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ABSTRACT
Since its inception, DTI modality has become an essential tool in
the clinical scenario. In principle, it is rooted in the emergence of
symmetric positive definite (SPD) second-order tensors modelling
the difusion. The inability of DTI to model regions of white mat-
ter with fibers crossing/merging leads to the emergence of higher
order tensors. In this work, we compare various approaches how
to use 4th order tensors to model such regions. There are three
different projections of these 3D 4th order tensors to the 2nd order
tensors of dimensions either three or six. Two of these projections
are consistent in terms of preserving mean diffusivity and isometry.
The images of all three projections are SPD, so they belong to a Rie-
mannian symmetric space. Following previous work of the authors,
we use the standard k-means segmentation method after dimen-
sion reduction with affinity matrix based on reasonable similarity
measures, with the goal to compare the various projections to 2nd
order tensors. We are using the natural affine and log-Euclidean
(LogE) metrics. The segmentation of curved structures and fiber
crossing regions is performed under the presence of several levels
of Rician noise. The experiments provide evidence that 3D 2nd
order reduction works much better than the 6D one, while diago-
nal components (DC) projections are able to reveal the maximum
diffusion direction.
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1 INTRODUCTION
Based upon NMR principles Lauterbur, [23], developed MRI tech-
nique to render 3D images. Diffusion-weighted images have come
a long way since then. Diffusion Tensor Imaging (DTI) was in-
troduced to model diffusion in biological tissues in [5] and [17].
It proved phenomenal in clinical studies to probe into cerebral
white matter structures. It enabled us to infer the microstructures
of tissues in-vivo and noninvasively. The introduction of more dif-
fusion gradient directions revealed more detailed structures (in
DTI the number of independent parameters for each voxel is six).
This acquisition protocol is known as high angular diffusion imag-
ing (HARDI). Since then various modalities based upon HARDI
have been proposed [24][38]. Themonoexponential Stejskal-Tanner
equation is assumed to model the D-MRI (Diffusion-Magnetic Res-
onance Imaging) principle. The DTI model is restricted to produce
second-order tensors. These tensors are effective in modeling the
regions where fibers are not crossing, merging or touching. Var-
ious works have utilized this space for processing these tensors
[13][14][16][22][25][32]. Another common approach is to use q-
space like DSI and Q-Ball. Diffusion is a physical process, methods
in [2][3] ensure the full symmetry and positive definiteness of
higher order tensors. Every symmetric tensor can be represented as
a homogeneous polynomial [3]. This helps in finding the maxima
of the Apparant Diffusion Coefficient (ADC) profiles. One reason
to use higher order tensors is that they encode diffusion geome-
try without the need of evaluating spherical harmonics from the
diffusion profiles. Another advantage comes from the observation
that the computation of coefficients of lower-order tensors can
be obtained from coefficients of higher-order tensor using linear
relations [28][30] without refitting of DMR signal. The works in
[26][39] suggest that in intersection regions these tensors fail to
orient properly with the underlying direction of actual fibers. The
issue of reorientation is resolved in work [39] and the approach
is referred to as Cartesian Tensor-fiber orientation distribution
(CT-FOD).
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In [9][10], the authors approached the segmentation problem
by considering the individual fiber bundles to lie in 1D/2D/3D sub-
spaces, depending upon the numbers of the intersecting fibers. In
[18], 5D non-linear geometry is employed to segregate fiber tracts.
This approach proved advantageous over the 3D Euclidean space
assumption. The surface evolution [33] in Riemannian space can
segment such curved structures. Works [25][35] used the Hilbert
sphere in infinite dimension and mapped the data to lower dimen-
sion for segmentation.

In this work, we discuss the order reduction of the 3D 4th or-
der tensors. This reduction yields 2nd order tensors in 3D and 6D.
Further, these reductions are SPDs and therefore lie in Riemannian
symmetric space. These SPD data belong to a log-normal distri-
bution. We computed the variance of the data using this property.
Subsequently, a non-linear dimensionality reductionmethod known
as Laplacian-Eigenmap clustering is utilized for the extraction of
anisotropic regions in both synthetic and real images. The results
infer that systematic order reduction of tensors is useful and it is
robust under noise. We segmented with single and two crossing
fibers with various complex configurations. Another observation
is that the diagonal component projection obtained from flattened
3D 4th order tensor can reveal the direction of maximum diffusion.
Our experiments are discussed in detail in section 5.

