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Abstract

Humans and animals excel in combining information from multiple sensory modalities, control-
ling their complex bodies, adapting to growth, failures, or using tools. These capabilities are also
highly desirable in robots. They are displayed by machines to some extent. Yet, the artificial crea-
tures are lagging behind. The key foundation is an internal representation of the body that the
agent—human, animal, or robot—has developed. The mechanisms of operation of body models
in the brain are largely unknown and even less is known about how they are constructed from
experience after birth. In collaboration with developmental psychologists, we conducted targeted
experiments to understand how infants acquire first “sensorimotor body knowledge”. These ex-
periments inform our work in which we construct embodied computational models on humanoid
robots that address the mechanisms behind learning, adaptation, and operation of multimodal
body representations. At the same time, we assess which of the features of the “body in the brain”
should be transferred to robots to give rise to more adaptive and resilient, self-calibrating ma-
chines. We extend traditional robot kinematic calibration focusing on self-contained approaches
where no external metrology is needed: self-contact and self-observation. Problem formulation
allowing to combine several ways of closing the kinematic chain simultaneously is presented,
along with a calibration toolbox and experimental validation on several robot platforms. Finally,
next to models of the body itself, we study peripersonal space—the space immediately surround-
ing the body. Again, embodied computational models are developed and subsequently, the pos-
sibility of turning these biologically inspired representations into safe human-robot collaboration
is studied.
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Chapter 1

Introduction

The main theme in my research has been embodied cognition and its development, how it can be
studied using robots, and how inspiration from biology can drive progress in robotic technology.
The specific focus is on representations of the body and the space around it—peripersonal space.
This habilitation thesis is constituted by a collection of thirteen articles (published or accepted
for publication), preceded by a common introductory part that links these works into a coherent
whole.

1.1 Synthetic methodology

The methodology employed in my work is the so-called synthetic methodology, or “understanding
by building” [Pfeifer and Scheier, 2001, Chapter 1] [Pfeifer and Bongard, 2007, Chapter 3]. This
approach can be applied to study phenomena from many disciplines like biology, psychology, or
physics. As a matter of fact, many sciences that were traditionally mostly analytical are becoming
more synthetic, employing computer simulations, for example. Here we focus on the understand-
ing of intelligence or cognition in particular. The synthetic methodology, schematically illustrated
in Fig. 1.1, unites the following three goals [Pfeifer and Bongard, 2007, Chapter 3]:

1. understanding natural forms of intelligence
2. abstracting general principles of intelligent behavior
3. building intelligent artifacts

A very influential paradigm in the study of cognition and intelligence was cognitivism (e.g.,
[Fodor, 1975, Pylyshyn, 1984]), whereby thinking was understood as a result of computation over
symbols that represent the world. Such computation in the form of automatic manipulation of
abstract symbols was at the heart of the so-called “Good Old-Fashioned Artificial Intelligence”
(GOFAI) [Haugeland, 1985]. In fact, the computer was not only a tool for modeling but became a
metaphor for the mind. Cognitivism and GOFAI were thus employing the full synthetic method-
ology in (1) applying the computer metaphor to model the mind; (2) abstracting general prin-
ciples and developing algorithms for planning, reasoning, etc.; (3) developing applications like
chess-playing programs, expert systems etc.

1.1.1 Embodied computational modeling of cognition

While sucessful in the abstract domains, GOFALI faced severe difficulties when controlling robots
that had to interact with the physical world in real time. Rodney Brooks has openly attacked
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Figure 1.1: Synthetic methodology. Overview of approaches to the study of intelligence. On the left,
we have the empirical sciences like biology, neurobiology, and psychology that mostly follow an analytic
approach. In the center, we have the synthetic ones, namely cognitive science and AI, which can either
model natural agents (this is called synthetic modeling, the shaded area) or alternatively can simply explore
issues in the study of intelligence without necessarily being concerned about natural systems. From this
latter activity, industrial applications can be developed. Figure and caption from [Pfeifer and Scheier,
2001, Chapter 1].

the GOFALI position in the seminal articles “Intelligence without representation” [Brooks, 1991b]
and “Intelligence without reason” [Brooks, 1991a]. Through building robots that interact with the
real world, such as insect robots [Brooks, 1989], he realized that “when we examine very sim-
ple level intelligence we find that explicit representations and models of the world simply get
in the way. It turns out to be better to use the world as its own model.” [Brooks, 1991b] The
thesis that intelligent behavior emerges from the dynamic interplay of brain, body and environ-
ment has also been articulated by the notion of embodiment (e.g., [Pfeifer and Scheier, 2001, Pfeifer
and Bongard, 2007]) that also started to challenge cognitivism as the dominant paradigm in cog-
nitive science. Different variants of embodied cognition theories have been articulated like the
dynamic systems approach to the development of cognition and action [Thelen and Smith, 1994],
grounded cognition [Barsalou, 2008], sensorimotor contingency theory [O’'Regan and Noe, 2001],
or enaction [Varela et al., 1991].

Embodied cognition theories stressed the constitutive role of the body and action for even
high-level abstract thinking. Given the importance of the body and closed sensorimotor loops,
the analytical and divide-and-conquer approach of empirical sciences studying specific phemo-
nena in isolation is more difficult to apply. Instead, a more holistic approach should be adopted.
Applying the synthetic methodology to embodied cognition means not only modeling cogni-
tive processes but requires building complete artifacts interacting with the environment. Grey
Walter [Walter, 1953] was the pioneer of this approach already before the era of computers and
cognitivism building electronic machines with a minimal “brain” that displayed phototactic-like
behavior. This was picked up by Valentino Braitenberg who built a whole series of two-wheeled
vehicles of increasing complexity, as summarized in “Vehicles — Experiments in Synthetic Psy-
chology” [Braitenberg, 1986]. Already the most primitive ones, in which sensors are directly
connected to motors (exciting or inhibiting them), displayed sophisticated behaviors. The ob-
vious tools for this type of modeling became robots, giving rise to cognitive developmental
robotics [Asada et al., 2009, Cangelosi and Schlesinger, 2015]. Whenever the emphasis is on the
compatibility with available knowledge on the anatomy and physiology of the brain structures
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underlying the behaviors of interest, the label neurorobotics is also used (e.g., [van der Smagt
et al., 2016]).

Let us first focus on the goal of understanding cognition and its development through syn-
tethic modeling. The perspective of some of the leading researchers in this field is offered in “The
mechanics of embodiment: a dialog on embodiment and computational modeling” [Pezzulo et al.,
2011]. This approach is also articulated by Caligiore et al. [Caligiore et al., 2010, Caligiore et al.,
2014] and called computational embodied neuroscience, with the following goals or constraints for
the model:

« accurately reproduce the behaviors observed in specific psychological experiments
« reproduce the learning processes alongside the final behavior

« use architectures and algorithms constrained by neuroscientific evidence

+ the model should control an embodied agent

Certain aspects of a natural system are studied, abstracted, and finally reproduced in an artificial
system, which is then subject to investigations. The behavior as well as developmental and learn-
ing processes leading to the final behavior of the artificial system are compared with the original
natural system, serving as a model of the phenomenon. Not only the overt behavior but also the
inner workings responsible for it are compared. The key question is what can embodied cognition
learn from synthetic modeling. The key benefits, inspired by Cangelosi and Parisi [Cangelosi and
Parisi, 2002], are:

1. Explicit and detailed expression of theory. If the theory is “embedded” in a robot, it has to
be explicit, detailed, and complete because otherwise it could not be tested in the robot.

2. Alternative validation. Any theory should ultimately be validated by comparing it to the
biological or psychological phenomenon of interest. However, after implementing it in a
robot, one can verify if it generates the expected behavior—for example, whether a machine
built according to a model of walking actually walks. Often, this will not be the case and
several iterations improving the theory will follow.

3. New and detailed predictions. The behavior of the robot may not match with the origi-
nal expectations or may display new unexpected characteristics that can be compared with
existing empirical data or lead to the design of new experiments.

4. Virtual experimental laboratories. With embodied computational models, one typically has
access to all variables, including internal variables (raw and preprocessed sensory values,
internal states, motor commands, etc.). In addition, it is often relatively easy to manipu-
late these variables and thus simulate experiments that would otherwise be impossible or
ethically unacceptable to perform (e.g., simulating sensory or motor impairments).

My account of “Robots as powerful allies for the study of embodied cognition from the bottom
up” is provided in [Hoffmann and Pfeifer, 2018] and included in Appendix A.

1.1.2 Embodied computational modeling of body representations

Synthetic modeling can be also productively applied to the study of body and peripersonal space
representations. Since the focus is on models of the body, the need for embodied models is even
stronger. Humanoid robots possess morphologies—physical characteristics as well as sensory
and motor apparatus—that are in some respects akin to human bodies and can thus be used
to expand the domain of computational modeling by anchoring it to the physical environment
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and a physical body and allowing for instantiation of complete sensorimotor loops. The iCub
humanoid robot [Metta et al., 2010] stands out in this respect: it has anthropomorphic propor-
tions modeled after a 4-year old child and a corresponding set of sensory modalities including
binocular vision, hearing, vestibular (inertial) sensing, proprioception, and the recent important
addition: touch [Bartolozzi et al., 2016], making it the ideal platform to model the multimodal con-
tributions to body representations. Various surveys on body schema in robotics [Hoffmann et al.,
2010], exploration, body representations and internal simulation [Schillaci et al., 2016], “synthetic
psychology of the self” [Prescott and Camilleri, 2019] and robot models to study the (en)active
self [Lanillos et al., 2017, Nguyen et al., 2021] have been published.

Remarkable demonstrations of this approach are the models of foetus development from the
laboratory of Yasuo Kuniyoshi at the University of Tokyo (e.g., [Yamada et al., 2016]). They also
illustate the potential of these models as virtual experimental laboratories, showing for example
the effect of non-uniform versus uniform tactile sensor distribution [Mori and Kuniyoshi, 2010]
or uterine versus extrauterine environment [ Yamada et al., 2016].

Finally, it is important to note that not only is embodiment constitutive for the nature and
operation of body models in the brain (and hence humanoid robots should be used to study body
representations), but also, paraphrasing Brooks [Brooks, 1991b] the body may sometimes be its
own best model. In other words, the physical body may be used directly, without having to
have it represented in the brain (see “Embodying the mind and representing the body” [Alsmith
and De Vignemont, 2012] or “body-in-the-brain versus body-in-the-world” [Ataria et al., 2021,
p- XV-XVI] for a deeper discussion). Thus, with computational modeling only, one can hardly
adopt other than the representationalist approach to body maps [De Vignemont, 2018, Chapter
5]. Instead, with robots, the sensorimotor approach to body know-how (e.g., [Jacquey et al., 2020])
can also be modeled.

1.1.3 Abstracting general principles of learning body models and ap-
plications

Apart from synthetic modeling of the mechanims of the “body in the brain”, robots autonomously
learning their body maps serve also abstracting general principles and even applications (see
Fig. 1.1 again for the different aspects of the synthetic methodology). General characteristics
of body models in animals, humans, and robots are derived in [Hoffmann, 2021b], included in
Appendix B. The applications of robots learning their body models are in automatic self-contained
robot self-calibration and they are reviewed in [Hoffmann, 2021a] and included in Appendix C.

1.2 Body models in humans, animals, and robots

A theoretical account contrasting the body representations in the octopus, humans, and robots
is presented in [Hoffmann, 2021b], included in Appendix B. On one hand, the example of the
models of the iCub robot (like forward and inverse kinematics, inverse dynamics, etc.) and how
it reaches for a tactile stimulus in [Roncone et al., 2014] serves as an intuition pump to analyze
body models in animals and humans. On the other hand, what is known about how animals use
and represent their bodies, including the imporant aspect that behavior generation is in the brain-
body-environment coupling and hence not all features need to be modeled, is used to inspire the
design of future generations of machines that would inherit some of the capacities demonstrated
by animals like resilience.
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1.3 Thesis overview

This thesis is a collection of published works, complemented by relatively brief texts that explain
the relationships between the individual articles. The story of the thesis is largely told in three
book chapters and the reader is advised to consult them. In [Hoffmann and Pfeifer, 2018], Ap-
pendix A, the methodology of using humanoid robots to study embodied cognition is explained
and illustrated on examples. In [Hoffmann, 2021b], Appendix B, body models in humans, ani-
mals, and robots are contrasted. In [Hoffmann, 2021a], Appendix C, an overview of biologically
inspired robot body models and self-calibration is provided for a robotics encyclopedia. All three
articles were prepared for a wider, often interdisciplinary, audience, and they are thus accessible
even for non-experts in a specific field.

The rest of the thesis brings together articles with a more technical content and groups them
as follows. In Chapter 2, an overview of related research on the development of body represen-
tations in children is provided, along with my own contributions through collaborations with
developmental psychologists. Chapter 3 describes biologically motivated case studies on robots
learning body models. Chapter 4 focuses on robots learning about the space surrounding their
bodies, so called peripersonal space. Chapter 5 deals with the topic of automatic self-contained
robot calibration. Chapter 6 brings together works on safety of physical human-robot interac-
tion. The thesis Appendix includes thirteen peer-reviewed published works pertinent to the the-
sis topic. With one exception [Roncone et al., 2016], I am either the first or the senior author on all
these publications—in the latter case, they originate from my research group.
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Chapter 2

Body knowledge in babies

A wealth of observations has been accumulated about development of the foetus and the infant
in the months before and after birth. There is certainly a great deal to learn for the infant in this
period, but the assumption in my work is that the, possibly primary, target of what the infant
is learning about in this period is its own body. Understanding what its body parts are, what it
can do with them, and what the consequences would be, are essential prerequisites for almost
everything that follows. This is the sensorimotor or ecological self [Neisser, 1988]. The second
assumption relates to the way in which the infant learns. In my work, self-touch or haptic ex-
ploration of one’s own body is considered a key activity that may bootstrap learning about the
body as an object in space [Hoffmann, 2017]. We assume that motor-proprioceptive-tactile con-
tingencies provide sufficient material for the infant to construct “functional body knowledge”, or
body know-how, allowing her for example to reach for specific body parts when presented with
a tactile stimulus. This sensorimotor account is presented in [Hoffmann et al., 2017] and included
in Appendix D. The role of vision is increasingly important during postnatal development as the
acuity and gaze control improves. Eventually, it is likely that the representations of the body and
peripersonal space become predominantly vision-based. However, to what extent, when, and
how this occurs still needs to be established.

