies under similar
thermal conditions.

The second policy we proposed, implemented and evaluated even under
dynamic conditions is the frequency scaling policy. We rate this policy as
effective, even though its flexibility is limited by a number of available CPU
frequencies.

The third proposed policy is the task skipping policy, which achieved
greater flexibility, working in a wider range of temperature settings; however,
the performance is rather poor when compared to other policies. Its flexibility
is limited by the total amount of CPU cores.

49

8. Conclusion......................................
8.1 Future work

Our model offers a great number of opportunities for future work, which
are beyond the scope of this work. Mainly, our proposed reactive policy
which utilizes precomputed iterative schedules promises good efficiency and
flexibility, but its dynamic implementation would either lead to major changes
in the DEmOS tool, or to a brand new tool for schedule execution.

Moreover, we made some assumptions when creating our model. We are
confident, that some of them could be lifted; however, such implementation is
beyond scope of this work. Nevertheless, we want to offer a possible approach.

In Section 3.3 we declared strict cluster affinity. However, our measurement
suggests that scaling between clusters is very similar for all tasks. Therefore,
if we would choose one cluster as a model, the efficiency of other cluster cores
could be re-scaled by the introduction of another constant (e.g. that each
core of the second faster cluster would be taken as 1.5 core of the first cluster,
with different coefficient per each frequency comparison).

We also assume the start time and deadline are identical for all tasks.
However, we can introduce different start times and deadlines by the intro-
duction of multiple time frames, where each frame would consist of all "CPU
settings" windows. This way, the model could still be linear and allow for
usage of deadlines and start times; however, the complexity of the model
would grow (addition of each new start time or deadline would increase the
number of "CPU settings" windows by the total amount of "CPU settings").
This solution would also increase the amount of frequency switching.

50

Bibliography

[1] S. Banachowski, T. Bisson, and S.A. Brandt. “Integrating best-effort
scheduling into a real-time system”. In: 25th IEEE International Real-
Time Systems Symposium. 2004, pp. 139–150. doi:10.1109/REAL.2004.26.

[2] Andrea Bartolini et al. “Optimization and Controlled Systems: A Case
Study on Thermal Aware Workload Dispatching”. In: vol. 1. July 2012.

[3] Andy Bavier, Larry Peterson, and David Mosberger. “BERT: A Scheduler
for Best Effort and Realtime Tasks”. In: (Oct. 1998).

[4] Ondřej Benedikt et al. “Thermal-Aware Scheduling for MPSoC in
the Avionics Domain: Tooling and Initial Results”. In: 2021 IEEE
27th International Conference on Embedded and Real-Time Com-
puting Systems and Applications (RTCSA). 2021, pp. 159–168. doi:
10.1109/RTCSA52859.2021.00026

[5] Jian-Jia Chen, Andreas Schranzhofer, and Lothar Thiele. “Energy mini-
mization for periodic real-time tasks on heterogeneous processing units”.
In: 2009 IEEE International Symposium on Parallel Distributed Process-
ing. 2009, pp. 1–12. doi: 10.1109/IPDPS.2009.5161024.

[6] Ayse Kivilcim Coskun, Tajana Simunic Rosing, and Keith Whisnant.
“Temperature Aware Task Scheduling in MPSoCs”. In: 2007 Design,
Automation Test in Europe Conference Exhibition. 2007, pp. 1–6. doi:
10.1109/DATE.2007.364540.

[7] Vinay Hanumaiah, Sarma Vrudhula, and Karam S. Chatha. “Perfor-
mance Optimal Online DVFS and Task Migration Techniques for Ther-
mally Constrained Multi-Core Processors”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 30.11 (2011),
pp. 1677–1690. doi: 10.1109/TCAD.2011.2161308.

[8] David Hornof. “Offline scheduling of the safety-critical tasks within the
isolation time-windows”. Diploma thesis. Czech Technical University, June
2021. url: https://dspace.cvut.cz/handle/10467/95363.