2 BACKGROUND
2.1 Diffusion Modelling
The Stejskal-Tanner equation represents a mono-exponential model
of water molecules diffusing in tissues given by:

S (b,v) = S0exp (−bD (v)) ,

D (v) =
n∑
1

3∑
j1=1

3∑
j2=1

3∑
j3=1
...

3∑
jn=1

D j1 j2 j3 ...jnvj1vj2vj3 ...vjn ,
(1)

where vℓ is ℓth magnetic gradient component and ∥v ∥ = 1. S(v)
is the attenuated signal when gradient pulse is applied and b is
diffusion weighting coefficient. Due to antipodal symmetry and
physicality of diffusion process, the higher order tensors from the
above equation are positive definite and of even order. For the
same reasons, these tensors are fully symmetric. Due to the full
symmetry, the number of independent coefficients for kth order
tensor is reduced from 3k to 1

2 (k + 1)(k + 2). The seminal work
of Tuch et. al. [36] is based upon the conjuncture that increasing
number of gradient directions should be able to reveal geometry of
the biological tissues. For 4th order tensors, 81 coefficients reduce
to 15.

2.2 Linear Algebra
Let V be n-dimensional vector space defined over real numbers R.
4th order tensors form a vector space of dimension n4, where n = 3
in our case. We are interested in the so called Cartesian tensors,
i.e., the coordinate description of the tensor in a fixed orthonormal
basis of the vector space V. Thus, a second order tensor can be
viewed as 2-dimensional array of scalars. Under orthogonal basis,

tensors can be also represented as k-linear forms

T (X1, ...,Xk ) =
n∑
j=1

Tj1 ...jk x
j1
1 ...x

jk
k (2)

where the tensorT is evaluated at vectorsXi . Using an orthonormal
basis ei , for i = 1, 2...,n, a 4th order tensor T is written as

T (4) =
n∑

1≤i, j,k,l
T
(4)
i jklei ⊗ ej ⊗ ek ⊗ el , (3)

where the individual terms ei ⊗ ej ⊗ ek ⊗ el form the induced
orthonormal basis of the space of fourth order tensors. Thus, there
is the induced scalar product of two tensor S = Si1 ...ik , R = Ri1 ...ik .,
cf. [19], the so called dot product

S • R =
n∑

i1, ...,ik=1
Si1 ...ikR

ii ...ik . (4)

For k = 2, the scalar product of two tensors becomes

S • R =
n∑

i, j=1
SijR

j
i = trace(RT S). (5)

The corresponding Euclidean distance measure on the space of
tensors becomes

dE (S,R) =∥ S − R ∥ . (6)
Exploiting the inner product, the 4th order tensors can be iden-

tified as mappings between second order tensors. This means,
we can represent T (4) using 2nd order tensor components. For
1 ≤ i, j,k, l ≤ n we arrive at

T (4) =
∑
i jkl

T
(4)
i jklei ⊗ ej ⊗ ek ⊗ el =

∑
I J

T
(2)
I J eI ⊗ e J (7)

where eI (i, j) = ei ⊗ej , e J (k,l ) = ek ⊗el . In view of this identification,
they exhibit three types of symmetries:

(1) Major Symmetry: Ti jkl = Tkli j , 1 ≤ i, j,k, l ≤ n, which
corresponds to symmetric mappings between the second
order tensors.

(2) Minor Symmetry: Ti jkl = Tjikl = Ti jlk , which corresponds
to the restriction to symmetric second order tensors, with
symmetric values.

(3) Total Symmetry: Ti jkl = Tσ (i)σ (j)σ (k )σ (l ), for every permu-
tation σ , which means both of the previous symmetries to-
gether.