2.1 Spontaneous self-touch

! Petuses initially perform local movements directed to areas of the body most sensitive to touch:
the face, but also soles of feet [Piontelli, 2015, p. 113-114]. Later, from 26 to 28 weeks of gesta-
tional age, they also use the back of the hands and touch other body areas like thighs, legs, and
knees [Piontelli, 2015, p. 29-30]. In addition, from 19 weeks, fetuses anticipate hand-to-mouth
movements [Myowa-Yamakoshi and Takeshita, 2006] (the mouth opens prior to contact) and from
22 weeks, the movements seem to show the recognizable form of intentional actions, with kine-
matic patterns that depend on the goal of the action (toward the mouth vs. toward the eyes) [Zoia
et al., 2007].

Hand-mouth coordination continues to develop after birth [Rochat, 1993]. Specifically re-
lated to body exploration, [Rochat, 1998] writes: “By 2-3 months, infants engage in exploration
of their own body as it moves and acts in the environment. They babble and touch their own
body, attracted and actively involved in investigating the rich intermodal redundancies, tempo-
ral contingencies, and spatial congruence of self-perception.” [DiMercurio et al., 2018] followed
spontaneous behavior of infants from 3 to 9 weeks; [Thomas et al., 2015] from birth to 6 months
of age. Their main findings regarding self-touch were:

1This section is adapted from Section II in [Gama et al., 2021].
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« rostro-caudal progression: head and trunk contacts are more frequent in the beginning,
followed by more caudal body locations including hips, then legs, and eventually the feet
[Thomas et al., 2015]

« contacts are typically made with the ipsilateral hand

« complex touches, as infants moved their hand while remaining in contact with their body,
were frequently observed by [DiMercurio et al., 2018]

In summary, infants acquire ample experience of touching their body, which allows for the
learning of the first tactile-proprioceptive-motor models of the body. The ability to learn from this
experience goes hand in hand with dynamic neural development in this period [Tau and Peterson,
2010]; see [Hoffmann, 2017] for a review focusing specifically on self-touch. Yet, the behavioral
organization of such early tactile exploration is not understood. Are the touches on the body
spontaneous or systematic? If there is a particular structure—which seems to be the case [DiMer-
curio etal., 2018, Thomas et al., 2015]—what drives this developmental progression? [Piaget, 1952]
theorized that in newborns, action and perception as well as the “spaces” of individual sensory
modalities are separated (cf. [Van der Meer et al., 1995] for evidence that visual and motor modal-
ities are connected early after birth). Until the connections are established, infants explore their
environment (and their body) randomly. [Piaget, 1952] also proposed a pivotal role of repeated
movements—primary circular reactions directed to learn properties of the body and secondary cir-
cular reactions driven by the interest on the effects they produce in the environment. However, to
discriminate spontaneous contacts from systematic (intrinsically motivated) exploration remains
a challenge.

2.2 Localizing touch on the body

2 A counterpart to recordings of spontaneous infant behavior is provided by testing how they
can reach to targets on their body. Lockman and colleagues performed a series of studies [Chinn
et al., 2019, Chinn et al., 2021, Hoffmann et al., 2017, Leed et al., 2019, Somogyi et al., 2018] in
which vibrotactile targets (“buzzers”) were attached to infants” body parts and their ability and
their way of reaching for the targets were analyzed. Targets above the mouth and on the chin
were successfully contacted already from 2 months of age [Chinn et al., 2021], followed by trunk
area, legs, hands, other areas on the face (forehead, ears), and elbows (around 9 months) (whole
body - pilot study [Hoffmann et al., 2017]; upper body [Leed et al., 2019]). For targets on hands
and arms, the arm with the buzzer and the contralateral arm reaching for the target often moved
simultaneously—the arm with the target actively facilitating the removal [Chinn et al., 2019]. Re-
garding looking at the target for locations where this was possible, the infants looked first in 86 of
189 trials (45.5%), reached first in 27 of 189 trials (14.29%), and looked and reached simultaneously
in 76 of 189 trials (40.21%). This last strategy significantly increased with age (7 to 21 months).
Another window into the development of tactile localization is provided by experiments that
exploit crossed hands or crossed feet postures, often employed to study conflicts between encod-
ing touch in an anatomical versus external frame of reference. In short, when one’s left hand is
located in the right peripersonal space, there is a conflict between where the hand is normally
and currently, which impairs tactile localization (one manifestation is slower response in the tem-
poral order judgement task — [Heed and Azafién, 2014] for a review). [Ali et al., 2015] tested two
groups of infants—four-month and six-month-olds—by applying tactile stimulation to their feet
in a crossed posture. Six-month-olds, like adults, showed a tactile localisation deficit, indicating

2The first paragraph is adapted from Section Il in [Gama et al., 2021].
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external spatial coding of touch; in striking contrast, four-month-olds outperformed the older in-
fants showing no crossed-feet deficit, indicating that coding of touch in external space, called also
tactile remapping [Heed et al., 2015], develops at around 5 months after birth, possibly in line
with the growing importance of vision. In another study, [Bremner et al., 2008] tested 6.5-month-
and 10-month-olds in a crossed and uncrossed hand posture and investigated their manual and
looking responses.

2.3 My contributions

The studies briefly reviewed above provide important constraints for the embodied computa-
tional modeling work (Chapter 3). Some of the authors of the works cited above have become my
collaborators (Prof. Jeffrey J. Lockman, Tulane University, USA; Prof. Daniela Corbetta, Univer-
sity of Tennessee, Knoxville, USA; Dr. Kevin O'Regan, University Paris Descartes & CNRS, Paris,
France; Prof. Tobias Heed, Paris Lodron University Salzburg, Austria). I have co-authored the
following articles:

« Chinn, L. K., Hoffmann, M., Leed, J. E., & Lockman, J. J. (2019). Reaching with one arm to the
other: coordinating touch, proprioception, and action during infancy. Journal of experimental
child psychology, 183, 19-32. [M.H. author contribution 25%]

« Chinn, L. K., Noonan, C. E, Hoffmann, M., & Lockman, J. J. (2019). Development of infant
reaching strategies to tactile targets on the face. Frontiers in psychology, 10, 9. [M.H. author
contribution 20%]

« Somogyi, E., Jacquey, L., Heed, T., Hoffmann, M., Lockman, J. J., Granjon, L., Fagard, J.,
& O'Regan, J. K. (2018). Which limb is it? Responses to vibrotactile stimulation in early
infancy. British Journal of Developmental Psychology, 36(3), 384-401. [M.H. author contribution
10%]

These articles are not included in this habilitation which is submitted for the Technical Cybernetics
program.

In addition, part II.C of [Hoffmann et al., 2017], Appendix D, and part II of [Gama et al.,
2021], Appendix E contain also sections reporting results of experiments with infants specifically
targeting the needs of the modeling endeavour.

2.4  Summary

The observations from the studies on babies provide inputs and constraints for the embodied
computational modeling. In line with the synthetic methodology (Section 1.1), inspiration from
biology may contribute to the discovery of general principles that may eventually give rise to
useful technology like self-calibrating robots. However, the primary goal is to help uncover the
mechanims of the development of body know-how in infants. Collecting unambiguous empirical
evidence is complicated by the age of the subjects—infants in the first year are preverbal and one
thus cannot easily instruct them and their cooperation during experiments is limited. Similarly,
manipulations (e.g., reaching for a tactile stimulus only with a certain limb) are hard to orchestrate
and additional setups like motion capture or brain imaging are also almost impossible to arrange.
Therefore, robot models that allow arbitrary manipulations and where all internal variables can
be accessed provide an indispensable tool.






Chapter 3

Robots learning body models

The results of empirical studies from Chapter 2 flow into embodied computational models on
humanoid robots that address the mechanisms of development of reaching and somatosensory
perception in early infancy. Humanoid robots with pressure-sensitive electronic skins covering
large areas of their bodies provide the right platform for this type of work. There are four articles
in this research strand [Hoffmann et al., 2017, Gama et al., 2021, Hoffmann et al., 2018, Nguyen
et al., 2019], three of which are included in the thesis.

The article [Hoffmann et al., 2017], included in Appendix D, is a conceptual one, in collab-
oration with developmental and cognitive psychologists and provides a natural transition from
the empirical studies to embodied computational modeling of the development of reaching to the
body.

The second article [Gama et al., 2021], included in Appendix E, focuses on active body ex-
ploration and compares different algorithms from the family of intrinsically motivated learn-
ing (or artificial curiosity) [Schmidhuber, 1991, Oudeyer and Kaplan, 2007, Baranes and Oudeyer,
2013, Baldassarre and Mirolli, 2013]. This work demonstrates that efficient exploration of the skin
space and learning of inverse models is possible. First grounding of the modeling work in exper-
imental data is attempted (study of motor redundancy in infant reaching and link to “complex
touches” from [DiMercurio et al., 2018]).

The third article [Hoffmann et al., 2018], included in Appendix F, studies the development of
a biologically motivated representation of the robot skin surface: the robot “tactile homunculus”.
The robot is exposed to tactile stimulations on its whole body and the corresponding tactile acti-
vations are recorded. These are then fed into a self-organizing (or Kohonen) map algorithm and
the representations that emerge are studied. Modifications of the standard algorithm that provide
the right constraints to channel learning toward the layout of the neural map observed in primate
brains are developed.

The fourth article [Nguyen et al., 2019] studies the development of reaching to objects external
to the body. These are perceived visually, but we concentrate on the role of haptic feedback in
learning the behavior on the robot. If the object is at first randomly contacted, proprioception
provides an alternative to vision to guide subsequent reaching movements. Such “somatosensory
coding of space” connects reaching to the body with reaching to external objects.






Chapter 4

Robots learning peripersonal space
representations

Next to “body space” or “personal space”, the space immediately surrounding the body is called
peripersonal space. There are two related but different meanings associated with peripersonal
space (PPS): (i) space immediately surrounding the body and (ii) space that we can act upon /
within our reach. Their representations in the brain are realized by fronto-parietal networks, with
an important role attributed to bimodal neurons with visuo-tactile receptive fields (RFs) [Cléry
et al., 2015]. The first notion, space surrounding the body, can be pictured as a “bubble” around
individual body parts and following those body parts in space. It is realized by bimodal neurons
with tactile RFs on the skin and visual RFs around. The visual responses appear to be tuned to
dynamically approaching objects and their activation is thus anticipatory, predictive of touch in
the corresponding skin area. There are also behavioral responses associated with the stimula-
tion of some neurons of this network (squinting, ducking, and withdrawing from the direction
of the potential threat). Therefore, this circuit is thought to be responsible for self-defense and
maintaining a safety margin around the body [Graziano and Cooke, 2006]. Little is known about
the development of peripersonal space representations, with some evidence suggesting that even
newborns can make sense of multisensory (audio-visual in this case) cue combinations specifying
motion with respect to themselves [Orioli et al., 2018].

Taking advantage of humanoid robots with whole-body sensitive skin, we designed a method
where the robot learns such a safety margin from experience. The robot records trajectories of
approaching objects and if they eventually contact its body as perceived by the artificial skin,
it learns the likelihood of such future contact. The objects’ positions perceived by the robot by
stereo vision are remapped into the reference frames of every tactile sensor (taxel). Every taxel
then continuously updates a representation of the probability of objects at a certain distance [Ron-
cone et al., 2015] or with a certain time to contact [Roncone et al., 2016] colliding with it. These
“threatened” taxels can be aggregated and a most likely future collision site on the robot body
computed. This location on the robot body can then be connected to a controller that avoids the
collision by moving the exposed body part away (video: https://youtu.be/3IaXxNwC_7E).
Alternatively, using the opposite sign for the movement direction, “whole-body reaching/catch-
ing” can be easily realized. The work [Roncone et al., 2016] is included in Appendix G.

We developed an alternative learning algorithm in [Straka and Hoffmann, 2017], a neural
network composed of a Restricted Boltzmann Machine and a feedforward neural network. The
former learns in an unsupervised manner to represent position and velocity features of the stimu-
lus. The latter is trained in a supervised way to predict the position of touch (contact). Compared
to [Roncone et al., 2016], this model was trained in a simulated environment but it importantly
take into account also the the uncertainty of all variables.


https://youtu.be/3IaXxNwC_7E
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Apart from modeling the operation, development, and adaption of peripersonal space repre-
sentations in the brain, “perirobot space” representations are key for safe human-robot interac-
tion. Appropriate collision avoidance strategies cannot be selected without a representation of
the space surrounding the robot. This space can be represented in various forms with regards
to the needs of the application or robot platform. Multiple questions come forth in this context,
namely the way the space is structured, how it will dynamically adapt and what is its geometry.
A key component is the form of the representation of the robot and human body parts, or, in gen-
eral, the representation of obstacles. Drawing on the results of the computer graphics community
(see [Jiménez et al., 2001] for a survey), this often takes the form of some collision primitives.
These can be simple shapes like spheres [Flacco et al., 2012] or more complex meshes [Polverini
et al., 2017] and can differ for the robot and the human. [Zanchettin et al., 2015] represent robot
links as segments and humans as a set of capsules. These shapes can also have a temporal aspect
and represent so-called swept volumes, i.e. zones where the human or robot moved. For safety
to be guaranteed, the whole body of both agents should be represented and considering only the
robot end-effector or human hands or head does not suffice. Some representations change the
volume dynamically based on the robot or human velocity [Polverini et al., 2017, Zanchettin et al.,
2015, Lacevic and Rocco, 2010, Magnanimo et al., 2016]. The technologies applied to perception
can influence the structure of the perirobot space too: Euclidean space can be replaced by a depth
space approach to account for the occlusions and specific geometries of the field of view of a
RGB-D sensor [Flacco et al., 2012, Flacco et al., 2015]. Examples are depicted in Fig. 4.1. The best
representation is yet to be found. These considerations tie directly into the topic of safe physical
human-robot interaction discussed in Chapter 6 and our publication [Svarny et al., 2019].