51

8. Conclusion......................................
[9] E. Douglas Jensen. “Asynchronous Decentralized Realtime Computer

Systems”. In: Real Time Computing. Ed. by Wolfgang A. Halang and
Alexander D. Stoyenko. Berlin, Heidelberg: Springer Berlin Heidelberg,
1994, pp. 347–371. isbn: 978-3-642-88049-0

[10] Almir Mutapcic et al. “Processor Speed Control With Thermal Con-
straints”. In: IEEE Transactions on Circuits and Systems I: Regular
Papers 56.9 (2009), pp. 1994–2008. doi: 10.1109/TCSI.2008.2011589.

[11] Francesco Paterna et al. “Variability-Aware Task Allocation for Energy-
Efficient Quality of Service Provisioning in Embedded Streaming Multi-
media Applications”. In: IEEE Transactions on Computers 61.7 (2012),
pp. 939–953. doi: 10.1109/TC.2011.127.

[12] Diego Puschini et al. “Temperature-Aware Distributed Run-Time Op-
timization on MP-SoC Using Game Theory”. In: 2008 IEEE Com-
puter Society Annual Symposium on VLSI. 2008, pp. 375–380. doi:
10.1109/ISVLSI.2008.33.

[13] Andrea Rudi et al. “Optimum: Thermal-aware task allocation for het-
erogeneous many-core devices”. In: 2014 International Conference on
High Performance Computing Simulation (HPCS). 2014, pp. 82–87. doi:
10.1109/HPCSim.2014.6903672.

[14] Jinggang Wang, B. Ravindran, and T. Martin. “A power-aware, best-
effort real-time task scheduling algorithm”. In: Proceedings IEEE Work-
shop on Software Technologies for Future Embedded Systems. WSTFES
2003. 2003, pp. 21–28. doi: 10.1109/WSTFES.2003.1201354.

[15] Xiliang Zhong and Cheng-zhong Xu. “Energy-Aware Modeling and
Scheduling for Dynamic Voltage Scaling with Statistical Real-Time Guar-
antee”. In: IEEE Transactions on Computers 56.3 (2007), pp. 358–372.
doi: 10.1109/TC.2007.48.

[16] Junlong Zhou et al. “Thermal-Aware Task Scheduling for Energy Mini-
mization in Heterogeneous Real-Time MPSoC Systems”. In: IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems
35.8 (2016), pp. 1269–1282. doi: 10.1109/TCAD.2015.2501286.

[17] Claudio Scordino, Luca Abeni, and Juri Lelli. 2018. Energy-aware
real-time scheduling in the Linux kernel. In Proceedings of the 33rd
Annual ACM Symposium on Applied Computing (SAC ’18). Asso-
ciation for Computing Machinery, New York, NY, USA, 601–608.
DOI:https://doi.org/10.1145/3167132.3167198

[18] Mascitti, Agostino, et al. “An Adaptive, Utilization-Based Approach to
Schedule Real-Time Tasks for ARM Big.LITTLE Architectures.” ACM
SIGBED Review, vol. 17, no. 1, July 2020, pp. 18–23. DOI.org (Crossref),
doi:10.1145/3412821.3412824

52

..................................... 8.1. Future work

[19] M. Sojka, O. Benedikt, Z. Hanzálek and P. Zaykov, "Testbed for thermal
and performance analysis in MPSoC systems," 2020 15th Conference on
Computer Science and Information Systems (FedCSIS), 2020, pp. 683-692,
doi: 10.15439/2020F174.

[20] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and
R. B. Brown, "MiBench: A free, commercially representative embedded
benchmark suite," Proceedings of the Fourth Annual IEEE International
Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538),
2001, pp. 3-14, doi: 10.1109/WWC.2001.990739.

[21] ARM ® White paper 2013,
http://img.hexus.net/v2/press_releases/arm/big.LITTLE.Whitepaper.pdf
[Online] Accessed: 1 December 2021.

[22] DEmOS repository. https://github.com/CTU-IIG/demos-sched [Online]
Accessed: 30 December 2021.

[23] Thermobench repository https://github.com/CTU-IIG/thermobench
[Online] Accessed: 30 December 2021.

[24] Embedded Microprocessor Benchmark Consortium official website.
https://www.eembc.org/autobench/ [Online] Accessed: 16 December
2021

[25] The Linux man-pages project.
https://man7.org/Linux/man-pages/man1/chrt.1.html [Online] Accessed:
16 December 2021.