In diffusion process, the even order tensors obey total symmetry.
These 3D 4th order tensors can be represented as homogeneous
polynomials (say in coordinates x ,y, z) of degree 4, built of monomi-
alspi jkx iy jzk with i+j+k = 4. The relation between the coefficient
of the polynomial and that of tensor is represented by the equation:
i !j !k !
4! pi jk = D j1 j2 j3 j4 , where jℓ are one of the terms x ,y, z. Vector

representations of 4th order and 2nd order tensors are unable to re-
veal their geometric properties, like the distribution of eigenvalues
and eigenvectors of the tensorial form [6]. By loosing the tensorial
form, it is not possible to see the effect of rotation of the coordinate
system on the distribution of tensor [31], etc. For these reasons, we
are interested in the reductions which are obtained systematically
while preserving important information.
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3 MAPPINGS
3.1 6D 2nd order representation
The appearance of 4th order tensor is known in various fields
[7][40]. In material science, they are known to classify materials
based upon their elasticity [37][8][12]. They model the material
symmetries, which is reflected in the invariance of components of
the tensor with permutation of indices. A 3D 4th order tensor with
minor symmetry can be written as Voigt contracted notation:

D =

©­­­­­­­«

Dxxxx Dxxyy Dxxzz
√
2Dxxyz

√
2Dxxxz

√
2Dxxxy

Dyyxx Dyyyy Dyyzz
√
2Dyyyz

√
2Dyyxz

√
2Dyyxy

Dzzxx Dzzyy Dzzzz
√
2Dzzyz

√
2Dzzxz

√
2Dzzxy√

2Dyzxx
√
2Dyzyy

√
2Dyzzz Dyzyz Dyzxz Dyzxy√

2Dxzxx
√
2Dxzyy

√
2Dxzzz Dxzyz Dxzxz Dxzxy√

2Dxyxx
√
2Dxyyy

√
2Dxyzz Dxxyz Dxyxz Dxyxy

ª®®®®®®®®¬
(8)

With the following extra equalities the tensor exhibits the total
symmetry.

Dxxyy = Dxyxy ,Dxxzz = Dxzxz ,Dyyzz = Dyzyz
Dxxyz = Dxyxz ,Dyyxz = Dxyyz ,Dzzxy = Dxzyz

In this isometric notation, it is a 6D second order tensor. This
tensor is an SPD and so, lies in Riemannian symmetric space. Their
positive definiteness is a favourable property to justify diffusion
as a physical phenomenon. The conversion between 3D 4th order
tensor coefficient and 6D 2nd order is obtained through equation
(8). The factor 2 and

√
2 ensures isomorphism between the two

spaces [27][34].

3.2 3D 2nd order reduction
There are many ways to represent the 4th order tensor. An option
preserving the metric is obtained via spherical harmonics and the
corresponding linear mapping is given by the formulae in [28]:

Dxx = 3
35 (9Dxxxx + 8Dxxyy + 8Dxxzz − Dyyyy − Dzzzz − 2Dyyzz )

Dyy = 3
35 (9Dyyyy + 8Dxxyy + 8Dyyzz − Dxxxx − Dzzzz − 2Dxxzz )

Dxx = 3
35 (9Dzzzz + 8Dxxzz + 8Dyyzz − Dxxxx − Dyyyy − 2Dxxyy )

Dxy = 6
7 (Dxxxy + Dyyyx + Dzzxy )

Dxz = 6
7 (Dxxxz + Dzzzx + Dyyxz )

Dyz = 6
7 (Dyyyz + Dzzzy + Dxxyz )

(9)

The formulation of this reduction given by equation (9) is consistent
as mean diffusivity is proportional as follows:

trace(T (2)) =
3
5
trace(T (4)) (10)

The reader is referred to [28] for details.