B Ned

Figure 4.1: Perirobot space representations. (A) Depth space approach [Flacco et al., 2012]. (B) Kineto-
static danger field [Lacevic and Rocco, 2010]. (C) Dynamic safety fields [Magnanimo et al., 2016].



Chapter 5

Robot self-calibration

As briefly reviewed in Chapter 2, newborns have not only limited conceptual and spatial knowl-
edge about their bodies, but also limited “body know-how”—means to use their bodies for pur-
poseful action or to localize and act on stimuli on their body. They learn the necessary body
models in the first years after birth, while continuously incorporating physical body growth as
well as maturation of the sensory apparatus (vision in particular). Next to the developmental time
scale, human body representations were found to be adaptive (called plastic in neuroscience) on
much shorter time scales, as demonstrated by the ability to use tools and their incorporation into
the body schema [Maravita and Iriki, 2004], for example. Both capacities—learning and quickly
adapting body models—would be highly desired in robots.

Nowadays, humanoid but also other robots come with a rich set of powerful yet inexpensive
sensors like cameras, RGB-D cameras, inertial, tactile or force sensors. This opens up the possibil-
ity for calibration approaches that are more self-contained, can be performed autonomously and
repeatedly by the robot, and that simultaneously estimate the position of the sensors with respect
to the robot. The key to self-calibration is redundancy. The kinematic chain can be closed exploit-
ing physical contact (aka closed-loop calibration approaches) or by observing the robot pose using
visual sensors (open-loop calibration approaches) (see [Hollerbach et al., 2016]). Fig. 5.1 provides an
overview. Next to traditional methods exploiting contact with the environment (e.g. robot touch-
ing a planar surface — Fig. 5.1B) or external metrology systems (e.g. laser trackers — Fig. 5.1D),
we studied self-contact (Fig. 5.1A) and self-observation (Fig. 5.1C) as methods that are suited for
automatic self-contained calibration.
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Figure 5.1: Schematics of calibration using self-contact (A), contact with a plane (B), self-observation (C),
and external device (D). Figure and caption from [Rozlivek et al., 2021].
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An overview of the state of the art and future research directions regarding biologically in-
spired robot body models and self-calibration is provided in [Hoffmann, 2021a], included in Ap-
pendix C. In addition, four case studies are also included in this thesis.

In [Stepanova et al., 2019], Appendix H, we systematically studied on the simulated iCub
humanoid robot how self-observation, self-contact, and their combination can be used for self-
calibration. We found that employing multiple kinematic chains (self-observation and self-touch)
is superior in terms of optimization results as well as observability.

In [Rozlivek et al., 2021], Appendix I, we provided a unified formulation that makes it possible
to combine traditional approaches with self-contained calibration available to humanoid robots
in a single framework and single cost function. Second, we presented an open source toolbox for
Matlab (https://github.com/ctu-vras/multirobot-calibration) that provides this
functionality, along with additional tools for preprocessing (e.g., dataset visualization) and eval-
uation (e.g., observability /identifiability).

In [Rustler et al., 2021], Appendix J, we used self-contact as one of the methods to calibrate
the positions of 970 pressure sensors on the body of a humanoid robot (the opposite approach
to [Roncone et al., 2014] where the skin was used to improve kinematic calibration). We experi-
mentally compared the accuracy and effort associated with the following skin spatial calibration
approaches and their combinations: (i) combining CAD models and skin layout in 2D, (ii) 3D
reconstruction from images, (iii) using robot kinematics to calibrate skin by self-contact.

Finally, in [Stepanova et al., 2022], Appendix K, all four calibration methods schematically
illustrated in Fig. 5.1—self-contact, contact with a plane, self-observation, and external device—
were experimentally compared on a dual-arm industrial manipulator. The main findings were: (1)
when applying the complementary calibration approaches in isolation, the self-contact approach
yields the best and most stable results; (2) all combinations of more than one approach were
always superior to using any single approach in terms of calibration errors and the observability
of the estimated parameters. Combining more approaches delivers robot parameters that better
generalize to the workspace parts not used for the calibration.


https://github.com/ctu-vras/multirobot-calibration

Chapter 6

Sate physical human-robot
interaction and collaborative robots

Robots are leaving safety fences and start to share workspaces or even living spaces with hu-
mans. As they leave controlled environments and enter domains that are far less structured, they
need to dynamically adapt to unpredictable interactions and guarantee safety at every moment.
There has been rapid development in this regard in the last decade, with revisions of existing and
introduction of new safety standards ( [ISO 10218, 2011, ISO 13855, 2010, ISO/TS 15066, 2016];
see e.g. [Haddadin and Croft, 2016] for a survey)) and a rapidly growing market of collaborative
robots. According to [ISO/TS 15066, 2016], there are two ways of satisfying the safety require-
ments when a human physically collaborates with a robot: (i) Power and Force Limiting (PFL) and
(ii) Speed and Separation Monitoring (SSM).

For PFL, physical contacts with a moving robot are allowed but the forces / pressures / energy
absorbed during a collision need to be within human body part specific limits. This translates
onto lightweight structure, soft padding and no pinch points on the robot side, in combination
with collision detection and response relying on motor load measurements, force/torque or joint
torque sensing. This is addressed by interaction control methods for this post-impact phase (e.g.,
[De Luca et al., 2006, Haddadin et al., 2008]; [Haddadin et al., 2017] for a survey). The performance
of robots complying with this safety requirement in terms of payload, speed, and repeatability is
limited.

Safe collaborative operation according to speed and separation monitoring prohibits contacts
with a moving robot and thus focuses on the pre-impact phase: a protective separation distance,
Sy, between the operator and robot needs to be maintained at all times. When the distance de-
creases below S, the robot is commanded to halt. In industry, 5, is typically safeguarded using
light curtains (essentially electronic versions of physical fences) or safety-rated scanners that mon-
itor 2D or 3D zones. However, the flexibility of such setups is limited—the information is reduced
to detecting whether an object of a certain minimum volume has entered a predefined zone. The
higher the robot kinetic energy, the bigger is its footprint on the factory floor.

This topic ties with the rest of the thesis as follows. First, not only robot performance but also
safety is dependent on its accuracy and calibration. Thus, machines learning and adapting their
body models (Chapter 3 or self-calibrating robots in Chapter 5) are also likely to be safer for their
environments. Second, the use of artificial sensitive skins researched in my group can contribute
an additional protective layer for collision detection and isolation during physical HRI (the PFL
regime in particular). Third, adaptive multimodal representations of the robot peripersonal space
(Chapter 4) could give rise to robots with a human-like margin of safety around their bodies and
to new solutions to robot safety in the SSM regime.

In [Svarny et al., 2019], Appendix L, we deployed the two collaborative regimes (PFL and
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SSM) in a single application and studied the performance in a mock collaborative task under the
individual regimes, including transitions between them. Additionally, we compared the perfor-
mance under “safety zone monitoring” with keypoint pair-wise separation distance assessment
relying on an RGB-D sensor and skeleton extraction algorithm to track human body parts in
the workspace. Best performance has been achieved in the following setting: robot operates at
full speed until a distance threshold between any robot and human body part is crossed; then,
reduced robot speed per power and force limiting is triggered. Robot is halted only when the
operator’s head crosses a predefined distance from selected robot parts.

In [Svarny et al., 2021], Appendix M, we measured the forces exerted by two collaborative ma-
nipulators moving downward against an impact measuring device. First, we empirically showed
that the impact forces can vary by more than 100 percent within the robot workspace. The forces
are negatively correlated with the distance from the robot base and the height in the workspace.
Second, we presented a data-driven model, 3D Collision-Force-Map, predicting impact forces
from distance, height, and velocity and demonstrate that it can be trained on a limited number
of data points. Third, we analyzed the force evolution upon impact and found that clamping
never occurs for one of the robots (UR10e). We showed that formulas relating robot mass, ve-
locity, and impact forces from ISO/TS 15066 [ISO/TS 15066, 2016] are insufficient—leading both
to significant underestimation and overestimation and thus to unnecessarily long cycle times or
even dangerous applications. We proposed an empirical method that can be deployed to quickly
determine the optimal speed and position where a task can be safely performed with maximum
efficiency.

Finally, in collaboration with the group of Sami Haddadin at Technical University of Munich,
we investigated how the velocity of a collaborative manipulator can be modulated by monitor-
ing the interaction with a human. The details are in [Zardykhan et al., 2019] (not included in
Appendix).
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ROBOTS AS POWERFUL
ALLIES FOR THE STUDY OF
EMBODIED COGNITION FROM
THE BOTTOM UP

......................................................................................................

MATE] HOFFMANN AND ROLF PFEIFER

INTRODUCTION

THE study of human cognition—and human intelligence—has a long history and has
kept scientists from various disciplines—philosophy, psychology, linguistics, neu-
roscience, artificial intelligence, and robotics—busy for many years. While there
is no agreement on its definition, there is wide consensus that it is a highly complex
subject matter that will require, depending on the particular position or stance, a
multiplicity of methods for its investigation. Whereas, for example, psychology and
neuroscience favor empirical studies on humans, artificial intelligence has proposed
computational approaches, viewing cognition as information processing, as algorithms
over representations. Over the last few decades, overwhelming evidence has been
accumulated showing that the pure computational view is severely limited and that it
must be extended to incorporate embodiment, i.e., the agent’s somatic setup and its in-
teraction with the real world, and, because they are real physical systems, robots became
the tools of choice to study cognition. There have been a plethora of pertinent studies,
but they all have their own intrinsic limitations. In this chapter, we demonstrate that a
robotic approach, combined with information theory and a developmental perspective,
promises insights into the nature of cognition that would be hard to obtain otherwise.
We start by introducing “low-level” behaviors that function without control in the
traditional sense; we then move to sensorimotor processes that incorporate reflex-based
loops (involving neural processing). We discuss “minimal cognition” and show how the
role of embodiment can be quantified using information theory, and we introduce the
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so-called SMCs, or sensorimotor contingencies, which can be viewed as the very basic
building blocks of cognition. Finally, we expand on how humanoid robots can be pro-
ductively exploited to make inroads in the study of human cognition.

BEHAVIOR THROUGH INTERACTION

What cognitive scientists are regularly forgetting is that complex coordinated
behaviors—for example, walking, running over uneven terrain, swimming, avoiding
obstacles—can often be realized with no or minimal involvement of cognition/repre-
sentation/computation. This is possible because of the properties of the body and the
interaction with the environment, that is, the embodied and embedded nature of the
agent. Robotics is well suited for providing existence proofs of this kind and then to fur-
ther analyze these phenomena. We will only briefly present some of the most notable
case studies.

Low-Level Behavior: Mechanical Feedback Loops

A classical illustration of behavior in complete absence of a “brain” is the passive dy-
namic walker (McGeer 1990): a minimal robot that can walk without any sensors,
motors, or control electronics. It loosely resembles a human, with two legs, no torso,
and two arms attached to the “hips,” but its ability to walk is exclusively due to the down-
ward slope of the incline on which it walks and the mechanical parameters of the walker
(mainly leg segment lengths, mass distribution, foot shape, and frictional characteris-
tics). The walking movement is entirely the result of finely tuned mechanics on the right
kind of surface. A motivation for this research is also to show how human walking is
possible with minimal energy use and only limited central control. However, most of
the problems that animals or robots are faced with in the real world cannot be solved
solely by passive interaction of the physical body with the environment. Typically,
active involvement by means of muscles/motors is required. Furthermore, the actu-
ation pattern needs to be specified by the agent,! and hence a controller of some sort
is required. Nevertheless, it turns out that if the physical interaction of the body with
the environment is exploited, the control program can be very simple. For example, the
passive dynamic walker can be modified by adding a couple of actuators and sensors and
a reflex-based controller, resulting in the expansion of its niche to level ground while
keeping the control effort and energy expenditure to a minimum (Collins et al. 2005).
However, in the real world, the ground is often not level and frequent corrective
action needs to be taken. It turns out that often the very same mechanical system can

! In this chapter, we will use “agent” to describe humans, animals, or robots.
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generate this corrective response. This phenomenon is known as self-stabilization and is
a result of a mechanical feedback loop. To use dynamical systems terminology, certain
trajectories (such as walking with a particular gait) have attracting properties and small
perturbations are automatically corrected, without control—or one could say that “con-
trol” is inherent in the mechanical system.? Blickhan et al. (2007) review self-stabilizing
properties of biological muscles in a paper entitled “Intelligence by Mechanics”;
Koditschek et al. (2004) analyze walking insects and derive inspiration for the design of
a hexapod robot with unprecedented mobility (RHex—e.g., Saranli et al. 2001).

Sensorimotor Intelligence

Mechanical feedback loops constitute the most basic illustration of the contribution of
embodiment and embeddedness to behavior. The immediate next level can be probably
attributed to direct, reflex-like, sensorimotor loops. Again, robots can serve to study
the mechanisms of “reactive” intelligence. Grey Walter (Walter 1953), the pioneer of this
approach, built electronic machines with a minimal “brain” that displayed phototactic-
like behavior. This was picked up by Valentino Braitenberg (Braitenberg 1986) who
designed a whole series of two-wheeled vehicles of increasing complexity. Even the most
primitive ones, in which sensors are directly connected to motors (exciting or inhibiting
them), display sophisticated behaviors. Although the driving mechanisms are simple
and entirely deterministic, the interaction with the real world, which brings in noise,
gives rise to complex behavioral patterns that are hard to predict.