[26] The Linux man-pages project.
https://man7.org/Linux/man-pages/man1/taskset.1.html [Online] Ac-
cessed: 16 December 2021.

[27] The Linux man-pages project.
https://man7.org/Linux/man-pages/man7/cpuset.7.html [Online] Ac-
cessed: 16 December 2021.

[28] INA219 data sheet, product information and support.
https://www.ti.com/product/INA219. [Online] Accessed: 16 December
2021.

[29] Rostedt, Steven. "Using SCHED_DEADLINE." Embedded
Linux conference + Open IoT summit Europe, October 2016,
https://www.youtube.com/watch?v=TDR-rgWopgM [Online] Accessed:
16 December 2021.

53

54

Appendices

55

56

Appendix A

Experiments

In Chapter 7 we show graphs and charts of only one selected instance. Here
we list all instances for comparison. Gantt charts of run in Appendix A.1
contain 3 periods.

A.1 Proactive scheduling - Gantt charts

Figure A.1: DEmOS schedule of 3 BEC windows (30s runtime) of problem
instance usage 50

Figure A.2: DEmOS schedule of 3 BEC windows (30s runtime) of problem
instance usage 60

57

A. Experiments

Figure A.3: DEmOS schedule of 3 BEC windows (30s runtime) of problem
instance usage 70

Figure A.4: DEmOS schedule of 3 BEC windows (30s runtime) of problem
instance usage 80

Figure A.5: DEmOS schedule of 3 BEC windows (30s runtime) of problem
instance usage 90

Figure A.6: SCHED_DEADLINE execution of 3 BEC windows (30s runtime)
of problem instance usage 50

Figure A.7: SCHED_DEADLINE execution of 3 BEC windows (30s runtime)
of problem instance usage 60

58

.................... A.2. Proactive scheduling - temperature measurements

Figure A.8: SCHED_DEADLINE execution of 3 BEC windows (30s runtime)
of problem instance usage 70

Figure A.9: SCHED_DEADLINE execution of 3 BEC windows (30s runtime)
of problem instance usage 80

Figure A.10: SCHED_DEADLINE execution of 3 BEC windows (30s runtime)
of problem instance usage 90

A.2 Proactive scheduling - temperature
measurements

0 200 400 600 800 1000 1200
Time [s]

25

30

35

40

45

50

55

60

65

Te
m

pe
ra

tu
re

 [°
C]

Temperature comparison (50% CPU bandwidth)

DEmOS
SCHED_DEADLINE
Ambient temperature DEmOS
Ambient temperature SCHED_DEADLINE

0 200 400 600 800 1000 1200
Time [s]

30

40

50

60

Te
m

pe
ra

tu
re

 [°
C]

Temperature comparison (60% CPU bandwidth)

DEmOS
SCHED_DEADLINE
Ambient temperature DEmOS
Ambient temperature SCHED_DEADLINE

59

A. Experiments

0 200 400 600 800 1000 1200
Time [s]

30

40

50

60

70

Te
m

pe
ra

tu
re

 [°
C]

Temperature comparison (70% CPU bandwidth)

DEmOS
SCHED_DEADLINE
Ambient temperature DEmOS
Ambient temperature SCHED_DEADLINE

0 200 400 600 800 1000 1200
Time [s]

30

40

50

60

70

Te
m

pe
ra

tu
re

 [°
C]

Temperature comparison (80% CPU bandwidth)

DEmOS
SCHED_DEADLINE
Ambient temperature DEmOS
Ambient temperature SCHED_DEADLINE

0 200 400 600 800 1000 1200
Time [s]

30

40

50

60

70

Te
m

pe
ra

tu
re

 [°
C]

Temperature comparison (90% CPU bandwidth)

DEmOS
SCHED_DEADLINE
Ambient temperature DEmOS
Ambient temperature SCHED_DEADLINE

A.3 Proactive scheduling - power consumption
measurements

0 200 400 600 800 1000 1200
Time [s]

0.6

0.7

0.8

0.9

1.0

Po
we

r [
W

]

1e7 Power comparison (50% CPU bandwidth)
SCHED DEADLINE
DEmOS

0 200 400 600 800 1000 1200
Time [s]