3.3 Flattening of 4th order tensor
Another approach to describe 4th order tensors is by unfolding the
tensor, arranging the tensor as a matrix. Thus, a general r th order
tensor T (r ) can be expressed as a matrix of (r − 2)nd order tensors:

T (r ) =
©­­«
T
r−2)
xx T

(r−2)
xy T

(r−2)
xz

T
(r−2)
yx T

(r−2)
yy T

(r−2)
yz

T
(r−2)
zx T

(r−2)
zy T

(r−2)
zz

ª®®¬ (11)

We deal with r = 4, but our discussion is extendable to higher
orders. The diagonal components of this representation are SPD
[20]. Thus, we obtain 3 2nd order SPD out of one 4th order tensor.
Choosing the coordinates to diagonalize one of them leaves 15 free

parameters, exactly as for the 4th order tensors. This method is
called the diagonal component (DC) projection.

4 RIEMANNIAN MANIFOLD CLUSTERING
For processing the fields of 3D and 6D 2nd order tensors, we use the
so called affine and Log-Euclidean (LogE) metrics [19]. Exponential
map is a function that maps each symmetric matrix to an SPD. The
inverse of the exponential map is the logarithmic map. We may use
these inverse mapping at each fixed SPD matrix p. Several authors
discussed various metrics suitable for statistics explored in imaging,
see [19] for a survey, including the spectral similarity measures.
The affine invariant metric is the natural metric of the Riemannian
symmetric space, but it is computationally slow with involvements
of inverse, square root and logarithmic operations. Moreover, this
metric has limitation like swelling effect. The geodesic distance
between two SPD tensors p,x is computed as

dA(p,x) = ∥Loдp (x)∥. (12)

In the ambient Euclidean space, the SPD matrices lie in the interior
of a convex cone and the affine metric turns it into a complete
Riemannian manifold. See [15] for more information.

The LogE metric is due to [1]. This metric is based upon the
observation that matrix exponential of symmetric matrices is dif-
feomorphic to the space of SPDs. For two SPD matrices p1, p2,

dLogE(p1,p2) = ∥ log(p1) − log(p2)∥. (13)

The studies [1][11][19] also indicate that LogE metric is better in
preserving anisotropy measure. The white matter is modelled as a
tensor with an anisotropy. This measure is crucial in evaluation of
statistics of tensors, white matter tractography and segmentation.
The spectral similarity measures perform even better, but we are
using the affine and LogE metrics to compare the projections here.

We use the Lapacian Eigen Map (LE) for projecting the non
linear data to lower dimension. For this projection affinity matrix
is computed as:

wi j = exp

(
−
dist(pi ,pj )2

σ 2 −
∥i − j∥2

we

)
(14)

The first term evaluates affinity between data in Riemannian space
whereas the 2nd term provides similarity in the image space (with
∥i − j∥ being a suitably blown-up Euclidean distance ensuring
robustness with respect to noise). These terms ensure extraction of
the fiber structure from the background. The variance is evaluated
respecting the log-normal distribution of the SPD diffusion tensor
data [20]. The coefficientwe is experimentally chosen and depends
upon the size of window.

5 EXPERIMENT AND RESULTS
We simulated synthetic images (64 Gradient direction with b=1500
s/mm2 ) using adaptive kernel method [4]. The Fig. 1 (a)-(d) shows
4th order tensor ODF where angle difference between the two fibers
are 30◦,45◦,75◦ and 90◦. The maxima of these ODFs do not neces-
sarily align with actual underlying fibers. Another issue with these
ODFs is fuzziness in the maxima. In Fig.1 (a) and (b) the pointing
circle in red indicates the maxima at angles in between the range.
These maxima are at wrong position, right positions are indicated
by the blue circle.
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Table 1: Execution time for DC vs. CT-FOD methods

Comparison Table

Angle Difference
between underlying
fibers

00 10 20 30 40 50 60 70 80 90 100 110 120

Time in Sec
DC Method 0.0014 0.0013 0.0011 0.0012 0.0095 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001

CT ODFs 3.1437 1.7980 2.0849 1.6177 1.6555 2.0732 2.0209 2.0216 2.1774 1.6799 2.0444 2.1078 2.1189

Table 2: Segmentation of the fiber and background (Dice coefficient)