This line was picked up by Rodney Brooks, who added an explicit anti-representation-
alist perspective in response to the in-the-meantime-firmly-established cognitivistic
paradigm (e.g., Fodor 1975; Pylyshyn 1984) and “good old-fashioned artificial intelli-
gence” (GOFAI) (Haugeland 1985). Brooks openly attacked the GOFAI position in the
seminal articles “Intelligence without Reason” (Brooks 1991a) and “Intelligence without
Representation” (Brooks 1991b), and proposed behavior-based robotics instead. Through
building robots that interact with the real world, such as insect robots (Brooks 1989),
he realized that “when we examine very simple level intelligence we find that explicit
representations and models of the world simply get in the way. It turns out to be better to
use the world as its own model” (Brooks 1991b). Inspired by biological evolution, Brooks
created a decentralized control architecture consisting of different layers; every layer is
a more or less simple coupling of sensors to motors. The levels operate in parallel but
are built in a hierarchy (hence the term subsumption architecture; Brooks 1986). The in-
dividual modules in the architecture may have internal states (the agents are thus not
purely reactive any more); however, Brooks argued against calling the internal states
representations (Brooks 1991b).

2 The description is idealized—in reality, a walking machine would fall into the category of “hybrid
dynamical systems,” where the notions of attractivity and stability are more complicated.
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In the case studies described in the previous section, the agents were either mere phys-
ical machines or they relied on simple direct sensorimotor loops only—resembling
reflex arcs of the biological realm. They were reactive agents constrained to the “here-
and-now” time scale, with no capacity for learning from experience and also no pos-
sibility of predicting the future course of events. Although remarkable behaviors were
sometimes demonstrated, there are intrinsic limitations.

The introduction of first instances of internal simulation, which goes beyond the
“here-and-now” time scale, is considered the hallmark of cognition by some (e.g., Clark
and Grush 1999). This could be a simple forward model (as present already in insects—
see Webb 2004) that provides the prediction of a future sensory state given the current
state and a motor command (efference copy). Forward models could provide a possible
explanation of the evolutionary origin of first simulation/emulation circuitry® and of
environmentally decoupled thought—the agent employing primitive “models” before
or instead of directly operating on the world.

Early emulating agents would then constitute the most minimal case of what Dennett
calls a Popperian creature—a creature capable of some degree of oft-line reasoning
and hence able (in Karl Popper’s memorable phrase) to “let its hypotheses die in its
stead” (Dennett 1995, p. 375). (Clark and Grush 1999, p. 7)

Importantly, we are still far from any abstract models or symbolic reasoning. Instead,
we are dealing with the sensorimotor space and the possibility for the agent to extract
regularities in it and later exploit this experience in accordance with its goals. For ex-
ample, the agent can learn that given a certain visual stimulation, say, from a cup, a par-
ticular motor action (reach and grasp) will lead to a pattern of sensory stimulation (in
humans: we can feel the cup in the hand). The sensorimotor space plays a key part here
and it is critically shaped by the embodiment of the agent and its embedding in the envi-
ronment: a specific motor signal only leads to a distinct result if embedded in the proper
physical setup. If you change the shape and muscles of the arm, the motor signal will not
result in a successful grasp.

Quantifying the Effect of Embodiment Using
Information Theory

For cognitive development of an agent, the “quality” of the sensorimotor space
determines what can be learned. First, the type of sensory receptors—their mechanism

3 See Grush (2004) for the similarities and differences between emulation theory (Grush 2004) and
simulation theory (Jeannerod 2001).
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of transduction—determines what kind of signals the agent’s brain or controller will
be receiving from the environment. Furthermore, the shape and placement of these
sensors will perform an additional transformation of the information that is available in
the environment.

For example, different species of insects have evolved different non-homogeneous
arrangements of the light-sensitive cells in their eyes, providing an advantageous non-
linear transformation of the input for a particular task. One example is exploiting ego-
motion together with motion parallax to gauge distance to objects in the environment
and eventually facilitate obstacle avoidance. Using a robot modeled after the facet eye
of a housefly, Franceschini et al. (1992) showed that the nonlinear arrangement of the
facets—more dense in the front than on the side—compensates for the motion par-
allax and allows uniform motion detection circuitry to be used in the entire eye, which
makes it easy for the robot to avoid obstacles with little computation. These findings
were confirmed in experiments with artificial evolution on real robots (Lichtensteiger
2004). Artificial eyes with designs inspired by arthropods include Song et al. (2013) and
Floreano et al. (2013).

It is not always possible to pinpoint the specific transformation of sensory signals
that is facilitated by the morphology as in the previous case. A more general tool is pro-
vided by the methods of information theory. Information is used in the Shannon sense
here—to quantify statistical patterns in observed variables. The structure or amount of
information induced by particular sensor morphology could be captured by different
measures, for example, entropy. However, information (structure) in the sensory
variables tells only half of the story (a “passive perception” one in this case), because
organisms interact with their environments in a closed-loop fashion: sensory inputs
are transformed into motor outputs, which in turn determine what is sensed next.
Therefore, the “raw material” for cognition is constituted by the sensorimotor variables
and it is thus crucial to study relationships between sensors and motors, as illustrated
by the sensorimotor contingencies (see next section). Furthermore, time is no less im-
portant a variable. Lungarella and Sporns (2006) provide an excellent example of the
use of information theoretic measures in this context. In a series of experiments with
a movable camera system, they could show that, for example, the entropy in the visual
field is decreased if the camera is tracking a moving visual target (a red ball) compared
to the condition where the movement of the ball and the camera were uncorrelated.
This is intuitively plausible, because if the object is kept in the center of the visual field,
there is more “order, i.e., less entropy. A collection of case studies on information-
theoretic implications of embodiment in locomotion, grasping, and visual perception is
presented by Hoffmann and Pfeifer (2011).

Sensorimotor Contingencies

Sensorimotor contingencies (SMCs) were originally presented in the influential ar-
ticle by O’'Regan and Noé (2001) as the structure of the rules governing sensory changes
produced by various motor actions. The SMCs, according to O’'Regan and Nog, are the
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key “raw material” upon which perception, cognition, and eventually consciousness
operates. Furthermore, they sketch a possible hierarchy ranging from modality-related
(or apparatus-related) SMCs to object-related SMCs. The former, the modality-related
SMCs, would capture the immediate effect that certain actions (or movements) have
on sensory stimulation. Clearly, these would be sensory modality specific (e.g.,
head movement will induce a different change in the SMCs of the visual and audi-
tory modalities—turning the head will change the visual stimulation almost entirely,
whereas changes in the acoustic system will be minimal) and would strongly depend
on the sensory morphology. Therefore, this concept is strongly related to what we have
discussed in the previous sections: (1) different sensory morphology importantly affects
the information flow induced in the sensory receptors and hence also the corresponding
SMC:s; (2) the effect of action is already constitutively included in the SMC notion itself.

Although conceptually very powerful, the notion of SMCs was not articulated con-
cretely enough in O’Regan and Noé (2001) such that it could be expressed mathemat-
ically or directly transferred into a robot implementation, for example. Bithrmann
et al. (2013) have proposed a formal dynamical systems account of SMCs. They devised
a dynamical system description for the environment and the agent, which is in turn
split into body, internal state (such as neural activity), motor, and sensory dynamics.
Bithrmann et al. are making a distinction between sensorimotor (SM) environment,
SM habitat, SM coordination, and SM strategy. The SM environment is the relation be-
tween motor actions and changes in sensory states, independent of the agent’s internal
(neural) dynamics. The other notions—from SM habitat to SM strategies—add internal
dynamics to the picture. SM habitat refers to trajectories in the sensorimotor space, but
subject to constraints given by the internal dynamics that are responsible for generating
motor commands, which may depend on previous sensory states as well—an ex-
ample of closed-loop control. SM coordination then further reduces the set of possible
SM trajectories to those “that contribute functionally to a task” For example, specific
patterns of squeezing an object in order to assess its hardness would be SM coordination
patterns serving object discrimination. Finally, SM strategies take, in addition, “reward”
or “value” for the agent into account.

As wonderfully illustrated by Beer and Williams (2015), the dynamical systems and
information theory are two complementary mathematical lenses through which brain-
body-environment systems can be studied. While acknowledging the merits of both
frameworks as “intuition, theory, and experimental pumps” (Beer and Williams 2015),
it is probably fair to say that compared to dynamical systems, information theory has
been thus far more successfully applied to the analysis of real systems of higher dimen-
sionality. This is true for both natural systems—in particular, brains (Garofalo et al.
2009; Quiroga and Panzeri 2009)—and artificial systems. Thus, to study sensorimotor
contingencies in a real robot beyond the simple simulated agents of Bithrmann et al.
(2013) and Beer and Williams (2015), we chose to use the lens of information theory.
Following up on related studies of e.g., Olsson et al. (2004), we conducted a series of
studies in a real quadrupedal robot with rich nonlinear dynamics and a collection
of sensors from different modalities (Hoffmann et al. 2012; Hoffmann et al. 2014;
Schmidt et al. 2013) (see Box 45.1). We have applied the notion of “transfer entropy”
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Box 45.1 Sensorimotor contingencies in a quadruped robot
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FIGURE 45.1. Robot “Puppy” and sensorimotor contingencies.

Experiments were conducted on the quadrupedal robot Puppy (Figure 45.1a), which has
four servomotors in the hips together with encoders measuring the angle at the joint, four
encoders in the passive compliant knees, and four pressure sensors on the feet. We used
the notion of “transfer entropy” from information theory, which can be used to measure
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directed information flows between time series. In our case, the time series were collected
from individual motor and sensory channels and the information transfer was calculated
for every pair of channels two times, once in every direction (say, from hind right motor to
front right knee encoder and also in the opposite direction). Loosely speaking, transfer en-
tropy from channel A to channel B measures how well the future state of channel B can be
predicted knowing the current state of channel A (see Schmidt et al. 2013 for details).

First, we wanted to investigate the “sensorimotor structure,’ i.e., the relative strengths
of relationships between different sensors and motors, which is intrinsic to the robot’s em-
bodiment (body + sensor morphology only). To this end, random motor commands were
applied and the relationships between motor and sensory variables were studied, closely
resembling the notion of SM environment (Bithrmann et al. 2013). The strongest infor-
mation flows between pairs of channels were extracted and are shown overlaid over the
schematic of the Puppy robot (dashed lines) in panel B. The transfer entropy is encoded
as thickness and gray level of the arrows. The strongest flow occurs from the motor sig-
nals to their respective hip joint angles, which is clear because the motors directly drive
the respective hip joints. The motors have a smaller influence on the knee angles (stronger
in the hind legs) and on the feet pressure sensors—on the respective legs where the motor
is mounted, thus illustrating that body topology was successfully extracted (at the same
time, the flows from the hind leg motors and hips to the front knees highlight that the func-
tional relationships are different than the static body structure; see also Schatz and Oudeyer
2009). These patterns are analogous to the modality-related SMCs; just as we can predict
what will be the sensory changes induced by moving the head, the robot can predict the
effects of moving the hind leg, say.

In a second step, we studied the relationships in the sensorimotor space when the robot
was running with specific coordinated periodic movement patterns or gaits. The results
for two selected gaits—turn left and bound right'—are shown in panels C and D, respec-
tively. The flows from motors to the hip joints, which would again dominate, were left out
of the visualization. The plots clearly demonstrate the important effect of specific action
patterns in two ways. First, they markedly differ from the random motor command situ-
ation: the dominant flows are different and, in addition, the magnitude of the information
flows is bigger (the number of bits—note the different range of the color bar compared to
B), illustrating how much information structure is induced by the “neural pattern gener-
ator” Second, they also significantly differ between themselves. The “turn left” gait in panel
Creveals the dominant action of the right leg and in particular the knee joint. In the “bound
right” gait in D, the motor signals are predictive of the sensory stimulation in the hind knees
and also the left foot. The gaits were obtained by optimizing the robot’s performance for
speed or for turning and thus correspond to patterns that are functionally relevant for the
robot and can even be said to carry “value” Thus, in the perspective of Bithrmann et al.
(2013), our findings about the sensorimotor space using the gaits can be interpreted as
studying the SM coordination or even SM strategy of the quadruped robot.

Finally, next to the embodiment or morphology (shape of the body and limbs, type and
placement of sensors and effectors, etc.) and the brain (the neural dynamics responsible
for generating the coordinated motor command sequences), the SMCs are co-determined
by the environment as well. All the results thus far came from sensorimotor data collected
from the robot running on a plastic foil ground (low friction). Panels E and F depict how the
information flows for the bound right gait are modulated when the robot runs on a different
ground (E—Styrofoam, F—rubber). The overall pattern is similar to D, but the flows to
the left foot disappear, and eventually flows to the left knee joint become dominant. This
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is because the posture of the robot changed: the left foot contacts the ground at a different
angle now, inducing less stimulation in the pressure sensor. Also, as the friction increases
(from the foil over Styrofoam to rubber), the push-off during stance of the left hind leg
becomes stronger, resulting in more pronounced bending of the knee. Finally, since the
high-friction ground poses more resistance to the robot’s movements, the trajectories are
less smooth and the overall information flow drops.