0.6

0.7

0.8

0.9

1.0

Po
we

r [
W

]

1e7 Power comparison (60% CPU bandwidth)

SCHED DEADLINE
DEmOS

60

........................ A.4. Proactive scheduling - Work comparison

0 200 400 600 800 1000 1200
Time [s]

0.7

0.8

0.9

1.0

1.1

1.2

Po
we

r [
W

]
1e7 Power comparison (70% CPU bandwidth)

SCHED DEADLINE
DEmOS

0 200 400 600 800 1000 1200
Time [s]

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Po
we

r [
W

]

1e7 Power comparison (80% CPU bandwidth)

SCHED DEADLINE
DEmOS

0 200 400 600 800 1000 1200
Time [s]

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Po
we

r [
W

]

1e7 Power comparison (90% CPU bandwidth)

SCHED DEADLINE
DEmOS

A.4 Proactive scheduling - Work comparison

bit
mnp

pn
trc

h
tts

prk
tts

prk
matr

ix
aif

irf

pu
wmod aif

irf
idc

trn
0

200

400

600

800

1000

1200

Ite
ra

tio
ns

Work comparison (50% CPU bandwith)
DEmOS
SCHED_DEADLINE

rsp
ee

d

pu
wmod

pn
trc

h
tbl

oo
k

can
rdr

idc
trn

tts
prk iirf

lt
pn

trc
h

idc
trn

bit
mnp

pn
trc

h
iirf

lt
0

200

400

600

800

1000

1200

Ite
ra

tio
ns

Work comparison (60% CPU bandwith)
DEmOS
SCHED_DEADLINE

61

A. Experiments

bit
mnp

bit
mnp

matr
ix

rsp
ee

d
rsp

ee
d

tts
prk

pu
wmod

bit
mnp

pn
trc

h
can

rdr

bit
mnp

a2
tim

e
rsp

ee
d

pu
wmod

0

200

400

600

800

1000

1200

Ite
ra

tio
ns

Work comparison (70% CPU bandwith)
DEmOS
SCHED_DEADLINE

tts
prk

tts
prk

tts
prk

rsp
ee

d
tbl

oo
k
pn

trc
h
tbl

oo
k
pn

trc
h
bit

mnp
rsp

ee
d
a2

tim
e
aif

irf

rsp
ee

d
idc

trn
bit

mnp
tts

prk
can

rdraif
irf

can
rdr

0

200

400

600

800

1000

1200

Ite
ra

tio
ns

Work comparison (80% CPU bandwith)
DEmOS
SCHED_DEADLINE

a2
tim

e
tts

prk
matr

ix
a2

tim
e

a2
tim

e
aif

irf
aif

irf
tbl

oo
k
iirf

lt
can

rdr
matr

ix
rsp

ee
d

tbl
oo

k
matr

ix
pn

trc
h

pu
wmod

can
rdr

bit
mnpaif

irf

rsp
ee

d
bit

mnp

pu
wmodiirf

lt
iirf

lt
0

200

400

600

800

1000

1200

Ite
ra

tio
ns

Work comparison (90% CPU bandwith)
DEmOS
SCHED_DEADLINE

62

	Theory
	Introduction
	Related work
	Tools for thermal management
	Proactive approach
	Reactive policies
	Previous work

	Problem statement
	General problem
	Platform
	Further assumptions
	Formalization

	Scheduler
	Model
	Creating the schedule
	Reactive policies

	Implementation and experiments
	Environment
	Hardware
	Hardware dependent constants
	Efficiency coefficient
	Power consumption

	Linux scheduler SCHED_DEADLINE

	Implementation and tools
	DEmOS
	Thermobench
	Autobench 2.0
	Scheduler
	Generating problem instance
	Scheduling

	Reactive policies

	Experiments
	Proactive scheduling
	Experimental setup
	Results

	Reactive scheduling
	Static experiments
	Reacting to external condition

	Conclusion
	Future work

	Bibliography

	Appendices
	Experiments
	Proactive scheduling - Gantt charts
	Proactive scheduling - temperature measurements
	Proactive scheduling - power consumption measurements
	Proactive scheduling - Work comparison