Metric
Method/ Rician
Noise Level

Back Ground Fiber 1

0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.04 0.06 0.08

Affine
3D Mapping 1.000 0.994 0.995 0.998 0.998 1.000 0.970 0.973 0.995 0.995

6D Mapping 0.937 0.984 0.950 0.985 0.953 0.874 0.937 0.862 0.940 0.860

LogE
3D Mapping 0.967 0.983 0.975 0.996 0.984 0.906 0.939 0.909 0.955 0.911

6D Mapping 0.948 0.982 0.967 0.956 0.949 0.852 0.937 0.844 0.911 0.875

(a) 30◦ (b) 45◦

(c) 75◦ (d) 90◦

Figure 1: 4th order ODF with various angle differences be-
tween the two fibers

Fig. 3 displays fiber orientation error in the presence of Rician noise
at various angle differences between the two fibers. The vertical bar
shows standard deviation for 50 repeated experiments at each level
of noise. The principal eigenvectors of the diagonal components
(DC) can discern directions of maximum diffusion. The CT-FOD

(a)

Figure 2: Comparison of DC vs. CT-FOD

method is based on the signal deconvolution [39]. This approach
uses a subroutine to find maxima of the reoriented ODFs. We com-
pared evolution of such maxima with our method. These maximas
are directions of prominent diffusion directions.We generated ODFs
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(a) 30◦ (b) 45◦ .

(c) 75◦ (d) 90◦

Figure 3: Standard deviation of orientation error in the pres-
ence of Rician noise

for two fibers crossing at known angles and estimated fiber orien-
tation error due to the DC and CT-FOD approach. The comparison
is shown in Fig. 2. The performance of both the methods is similar
within angle-difference range 70◦-110◦ but for angle-differences
outside this range the DC method performs better than CT-FOD.
In all cases, the DC method shows lower orientation errors. As we
approach within the above range their performances converge.

Table 1 displays the relative execution time. This experiment
is conducted on machine with 16 GB RAM and Processor Intel(R)
Core(TM) i5-7500 CPU @ 2.70GHz 2.71GHz. The DC method is
about 103 times faster. The independent 15 coefficients are arranged
at fixed positions, thus computation of the three diagonal compo-
nents is straightforward. Consequently, it jumps the optimization
step which needs to find the maxima of ODF in CT-FOD method.

Table 2 shows average segmentation results in terms of Dice
coefficients under various levels of Rician noise [29]. We created a
data bank of 30 synthetic configurations having one (curved/linear)
fiber. The performance of 3D 2nd order mapping with affine met-
ric is slightly better than all other combinations. We performed
similar tests including crossing fibers with different complexities.
The comparison of the projections and metrics results in the same
conclusion. We have also performed similar tests on real images.
See Fig. 5, 6 for one example. Again, the 3D 2nd order affine metric
choice outperforms the others.

(a) Original Image

(b) 3D, Affine (c) 3D, LogE

(d) 6D, Affine (e) 6D, LogE

Figure 4: Four regions segmentation via the mappings (3D
and 6D 2nd order tensors) under Affine and LogE metrics

(a) Tensor Field Real Image (b) Rectangular section shown in (a)

Figure 5: Real Image

6 CONCLUSION
The experiments have shown that the 6D projection of 4th order
tensors is more sensitive to noise than the 3D projection. Previ-
ous work of the authors [20] showed that the 3D DC projections,
together with the spectral metrics perform, even better.
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(a) 3D, Affine (b) 6D, Affine (c) 3D, LogE (d) 6D, LogE

Figure 6: Segmentation result

In segmentation application, [21] crossing regions are considered
as a unit, therefore, the orientation of individual fibers has no effect
on the outcome. The diagonal components of the flattened 4th order
tensor effectively reveal the directions of maximum diffusion. To
best of our knowledge these components have never been utilized
and experiments reveal they can be used for tracking white matter
fibers and classification of tissues based upon the heterogeneity of
water diffusion at voxel level. We are looking forward to see how
the eigenvectors of these components can be used in tracking the
fibers in heterogeneous regions.
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