While all the components (body, brain, environment) have a profound effect on the
overall sensorimotor space, our analysis reveals that in this case, the gait used (as prescribed
primarily by the “neural/brain” dynamics) is a more important factor than the environment
(the ground)—the latter seems to modulate the basic structure of information flows induced
by the gait. This has important consequences for the agent when it is to learn something
about its environment and perform perceptual categorization, for example. In order to in-
vestigate this quantitatively, we have presented the robot with a terrain (the surface/ground
it was running on) classification task. Relying on sensory information alone leads to signifi-
cantly worse terrain classification results than when the gait is explicitly taken into account in
the classification process (Hoffmann, Stepanova, and Reinstein 2014). Furthermore, in line
with the predictions of the sensorimotor contingency theory, longer sensorimotor sequences
are necessary for object perception (Maye and Engel 2012). That is, while in short sequences
(motor command, sensory consequence), modality-related SMCs (panel B) will be domi-
nant, longer interactions will allow objects the agent is interacting with to stand out. Using
data from our robot, this is convincingly demonstrated in panel G. The first row shows clas-
sification results when using data from one sensory epoch (two seconds of locomotion)
collapsed across all gaits, i.e., without the action context. Subsequent rows report results
where classification was performed separately for each gait and increasingly longer inter-
action histories were available. “Mean” values represent the mean performance; “best” are
classification results from the gait that facilitated perception the most (see Hoffmann et al.
2012 for details).

" “Turn left” was a movement pattern dominated by the action of the right hind leg that was pushing
the robot forward and left. Regarding “bound right,” bounding gait is a running gait used by small
mammals. It is similar to gallop, and features a flight phase, but is characterized by synchronous
action of every pair of legs. However, in this study, we used lower speeds without an aerial phase.

In addition, the symmetry of the motor signals was slightly disrupted, resulting in a right-turning
motion.

from information theory, which can be used to characterize sensorimotor flows in the
robot—for example, how strongly sensors are affected by motor commands—and we
tried to isolate the effects of the body, motor programs (gaits), and environment in the
agent’s sensorimotor space. Finally, we tested the predictions of SMC theory regarding
object discrimination. In our investigations, we have chosen the situated perspective—
analyzing only the relationships between sensory and motor variables that would also
be available to the agent itself. However, information-theoretic methods can also be pro-
ductively applied to study relationships between internal and external variables, such as
between sensory or neuronal states and some properties of an external object (e.g., its
size, Beer and Williams 2015; or any other property that can be expressed numerically).
Using this approach, one can obtain important insights into the operation and temporal
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evolution of categorization, for example. Performing this in the ground discrimination
scenario on the quadrupedal robot constitutes our future work.

While the studies on “minimally cognitive agents” are of fundamental importance
and lead to valuable insights for our understanding of intelligent behavior, the ultimate
target is, of course, human cognition. Toward this end, one may want to resort to more
sophisticated tools, for example, humanoid robots.

HUuMAN-LIKE COGNITION IN ROBOTS

In the previous section, we showed how robots can be beneficial in operationalizing,
formalizing, and quantifying ideas, concepts, and theories that are important for un-
derstanding cognition but that are often not articulated in sufficient detail. An obvious
implication of this analysis is that the kind of cognition that emerges will be highly de-
pendent on the body of the agent, its sensorimotor apparatus, and the environment it is
interacting with. Thus, to target human cognition, the robot’s morphology—shape, type
of sensors, and their distribution, materials, actuators—should resemble that of humans
as closely as possible. Now we have to be realistic: approximating humans very closely
would imply mimicking their physiology, the sensors in the body, and the inner organs,
the muscles with comparable biological instantiation, and the bloodstream that supplies
the body with energy and oxygen. Only then could the robot experience the true con-
cept, e.g., of being thirsty or out of breath, hearing the heart pumping, blushing, or the
feeling of quenching the thirst while drinking a cold beer in the summer. So, even if, on
the surface, a robot might be almost indistinguishable from a human (like, for example,
Hiroshi Ishiguro’s recent humanoid “Erica”), we have to be aware of the fundamental
differences: comparatively very few muscles and tendons, no actuators that can get sore
when overused, no sensors for pain, only low-density haptic sensors, no sweat glands in
the skin, and so on and so forth. Thus, “Erica” will have a very impoverished concept of
drinking or feeling hot. In other words, we have to make substantial abstractions.

Just as an aside, making abstractions is nothing bad—in fact, it is one of the most
crucial ingredients of any scientific explanation because it forces us to focus on the
essentials, ignoring whatever is considered irrelevant (the latter most likely being the
majority of things that we could potentially take into account). Thus, the specifics of
the robot’s cognition—its concepts, its body schema—will clearly diverge from that of
humans, but the underlying principles will, at a certain level of abstraction, be the same.
For example, it will have its own sensorimotor contingencies, it will form cross-modal
associations through Hebbian learning, and it will explore its environment using its sen-
sorimotor setup. So if the robot says “glass,” this will relate to very different specific sen-
sorimotor experiences, but if the robot can recognize, fill, and hand a “glass” to a human
for drinking, it makes sense to say that the robot has acquired the concept of “glass”

Because the acquisition of concepts is based on sensorimotor contingencies, which in
turn require actions on the part of the agent, and because the patterns of sensory stim-
ulation are associated with the respective motor signals, the robot platforms of choice
will ideally be tendon-driven—just like humans who use muscles and tendons for



38

Appendix A. Robots as Powerful Allies for the Study of Embodied Cognition

HUMAN-LIKE COGNITION IN ROBOTS 851

movements. Given our discussion on abstraction earlier, we can also study concept ac-
quisition in robots that have motors in the joints—we just have to be aware of the con-
crete differences. Still, the principles governing the robot’s cognition can be very similar
to that of humans (see Box 45.2 for examples of different types of humanoid robots).

BOX 45.2 Humanoid embodiment for modeling cognition

FIGURE 45.2. Humanoid robots.
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A large number of humanoid robots have been developed over the last decades and many
of them can, one way or other, be used to study human cognition. Given that all of them to
date are very different from real humans—each of them, implicitly or explicitly, embodies
certain types of abstractions—there is no universal platform, but they have all been de-
veloped with specific goals in mind. Here we present a few examples and discuss the ways
in which they are employed in trying to ferret out the principles of human cognition. The
categories shown in Figure 45.2 are musculoskeletal robots (Roboy and Kenshiro), “baby”
robots with sensorized skins (iCub and fetus simulators), and social interaction robots
(Erica and Pepper).

In order to use the robots for learning their own complex dynamics and for building up
abody schema, both Roboy and Kenshiro (Nakanishi et al. 2012) need to be equipped with
many sensors so that they can “experience” the effect of a particular actuation pattern. Given
rich sensory feedback, using the principle that every action leads to sensory stimulation,
both these robots can, in principle, employ motor babbling in order to learn how to move.
Especially for Kenshiro, with his very large number of muscles, learning is a must. A very
important step in this direction is the work of Richter et al. (2016), who have combined a
musculoskeletal robotics toolkit (Myorobotics) with a scalable neuromorphic computing
platform (SpiNNaker) and demonstrated control of a musculoskeletal joint with a simu-
lated cerebellum.

Finally, if the interest is social interaction, it might be more productive to use robots like
Erica or Pepper. Both Erica and Pepper are somewhat limited in their sensorimotor abilities
(especially haptics), but are endowed with speech understanding and generation facilities;
they can recognize faces and emotions; and they can realistically display any kind of facial
expression.

Musculoskeletal robots: Roboy and Kenshiro

Figure 45.2a. Roboy overview: The musculoskeletal design can be clearly observed. At this
point, Roboy has 48 “muscles.” Eight are dedicated to each of the shoulder joints. This can
no longer be sensibly programmed: learning is a necessity. Currently, Roboy serves as a re-
search platform for the EU/FET Human Brain Project to study, among other things, the
effect of brain lesions on the musculoskeletal system. Because it has the ability to express a
vast spectrum of emotions, it can also be employed to investigate human-robot interaction,
and as an entertainment platform.

Credit: © Embassy of Switzerland in the United States of America.

Figure 45.2b. Close-up of the muscle-tendon system. Although the shoulder joint is
distinctly dissimilar to a human one—for example, it doesn’t have a shoulder blade—
it is controlled by eight muscles, which require substantial skills in order to move prop-
erly: which muscles have to be actuated to what extent in order to achieve a desired
movement?

Credit: © Erik Tham/Corbis Documentary/Getty Images.

Figure 45.2¢. Kenshiros musculoskeletal setup. The musculoskeletal design is clearly vis-
ible. At this point, Kenshiro has 160 “muscles”—s0 in the legs, 76 in the trunk, 12 in the
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shoulder, and 22 in the neck. In terms of musculoskeletal system, it is the one robot that
most closely resembles the human. So, if learning of the dynamics in this system is the goal,
Kenshiro will be the robot of choice. Note that although Kenshiro is “closest” to a human
in this respect, it is still subject to enormous abstractions. Currently, Kenshiro serves as a
research platform at the University of Tokyo to investigate tendon-controlled systems with
very many degrees of freedom (Nakanishi et al. 2012).

Credit: Photo courtesy Yuki Asano.

“Baby” robots with sensitive skins

Figure 45.2d. Fetus simulator. A musculoskeletal model of human fetus at 32 weeks of gesta-
tion has been constructed and coupled with a brain model comprising 2.6 million spiking
neurons (Yamada et al. 2016). The figure shows the tactile sensor distribution, which was
based on human two-point discrimination data.

Reproduced from Yasunori Yamada, Hoshinori Kanazawa, Sho Iwasaki, Yuki Tsukahara,
Osuke Iwata, Shigehito Yamada, and Yasuo Kuniyoshi, An Embodied Brain Model of
the Human Foetus, Scientific Reports, 6 (27893), Figure 1d, doi:10.1038/srep27893 © 2016
Yasunori Yamada, Hoshinori Kanazawa, Sho Iwasaki, Yuki Tsukahara, Osuke Iwata,
Shigehito Yamada, and Yasuo Kuniyoshi. This work is licensed under the Creative
Commons Attribution 4.0 International License (CC BY 4.0). It is attributed to the authors
Yasunori Yamada, Hoshinori Kanazawa, Sho Iwasaki, Yuki Tsukahara, Osuke Iwata,
Shigehito Yamada, and Yasuo Kuniyoshi.

Figure 45.2e. The iCub baby humanoid robot. The iCub (Metta et al. 2010) has the size
of a roughly four-year-old child and corresponding sensorimotor capacities: 53 degrees of
freedom (electrical motors), two stereo cameras in a biomimetic arrangement, and over
4,000 tactile sensors covering its body. The panel shows the robot performing self-touch
and corresponding activations in the tactile arrays of the left forearm and right index
finger.

Social interaction robots: Erica and Pepper

Figure 45.2f. Erica, the latest creation of Prof. Hiroshi Ishiguro, was designed specifically
with the goal of imitating human speech and body language patterns, in order to have
“highly natural” conversations. It also serves as a tool to study human-robot interaction,
and social interaction in general. Moreover, because of its close resemblance to humans,
the “uncanny valley”—the fact that people get uneasy when the robots are too human-
like—hypothesis can be further explored and analyzed (see, e.g., Rosenthal-von der
Piitten, Marieke, and Weiss 2014, where the Geminoid HI-1 modeled after Prof. Ishiguro
was used).

Credit: Photo courtesy of Hiroshi Ishiguro Laboratory, ATR and Osaka University.

Figure 45.2g. Pepper, a robot developed by Aldebaran (now Softbank Robotics), although
much simpler (and much cheaper!) than Erica, is used successfully on the one hand to
study social interaction, for entertainment, and to perform certain tasks (such as selling
Nespresso machines to customers in Japan).
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The Role of Development

A very powerful approach to deepen our understanding of cognition, and one that
has been around for a long time in psychology and neuroscience, is to study onto-
genetic development. During the past two decades or so, this idea has been adopted
by the robotics community and has led to a thriving research field dubbed “develop-
mental robotics” Now, a crucial part of ontogenesis takes place in the uterus. There,
tactile sense is the first to develop (Bernhardt 1987) and may thus play a key role in
the organism’s learning about first sensorimotor contingencies, in particular, those
pertaining to its own body (e.g., hand-to-mouth behaviors). Motivated by this fact,
Mori and Kuniyoshi (2010) developed a musculoskeletal fetal simulator with over
1,500 tactile receptors, and studied the effect of their distribution on the emergence
of sensorimotor behaviors. Importantly, with a natural (non-homogeneous) distri-
bution, the fetus developed “normal” kicking and jerking movements (i.e., similar to
those observed in a human fetus), whereas with a homogeneous allocation it did not
develop any of these behaviors. Yamada et al. (2016), using a similar fetal simulator
and a large spiking neural network brain model, have further studied the effects of in-
trauterine (vs. extrauterine) sensorimotor experiences on cortical learning of body
representations. A physical version—the fetusoid—is currently under development
(Mori et al. 2015). Somatosensory (tactile and proprioceptive) inputs continue to be of
key importance also in early infancy when “infants engage in exploration of their own
body as it moves and acts in the environment. They babble and touch their own body,
attracted and actively involved in investigating the rich intermodal redundancies, tem-
poral contingencies, and spatial congruence of self-perception” (Rochat 1998, p. 102).
The iCub baby humanoid robot (Metta et al. 2010) (Box 45.2E), equipped with a whole-
body tactile array (Maiolino et al. 2013) comprising over 4,000 elements, is an ideal
platform to study these processes. The study of Roncone et al. (2014) on self-calibration
using self-touch is a first step in this direction.

Applications Of Human-Like Robots

Finally, this research strand—employing humanoid robots to study human cognition—
has also important applications. In traditional domains and conventional tasks—such
as pick-and-place operations in an industrial environment—current factory automa-
tion robots are doing just fine. However, robots are starting to leave these constrained
domains, entering environments that are far less structured and are starting to share
their living space with humans. As a consequence, they need to dynamically adapt to
unpredictable interactions and guarantee their own as well as others’ safety at every
moment. In such cases, more human-like characteristics—both physical and “mental”—
are desirable. Box 45.3 illustrates how more brain-like body representations can help
robots to become more autonomous, robust, and safe. The possibilities for future
applications of robots with cognitive capacities are enormous, especially in the rapidly
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BOX 45.3 Body schema in humans vs. robots
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FIGURE 45.3. Characteristics of body representations.

Credit: Monkey photo source: Einar Fredriksen/Flickr/Attribution-ShareAlike 4.0

International (CC BY-SA 4.0)

Credit: Brain image source: Hugh Guiney/Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
Credit: Line drawing and equations source: Reproduced with the permission of Dr. Hugh Jack from
http://www.engineeronadisk.com

Credit: iCub Robot source: © iCub Facility—IIT, 2017

A typical example of a traditional robot and its mathematical model is depicted in the upper
right of Figure 45.3. The robot is an arm consisting of three segments with three joints be-
tween the base and the final part—the end-effector. Its model is below the robot—the for-
ward kinematics equations that relate configuration of the robot (joint positions 6,, 6, 6,) to
the Cartesian position of the end-effector (py, py, p,). The model has the following character-
istics: (1) it is explicit—there is a one-to-one correspondence between its body and the model
(a, in the model is the length of the first arm segment, for example); (2) it is unimodal—
the equations directly describe physical reality; one sensory modality (proprioception—
joint angle values) is needed to get the correct mapping in the current robot state; (3) it is
centralized—there is only one model that describes the whole robot; (4) it is fixed—normally,
this mapping is set and does not change during the robot operation. Other models/mappings
are typically needed for robot operation, such as inverse kinematics, differential kinematics,
or models of dynamics (dealing with forces and torques), but they would all share the above-
mentioned characteristics (see Hoffmann et al. 2010 for a survey).

As pointed out earlier, animals and humans have different bodies than robots; they also
have very different ways of representing them in their brains. The panel in the lower left
shows the rhesus macaque and below some of the key areas of its brain that deal with body
representations (see, e.g., Graziano and Botvinick 2002). There is ample evidence that these
representations differ widely from the ones traditionally used in robotics—namely, “the
body in the brain” would be (1) implicitly represented—there would hardly be a “place” or
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a “circuit” encoding, say, the length of a forearm; such information is most likely only indi-
rectly available and possibly in relation to other variables; (2) multimodal—drawing mainly
from somatosensory (tactile and proprioceptive) and visual, but also vestibular (inertial) and
closely coupled to motor information; (3) distributed—there are numerous distinct, but par-
tially overlapping and interacting representations that are dynamically recruited depending
on context and task; (4) plastic—adapting over both long (ontogenesis) and short time scales,
as adaptation to tool use (e.g., Iriki et al. 1996) or various body illusions testify (e.g., humans
start feeling ownership over a rubber hand after minutes of synchronous tactile stimulations
of the hand replica and their real hand under a table; Botvinick and Cohen 1998).

The iCub robot “walking” from the top right to the bottom left in the figure is illustrating
two things. First, in order to be able to model the mechanisms of biological body
representations, the traditional robotic models are oflittle use—a radically different approach
needs to be taken. Second, by making the robot models more brain-like, we hope to inherit
some of the desirable properties typical of how humans and animals master their highly
complex bodies. Autonomy and robustness or resilience are one such case. It is not realistic
to think that conditions, including the body, will stay constant over time and a model given
to the robot by the manufacturer will always work. Inaccuracies will creep in due to wear
and tear and possibly even more dramatic changes can occur (e.g., a joint becomes blocked).
Humans and animals display a remarkable capacity for dealing with such changes: their
models dynamically adapt to muscle fatigue, for example, or temporarily incorporate objects
like tools after working with them, or reallocate “brain territory” to different body parts in
case of amputation of a limb. Robots thus also need to perform continuous self-modeling
(Bongard et al. 2006) in order to cope with such changes. Finally, unlike factory robots that
blindly execute their trajectories and thus need to operate in cages, humans and animals use
multimodal information to extend the representation of their bodies to the space immedi-
ately surrounding them (also called peripersonal space). They construct a “margin of safety;’
a virtual “bubble” around their bodies that allows them to respond to potential threats such
as looming objects, warranting safety for them and also their surroundings (e.g., Graziano
and Cooke 2006). This is highly desirable in robots as well, and can transform them from
dangerous machines to collaborators possessing whole-body awareness like we do. First
steps along these lines in the iCub were presented by Roncone et al. (2016).

growing area of service robotics, where robots perform tasks in human environments.
Rather than accomplishing them autonomously, they often do it in cooperation with
humans, which constitutes a big trend in the field. In cooperative tasks, it is of course
crucial that the robots understand the common goals and the intentions of the humans
in order to be successful. In other words, they require substantial cognitive skills. We
have barely started exploiting the vast potential of these types of cognitive machines.

CONCLUSION

Our analysis so far has demonstrated that robots fit squarely into the embodied and
pragmatic (action-oriented) turn in cognitive sciences (e.g., Engel et al. 2013), which
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implies that whole behaving systems rather than passive subjects in brain scanners need
to be studied. Robots provide the necessary grounding to computational models of the
brain by incorporating the indispensable brain-body-environment coupling (Pezzulo
et al. 2011). The advantage of synthetic methodology, or “understanding by building”
(Pfeifer and Bongard 2007), is that one learns a lot in the process of building the robot
and instantiating the behavior of interest. The theory one wants to test thus automat-
ically becomes explicit, detailed, and complete. Robots become virtual experimental
laboratories retaining all the virtues of “theories expressed as simulations” (Cangelosi
and Parisi 2002), but bring the additional advantage that there is no “reality gap”: there is
real physics and real sensory stimulation, which lends more credibility to the analysis if
embodiment is at center stage.

We are convinced that robots are the right tools to help us understand the embodied,
embedded, and extended nature of cognition because their makeup—physical artifacts
with sensors and actuators interacting with their environment—automatically warrants
the necessary ingredients. It seems that they are particularly suited for investigations
of cognition from bottom up (Pfeifer et al. 2014), where development under particular
constraints in brain-body-environment coupling is crucial (e.g., Thelen and Smith
1994). It also becomes possible to simulate conditions that one would not be able to test
in humans or animals—think of the simulation of fetal ontogenesis while manipulating
the distribution of tactile receptors (Mori and Kuniyoshi 2010). Furthermore, many ad-
ditional variables (such as internal states of the robot) become easily accessible and lend
themselves to quantitative analysis, such as using methods from information theory.
Therefore, the combination of a robot with sensorimotor capacities akin to humans,
the possibility of emulating the robot’s growth and development, and finally the ease of
access to all internal variables that can be subject to rigorous quantitative investigations
create a very powerful tool to help us understand cognition.

We want to close with some thoughts on whether it is possible to realize—next to
embodied, embedded, and extended—enactive robots as well. Most researchers in
embodied Al/cognitive robotics automatically adopt the perspective of extended func-
tionalism (Clark 2008; Wheeler 2011), whereby the boundaries of cognitive systems can
be extended beyond the agent’s brain and even skin—including the body and environ-
ment. However, it has been pointed out by the proponents of enactive cognitive science
(Di Paolo 2010; Froese and Ziemke 2009) that in order to fully understand cognition in
its entirety, embedding the agent in a closed-loop sensorimotor interaction with the en-
vironment is necessary, yet may not be sufficient in order to induce important properties
of biological agents such as intentional agency. In other words, one should not only study
instances of individual closed sensorimotor loops as models of biological agents—that
would be the recommendation of Webb (2009)—but one should also try to endow
the models (robots in this case) with similar properties and constraints that biological
organisms are facing. In particular, it has been argued that life and cognition are tightly
interconnected (Maturana 1980; Thompson 2007), and a particular organization of living
systems—which can be characterized by autopoiesis (Maturana 1980) or metabolism,
for example—is crucial for the agent to truly acquire meaning in its interactions with
the world. While these requirements are very hard to satisty with the artificial systems of
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today, Di Paolo (2010) proposes a way out: robots need not metabolize, but they should
be subject to so-called precarious conditions. That is, the success of a particular instantia-
tion of sensorimotor loops or neural vehicles in the agent is to be measured against some
viability criterion that is intrinsic to the organization of the agent (e.g., loss of battery
charge, overheating leading to electronic board problems resulting in loss of mobility,
etc.). The control structure may develop over time, but the viability constraint needs to
be satisfied, otherwise the agent “dies” (McFarland and Boesser 1993). In a similar vein, in
order to move from embodied to enactive Al, Froese and Ziemke (2009) propose to ex-
tend the design principles for autonomous agents of Pfeifer and Scheier (2001), requiring
the agents to generate their own systemic identity and regulate their sensorimotor inter-
action with the environment in relation to a viability constraint. The unfortunate impli-
cation, however, is that research along these lines will in the short term most likely not
produce useful artifacts. On the other hand, this approach may eventually give rise to
truly autonomous robots with unimaginable application potential.
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Body models in humans, animals, and
robots: mechanisms and plasticity

Matej Hoffmann

10.1 Introduction

Ulric Neisser distinguishes five different selves: the ecological self, the interpersonal
self, the extended self, the private self, and the conceptual self (1988). The high-level
facets of the self—accessible to consciousness, incorporating linguistic information,
etc.—have been receiving relatively more attention. However, here I will focus on the
lowest level—the ecological or sensorimotor self or the ‘body schema—which consti-
tutes a key foundation for the rest. The description by Graziano and Botvinick (2002)
nicely expresses the sensorimotor, multimodal, and spatial nature of the body represen-
tations on which I focus: ‘implicit knowledge structure that encodes the body’s form,
the constraints on how the body’s parts can be configured, and the consequences of this
configuration on touch, vision, and movement’

The first key question I want to address is what the fundamental differences are in
which animals, humans, and robots represent their bodies. While the main goal is
to get an understanding of the mechanisms of ‘the body in the biological brain, the
‘robot world’ can be instrumental here in two ways. First, there is a large body of ma-
ture mathematical tools for representing kinematics and dynamics and for employing
these representations in movement planning and control, as well as for learning models
of physical systems (system identification). These constitute, in some sense, the ‘ideal
world), a neat mathematical description of the problem, which opens up a useful per-
spective on the body models that evolution has arrived at. Second, robots can serve
as embodied computational models of biological body representations. Humanoid
robots possess morphologies—physical characteristics, as well as sensory and motor
apparatuses—that are, in some respects, akin to human bodies and can thus be used
to expand the domain of computational modelling by anchoring it to the physical en-
vironment and a physical body and allowing for instantiation of complete sensori-
motor loops.

The second key question is: Which properties of the biological ‘body schema’ could
be transferred to robots to make them more adaptive and resilient? On one hand,
robots are endowed with neatly engineered body models and control algorithms. Yet,
in many respects, their performance in commanding their bodies in unstructured

Matej Hoffmann, Body models in humans, animals, and robots: mechanisms and plasticity In: Body Schema and Body Image.
Edited by: Yochai Ataria, Shogo Tanaka, and Shaun Gallagher, Oxford University Press. © Oxford University Press 2021.
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environments, adapting to failures or tools, etc., is still hugely lagging behind their bio-
logical counterparts. Therefore, Section 10.4 will examine which of the characteristics
of the ‘body in the brain’ robots should take on board.

10.2 Body models—octopus, primates, robots

Biological and artificial agents have very different bodies, as well as very different rep-
resentations thereof. In this section, I will look at some of the characteristics of bodies
and ‘brains’ of invertebrates, primates, and robots. Reaching will be used throughout as
a behaviour that requires some form of—implicit or explicit—body model.

10.2.1 The invertebrate brain and reaching in the octopus

'Unlike in vertebrates, invertebrate species show an enormous diversity in body plans
and nervous organization (Marder, 2007; Zullo & Hochner, 2011). With more complex
bodies and nervous structures, there is a tendency toward centralization with the for-
mation of a structured cephalic ganglion. Ganglia or their groups become larger and
tend to form semi-autonomous systems for sensorimotor control. Brain development
in the rostral part of the animal comes also from the presence of distal sensing such
as vision. Within the higher nervous system, sensory feedback areas tend to be topo-
graphically organized; central ganglia receive projections from various body parts and
show general somatotopy (Walters et al., 2004; Vitzthum, Muller, & Homberg, 2002;
Wong, Wang, & Axel, 2002). Interneurons become more common and constitute a key
element in processing and integrating information.

The most advanced invertebrate class is the cephalopods—highly derived molluscs.
They feature, on one hand, the highest centralization of the nervous system. On the
other hand, next to the central nervous system (CNS) composed of the brain and two
optic lobes, there is a large peripheral nervous system (PNS) of the body and the arms.
The brain consists of 30-40 interconnected lobes with a high degree of cross-talk; yet,
the interconnections appear less elaborate than in vertebrate brains (Young, 1971).
Despite the high level of centralization and in contrast to vertebrate and insect brains,
there is no obvious somatotopic arrangement in either motor or sensory areas.

The most prominent and most intelligent, and with the largest nervous system
among cephalopods, is the octopus. The octopus has a unique embodiment—a flex-
ible body and eight arms with virtually infinite degrees of freedom. Brain stimulation
reveals that motor control is hierarchically organized into three functional levels. In
the higher motor centres located in the basal lobes, microstimulation evokes com-
plex movements which are, however, not somatotopically represented, but controlled

! The beginning of this section draws heavily on Zullo & Hochner (2011).
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by parallel overlapping circuits representing individual motor programmes. The basal
lobes receive inputs from the optic lobes and other sensory centres.

Yekutieli et al. (2005a) and Yekutieli, Sagiv-Zohar, Hochner, & Flash (2005b) devel-
oped a dynamic model of the octopus arm and used it to hypothesize the mechanism of
how a reaching movement is generated. Despite the complexity of the arm, they found
that in their model, only two control parameters suffice to fully specify the extension
movement of the arm: (1) the amplitude of the activation signal; and (2) the activation
travelling time. This hypothesis seems in line with electromyogram (EMG) recordings
and other evidence from the real octopus. Larger amplitudes would result in the same
kinematics, but larger forces, increasing the arm’s stability against perturbations. For
reaching directed at a particular target, two additional control parameters are neces-
sary for the orientation of the arm base. Considering both the experimental and the
simulation results, Yekutieli et al. (2005b) speculate that the octopus reaches toward a
target using the following strategy:

(1) Initiating a bend in the arm so that the suckers point outward.

(2) Orienting the base of the arm in the direction of the target or just above it.

(3) Propagating the bend along the arm at the desired speed by a wave of muscle ac-
tivation that equally activates all muscles along the arm.

(4) Terminating the reaching movement when the suckers touch the target by stop-
ping the bend propagation and thus catching the target.

There are three kinematic control parameters (two angles for arm base orientation
and one for movement speed) and one dynamic control parameter corresponding to
muscle force.

However, the behavioural repertoire of the octopus is greater. Gutnick, Byrne,
Hochner, and Kuba (2011) prepared a special setup where the octopus has to guide
one of its arms through a maze to reach food in one of three branches marked by a
visual cue. The octopus is capable of such ‘hand-eye coordination’ Also, instead of the
stereotypical largely feed-forward bend propagation, it uses a much slower—but pos-
sibly feedback-controlled—‘search movement. Finally, to bring food to the mouth, the
arm is bent in a specific way, creating ‘virtual joints’ along it.

10.2.2 The body in the primate brain

It is not in my capacity or my goal to review the structure and function of vertebrate
nervous systems. Instead, I will briefly discuss how the body is represented in the brain
of primates, which include monkeys, apes, and humans. Again, reaching will serve as
an example in which a body model of sorts needs to be employed.

The presence of various ‘body maps’ in the primate brain has fascinated scientists
and the general public alike, spurred by the account of Head and Holmes (1911) and the
discovery of the somatotopic representations (the homunculi’) in the primary motor
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and somatosensory cortices (Leyton & Sherrington, 1977; Penfield & Boldrey, 1937).
Neurological conditions and accounts of a whole range of illusions regarding own body
perception (e.g., rubber hand illusion, out-of-body experience, apparition) generated
both seminal research articles (e.g., Botvinick & Cohen, 1998; Lenggenhager, Tadi,
Metzinger, & Blanke, 2007) and public interest. The attention devoted to the represen-
tations of the body in the brain has also led to numerous attempts at describing or de-
fining them, and proposals of a variety of concepts, including superficial and postural
schema (Head & Holmes, 1911), body schema, body image, corporeal schema, etc.,
have been put forth. One characteristic common to all these representations is their
multimodal nature—they dynamically integrate information from different sensory
modalities (visual, tactile, proprioceptive, vestibular, auditory) (Azafién et al., 2016),
while not excluding motor information. However, the concepts of body schema, body
image, and many others are umbrella notions for a range of observed phenomena, ra-
ther than a result of identification of specific mechanisms. The field is thus in a some-
what ‘chaotic state of affairs’ (Berlucchi & Aglioti, 2010), with limited convergence to a
common view (Graziano & Botvinick, 2002; Holmes & Spence, 2004).

Reaching behaviour in primates bears some similarity to that in the octopus.
A reaching movement has some high-level characteristics like the direction of a hand’s
movement in space, the extent of the movement (amplitude), the overall duration
(movement time), and other parameters such as anticipated level of resistance to the
movement (Schoner, Tekiilve, & Zibner, 2018). Also, movement generation involves
cooperation between the CNS and PNS. The exact mechanisms of motor control in
humans and other primates are still debated (see, for example, Lisman, 2015). One
view—the equilibrium point theory—posits that high-level descending motor com-
mands modulate the peripheral reflex loops (such as the stretch reflex) and set a desired
muscle length (Feldman, 2011). Compared to invertebrates, motor control in verte-
brates, specifically mammals and in particular primates, becomes more ‘cortical’ and
the motor cortex has the possibility of more direct control over the details of a par-
ticular movement, which is likely correlated with the need for dexterous manipulation.

Also, it may not be possible to decouple the movement preparation phase from its
execution. The actual movement may be a product of couplings of feed-forward and
feedback control that are necessary to understand the effects such as the uncontrolled
manifold (Scholz & Schoner, 1999; Martin, Reimann, & Schoner, 2019).

It is also not completely clear whether a prerequisite for a reaching move-
ment is localizing the effector—say the arm/hand—in space first. Through cortical
microstimulation, Graziano was able to elicit stereotypical movements in the monkey,
irrespective of the starting position (2006). However, Schoner et al. (2018) speculate
that the stimulation could drive an update of the hand position first, which would be
subsequently used for the movement generation—in line with Scott and Kalaska (1997)
who found that neural tuning curves in the motor cortex depend on the arm’s kine-
matic configuration.

In this chapter, I will specifically focus on a task in which localizing the own body
cannot be circumvented—reaching to own body parts. For example, Lisman (2015)
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notes: ‘More difficult to imagine is how one can reach one’s ear lobe without visual
guidance. This requires knowledge of the position of the target and the position of the
limbs. It has only recently become clear that there is indeed a population code that rep-
resents hand position (Hauschild et al., 2012), but surprisingly little is known about the
muscle and joint signals that allow this computation to be made (Weber et al., 2011).

10.2.3 Robot body models

The world of robots and their body models is completely different. The first striking
difference is that describing it is significantly easier; robot body representations and
control schemes are designed by engineers and are thus very transparent and, unlike in
the brain, we have complete access to all information. Let us take the iCub humanoid
robot as an example. The iCub (Metta et al., 2010) (see Figure 10.1) is a baby humanoid
robot that was designed after a 4-year-old child—with similar body proportions, kine-
matic structure, and sensorimotor capacities. At the same time, it is, to a large extent, a
product of (great) engineering.

In Figure 10.1A, there is a cartoon of the robot, side by side with its computer-aided
design (CAD) model (see Figure 10.1B) and the basic kinematic structure (joints and
links) (see Figure 10.1C). Complete knowledge of the robot structure can be used to ob-
tain a mathematical description of the robot’s kinematics. This essentially corresponds
to a sequence of coordinate transformations between all the reference frames in Figure
10.1D. Every such transformation consists of three translations and three rotations and

©

Figure 10.1 The iCub humanoid robot. (A) Cartoon of the robot. (B) CAD model.

(C) Kinematic structure. (D) Reference frames in upper body.

Image credits: (A) iCub cartoon: Reproduced courtesy of Laura Taverna, Italian Institute of Technology. (B) (C)
iCub kinematic structure: Reproduced with permission from (Parmiggiani, et al., 2012), and courtesy of Alberto
Parmiggiani. (D) Reproduced courtesy of Jorhabib Eljaik.
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has thus six degrees of freedom (DoFs). However, as the robot structure is subject to
specific constraints in three-dimensional space, four parameters suffice to characterize
the transformation between consecutive links/joints. This is the essence of the Denavit-
Hartenberg convention in which every link i (imagine getting from the elbow to the
wrist along the forearm, for example) is described by four parameters: two lengths a,
and d, and two angles & and o, In the iCub—and in most robots for that matter—all
joints are revolute and have a single rotation axis, i.e., a single rotational DoF, like the
human elbow (a ‘hinge joint’). Figure 10.2 shows a schematic of this representation for
the upper body of the robot.

10.2.3.1 Forward kinematics and inverse kinematics

The robot model describes the fixed characteristics of the robot body (long-term or
‘offline’ body representation; see later). The model in Figure 10.2 can be transformed
into equations, whereby the coordinate transformation needed to get from one link
to the next (e.g., from elbow to wrist) can be obtained as a simple matrix multiplica-
tion. To go over more links/joints (e.g., from torso to hand), these multiplications are
simply sequenced. In the canonical form, this will only work for a single posture of
the robot, like the one in Figure 10.1. To know where the body currently is in space, it
has to be combined with the robot ‘proprioception’—the joint angle values. These are
plugged into the equations as one of the orientation parameters (0,). This operation—
combining current joint angle values with the robot model—is known as forward
kinematics, which provides a mapping from joint space to Cartesian space (also called
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Figure 10.2 iCub kinematic model—upper body. (Left) Matlab visualization of the
kinematic chains and reference frames. (Right) Denavit-Hartenberg (DH) parameters for
the head and left eye and left arm. Correspondences for certain link lengths are marked.
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operational space or task space). Thus, transformations between, say, hand frame, body
frame, or eye frame can be readily obtained.

For a robot to reach to a specific position and with a specific orientation in Cartesian
space—no matter in which reference frame the target is expressed as it can be trans-
formed to the base frame—an inverse mapping is needed, from Cartesian space to joint
space, i.e., to acquire the joint angles of the robot arm when the end effector (the hand)
contacts the target. This is dealt with by inverse kinematics. Unlike forward kinematics,
this is a harder problem and not just a matter of substituting for current joint angle values
into the equations. Reaching for a target in three dimensions with a specific orientation
constraints the robot pose in six dimensions (three positions and three orientations).
Hence, a minimum of six DoFs—six joints—is required on the robot part. For six DoF
manipulators—robot arms with six rotational joints—that have a specific geometric
structure, a closed-form solution can be obtained. That is, a solution can be found in-
stantaneously. However, in general, one has to resort to numerical methods. Robots with
more than six DoFs have multiple ways of reaching for the target and hence are called re-
dundant manipulators. Additional criteria are needed to choose among the solutions. In
the iCub, there are seven DoFs in every arm and three additional ones in the torso. The
manipulator is thus highly redundant. Inverse kinematics is solved numerically by using
anon-linear optimizer (Pattacini, Nori, Natale, Metta, & Sandini, 2010).

10.2.3.2 Motion control

Inverse kinematics provides the joint space configuration for the robot in the final
position at the target. However, it does not automatically deal with the trajectory—
joint and end effector positions in time—needed to move between the initial and final
positions. Trajectory generation constitutes its own discipline that deals with planning
such smooth movements using different interpolation methods, for example. Once
the trajectory in joint space is planned, low-level motor controllers in every joint can
be used to bring about the desired movements in time. In the iCub, Pattacini et al.
(2010) designed a bio-inspired dynamical systems-based controller that produces
smooth, minimum jerk trajectories in which the end effector (the hand) follows a
quasi-straight line.

10.2.3.3 Dynamics

While kinematics deals with positions, velocities, and accelerations, dynamics deals
with equations of motion and forces that are needed to produce a particular movement.
The reader is referred to any robotics textbook on the topic. For the iCub, Nori et al.
(2015) provide an example.

10.3 Characteristics of body representations

In this section, I will attempt to compare the most important features of body representa-
tions in animals, humans, and robots. First, a note on terminology is in order. I use ‘body
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representations’ as a general concept that should encompass both body schema and body
image and possibly other body-related notions. However, by using the word ‘representa-
tion, it is not my goal to take a stance in the philosophical debate on representationalist
versus sensorimotor approaches to body awareness (de Vignemont, 2015). The account
will admittedly be biased toward the ‘representationalist’ viewpoint (e.g., Carruthers,
2008; Longo et al., 2010)—also because I come from robotics and computer science—and
will not address the phenomenological perspective and the ‘lived body’ (Merleau-Ponty,
1945). At the same time, I also fully endorse the ‘sensorimotor approach’ and I want to
avoid, or at least reflect upon, imposing the representationalist stance typical of robotics
and (good old-fashioned) artificial intelligence (Haugeland, 1985) onto the biological
‘body in the brain’ (see also our attempt in Hoffmann et al. (2017)). Webb (2006) provides
a useful clarification of the terms transformation, encoding, and representation. The word
representation should be reserved to the strong notion of standing in for something—
properties or states of the body that can be manipulated also when the body itself cannot
be used or sensed directly. Sometimes, the body can be used directly—imagine the
reaching in the octopus discussed above—and it is probably more natural to think that
the ‘brain is in the body’ and does not have to have it all represented, rather than the ‘body
in the brain’ is embodied (cf. a discussion in Alsmith & de Vignemont (2012)).

According to de Vignemont (2015), there are three principal taxonomies of body rep-
resentations. I will list them below, together with their relationship to the account in this
book section:

(1) The triadic taxonomy based on the ‘format’ of body representations (Schwoebel
& Coslett, 2005) distinguishes:

(a) Sensorimotor body representation (also known as body schema).

(b) Visuo-spatial body representation (or body structural description).

(c) Conceptual body representation (or body semantics).

My account will span roughly the first two, leaving the conceptual body repre-

sentation aside.

(2) The functional dyadic taxonomy (Dijkerman & De Haan, 2007; Gallagher, 2006;
Paillard, 1999), based on the perception-action model of vision (‘ventral stream’
or ‘what’ versus ‘dorsal stream’ or ‘where/how’) (Milner & Goodale, 2006),
distinguishes:

(a) Body schema—sensorimotor representations of the body used for action
planning and control.

(b) Body image—lacking a unifying positive definition (Berlucchi & Aglioti,
2010; de Vignemont, 2010); comprises all the ‘other’ (than body schema)
representations about the body that are not used for action: perceptual, con-
ceptual, or emotional.

My account will focus on the representations for action. Robot body models are

also primarily geared toward action. However, interestingly, as their models are

engineered from the outside, they do carry a lot of the flavour that is typical ra-
ther of the ‘what’ pathways that care about semantics of objects, etc.
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(3) The temporal dyadic taxonomy (Carruthers, 2008) is based on the dynamics of
body representations and contrasts:

(a) Long-term or ‘offline’ body representations, such as limb size—what the
body is usually like. These are relatively stable in adulthood and may include
some innate components about body structure (e.g., two arms and two legs).
Carruthers (2008) also argues ‘that the offline body representation must be
an integrated representation, a failure to integrate leads to body integrity
identity disorder’ “That is, it must represent the body as a single thing, rather
than a collection of parts’

(b) Short-term or ‘online’ representations of the body as it is currently, such as
in which posture, constantly updated on the basis of afferent and efferent
information.

In this case, both are obviously equally relevant. From the robotics perspective,

the long-term body representation can be equated with body model. The short-

term representation would be the body state. I will focus more on the long-term
body representations.

To give the discussion concrete contours, let us look at the example in Figure 10.3.
Figure 10.3A depicts a scenario from a series of studies on infants where they were
observed reaching for a vibrotactile stimulus (buzzer) (Hoffmann et al., 2017; Leed,
Chinn, & Lockman, 2019). Two components seem necessary: (1) localizing the
stimulus on the body; and (2) reaching for it. The centre in Figure 10.3A depicts a pos-
sible decomposition into blocks. The left part (up to the ‘localization’ blocks) (Tame,
Azaiién, & Longo, 2019) deals with the ‘localization” or somatoperceptual processing
part. Once the target is localized (spatial localization of touch block), it can be adopted
as the reaching target (illustrated with a ~’), and the motor action can be prepared and
executed. The different shapes for the blocks were reproduced after (Longo et al., 2010)
as follows: ‘inputs are depicted as diamond shapes, body representations as ovals, and
perceptual processes as rectangles. It is interesting to look at this from the temporal
taxonomy perspective; it seems that only the long-term or offline modules count as
representations here. The percepts, however, represent ‘states of the body’ and can
be viewed as short-term or online body representations. Heed, Buchholz, Engel, and
Roder (2015) offer a different conceptualization of this scenario, also known as tactile
remapping—the transformation of a coordinate in a skin-based reference frame into a
coordinate in an external reference frame by integration of posture information. Heed
etal. actually present three variants of the schematics (not reproduced here): (a) remap-
ping view; (b) integration view; and (c) sensorimotor contingency view. In (b) and (c),
the arrows between the ‘localization’ part and the ‘action’ part point in both directions,
which illustrates another important aspect of the problem—a sequential processing
view and decoupling of the perception and action parts may not be justified, something
we touched upon in Section 10.2.2. Analysis of the infant reaching behaviour in the
buzzer experiments shows that looking at the target and reaching often happen simul-
taneously; in addition, for targets on the arms/hands, both the limb with the target and
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Figure 10.3 Reaching to the body. (A) Scenario with reaching for vibrotactile stimuli in
infants (Hoffmann et al., 2017). Photos show an infant presented with the stimulus (left),
in the process of reaching (top right), and in the final posture (bottom right). Centre: a
conceptual model of somatosensory processing (left part, up to ‘~, adapted from Longo,
Azanoén, and Haggard (2010) and Tame, Azanon, & Longo, (2019)) and reaching action.
(B) Schematic illustration of cortical areas that may be responsible for bringing about

the behaviour. (C) Similar scenario on the iCub humanoid robot: tactile stimulus (left),
motor action (top right), and final configuration (bottom right). Centre: block diagram
illustrating the modules used to generate the ‘self-touch’ behaviour (Roncone, Hoffmann,
Pattacini, & Metta, 2014).

Image credits: (A) Flowchart adapted from (Tame, Azafion, & Longo, 2019) under a Creative Commons
Attribution License (CC BY) (https://creativecommons.org/licenses/by/4.0/) and with permission from Longo,
M. R,, Azandn, E., and Haggard, P. (2010). With additional blocks illustrating the motor part. (B) Brain image
adapted from Hugh Guiney/Creative Commons Attribution-Share Alike 3.0 Unported license (CC BY- SA 3.0)
(labels added). (C) Reproduced courtesy of Alessandro Roncone and Matej Hoffmann.
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the reaching contralateral arm often move simultaneously (Chinn, Hoffmann, Leed, &
Lockman, 2019). The more general point of recurrent connections also relates to the
state estimation problem; the ‘percepts’ may not be the result of a single pass that com-
bines information from different sources but may be the result of conflict reconciliation
where activations need to flow back and forth.

Figure 10.3B schematically illustrates some of the cortical areas of the monkey brain
that may be involved in generating this behaviour. Finally, Figure 10.3C shows an in-
stantiation of a similar scenario on the iCub humanoid robot. There is one important
difference—this is not a conceptualization of the behaviour; this is an actual pipeline
that has been used in Roncone, Hoffmann, Pattacini, and Metta (2014) (for the video,
see https://youtu.be/pfse424t5mQ). The blocks correspond to actual pieces of software.
Surprisingly, there is quite a good match with the schematics in Figure 10.3A, which
may be because the schematics of Longo and colleagues is somewhat classical and thus
compatible with engineering models that—mostly for practical reasons—typically
follow a modular design and ‘sense-think-act’ logic.

There are almost countless characteristics of body representations that we can think
of. In what follows, I will sketch some of the important ones, focusing in particular on
those where contrasting the biological and robot worlds can bring the most insight.
Hence, I will, for example, leave the unconscious versus the conscious aspect aside—as
discussed above, the focus here is on the sensorimotor level. I will take a number of ex-
amples from biology and robotics, developing the ideas in Hoffmann et al. (2010) and
Hoffmann & Pfeifer (2018). I will also, sometimes quite speculatively, attempt to chart
the body schema and body image onto the hypothetical axes. Body image will largely
stand for visuo-spatial representation of the body or body structural description—
body percept rather than body concept. The brain areas involved are also only schemat-
ically illustrated.

In Figure 10.4, the iCub humanoid robot and the kinematic model of its upper body
is depicted in panel (A). The model has been essentially handcrafted by following the
Denavit-Hartenberg convention and supplying the corresponding lengths and an-
gles from the CAD model of the robot. Panel (B) adds the possibility to calibrate the
same model automatically as the robot exploits self-observation and self-touch con-
figurations (Stepanova, Pajdla, & Hoffmann, 2019). Panels (D) and (E) depict other
examples of robot self-calibration. Bongard, Zykov, and Lipson (2006) used a quadru-
pedal machine continuously ‘self-modelling’ itself. The robot model had a special na-
ture; it consisted of a physics-based simulator with a copy of the robot’s limbs, motors,
sensors, and even the environment. Within this engineered ‘world and body model,
the robot would search for its kinematic structure by comparing the actions and their
sensory consequences from the physical world with those in the simulator. Sturm,
Plagemann, and Burgard (2009) had a robot arm observe ‘itself” using a camera and
infer its model—learning the structure of a Bayesian network—from motor actions
and observations in the camera. Panel (C) schematically illustrates humans and the
body schema and body image.
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10.3.1 Plasticity

Let us first consider plasticity or adaptivity of body models. Traditional robot models are
fixed—an industrial manipulator is shipped with its model. It may not be directly avail-
able to the customer, but it will be embedded in the robot controller which needs the robot
model(s) for operation. Even industrial robots may require occasional (re)calibration,
which can be performed using different routines. Less accurate or more complex robots,
such as humanoids, may need recalibration more frequently. The work of Stepanova et al.
(2019) (see Figure 10.4B) is one of many examples in which the robot kinematic model
parameters are calibrated. The approach is rather straightforward; redundant informa-
tion about the positions of certain body parts—from self-touch or self-observation in this
case—drives learning; with two hands physically touching and both cameras observing
the point, any mismatch between the position of the corresponding point—after remap-
ping into a common frame of reference—generates an error term used to update the
model (all but the grey parameters are calibrated). Body representations in primate brains
(Figure 10.4C) are known for their plasticity on several timescales. First, body models
need to be discovered by the brain, starting already in the fetal period (see the work of
Kuniyoshi and colleagues on embodied computational models of this in Section 10.4).
Second, body models need to adapt, as the body grows, for example. Third, they adapt
or optimize when some body parts are frequently used in a specific task—when playing
a musical instrument, for example. Fourth, they adapt also on very short timescales like
when adapting to tools or when the subject is tricked by some of the numerous illusions,
like the Pinocchio illusion. In the last case, it is rather a case of ‘short-term body schema’
adaptation—a state estimation process—rather than adaptation of the body model itself,
although this may be happening simultaneously and some after-effects observed. Next
to the temporal taxonomy (online versus offline body representations), I will speculate
about the distinction between body schema and body image on the plasticity axis. It
seems that most of the rapid recalibrations pertain to the body schema which draws more
directly on the inputs from different modalities and their integration. Taking the rubber
hand illusion (Botvinick & Cohen, 1998) as an example, the body schema adaptation is
manifested in the proprioceptive drift; however, the participants also start to quickly in-
corporate the rubber hand into their bodies—'own’ the rubber hand—which is typically
associated with body image (and the insula). The suggested primacy of body schema over
body image (Pitron, Alsmith, & de Vignemont, 2018) may also be relevant here—body
schema adaptation may, in a second step, propagate to body image.

It seems that the brain is rather ‘liberal’ about the constraints imposed on the models
and can be led into believing highly improbable things, like the ‘nose elongation’ during
Pinocchio illusion. Robot models, on the other hand, tend to have quite strict con-
straints or bounds on the model parameters—capitalizing on the knowledge available
from the outside—and would thus not fall for the illusions easily. At the same time,
there are limits to the plasticity. Important evidence suggestive of innate and fixed—
immune to experience—components of body models comes from the phantom limb
phenomenon, which may be experienced following amputation, but also even in some
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subjects who congenitally lack limbs (e.g., Ramachandran & Blakeslee, 1998). That is,
the basic body layout may be, to some extent, hard-wired in the model and immut-
able. The self-calibrating robots in panels (D) and (E) in Figure 10.4 move in that sense
beyond this, as they are able to learn any topology of their body layout—that is why
they are positioned more to the right on the plasticity axis. However, this is clearly an
oversimplification—these robots surpass the brain plasticity in this single aspect only.

10.3.2 Multimodal nature of body models

Standard robot models are amodal—they do not depend on any sensory modality;
they directly describe physical reality like the geometry of the body (see Figure 10.2
or Figure 10.4A). This holds in some sense also for all the other robot body models in
Figure 10.4B, D, E. In Figure 10.4B, the robot model itself is identical to that in Figure
10.4A. The sensory modalities—proprioception, touch, and vision in this case—are
needed to collect the redundant information about the body’s position in space and
update the model. This layer is separated from the model of the robot geometry itself.
In Figure 10.4D, E, the situation is quite similar. Similarly to Figure 10.4B, Figure 10.4E
features self-observation. In Figure 10.4D (Bongard et al., 2006), three modalities—
touch, tilt, and clearance—are used to compare their values from the real robot with
those from alternative body layouts in the simulator. Based on this, the case studies are
localized on the ‘modality’ axis. Body representations in the brain are famous for their
‘multimodality’. Azaiién et al. (2016) review the multisensory contribution to body rep-
resentations: visual, somatosensory (tactile and proprioceptive), vestibular, auditory,
and nociceptive. Hence, ‘body in the brain’ scores highest on the ‘multimodality axis’ in
Figure 10.4. A divide-and-conquer approach is used throughout the article by Azain6n
et al.—modality by modality. This is also discussed by the authors—such an approach
is useful experimentally, but implausible in reality as there would be a lot of ‘cross-
talk’ between the modalities. Indeed, the body representations are assumed to be, in
some sense, unified or coherent. In light of the works on robot self-calibration, this
begs the question of whether the brain arrives, in some sense, to an amodal, modality-
independent model of the, say, body in space, onto which different sensory modalities
converge. This resembles the emulation theory of representation proposed by Grush
(2004) who uses the Kalman filter? metaphor—the amodal, long-term body model is
a central representation, which also includes its relationship with individual sensory
modalities. The filter can then perform state estimation—current state of the body—
by executing a ‘sensory update’® To what extent this would be the case for the brain

2 Coming from signal processing, a Kalman filter is an efficient recursive filter—device or process that removes
some unwanted components or features from a signal—that estimates the internal state of a linear dynamic system
from a series of noisy measurements.

3 Grush, taking human arm as an example, contrasts an internal model in the form of a look-up table storing pre-
vious input-output sequences with an articulated model—a model that includes some variables corresponding to their
counterparts in the musculoskeletal system (e.g., elbow angle, arm angular inertia, tension on quadriceps). Some of
these variables can be measured (e.g., by stretch receptors) and these sensors can also be simulated in the emulator.
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remains unclear. Different distortions of body perception—inheriting some proper-
ties of the imperfect representations of individual modalities like the somatosensory
homunculus—seem to suggest that the brain has not synthesized a perfect amodal
model of its body (see, for example, Fuentes, Longo, & Haggard, 2013 and Longo,
2015). Finally, we can probably say that the body schema is more strongly multimodal,
while the body image—at least as a pictorial description of the body based on mainly
visual exteroception—would be less multimodal.

10.3.3 Explicit/veridical versus implicit/embodied body models

Robot body models are explicit; it is clear what in the model corresponds to what in the
body (e.g., a certain parameter to the length of the left forearm) (see Figure 10.2 and
Figure 10.5A). They are also objective and veridical; the parameters should be the true
physical values of the quantities (lengths, angles, masses, etc.). In the biological realm,
representations in general are not like that. Of course, this depends on the school of
cognitive science, but there seems to be growing consensus about the embodied and
action-oriented nature of cognition (e.g., Engel, Maye, Kurthen, & Konig, 2013). This
should hold for representations of the body as well (Alsmith & de Vignemont, 2012).
‘What the nervous system needs to do, in general, is to transform the input into the
right action’ (Webb, 2006). We can take again the example of reaching behavior. As dis-
cussed in Section 10.2.1, the octopus is able to reach for visual targets, but it may not
know—and may not need to know—how long its arm is or where it is exactly in space.
Orienting the base of the arm and propagating the bend until contact is detected by the
suckers may well suffice. This is embodied action and may be in line with the fact that no
specific body representation—somatotopic or other—sites were found in its nervous
system. The need to represent the body, its state, and the complex inverse kinematics
and dynamics has been largely offloaded to embodiment—the properties of the mus-
cular hydrostat, supported by the PNS and low-dimensional inputs from the CNS. This
is also in line with the thinking of Cisek and Kalaska (2003) who highlight the import-
ance of the online, dynamically generated character of movement generation. At the
same time, they also point out that due to conduction delays inherent to the sensori-
motor system, purely feedback control is limited, or at least slow, perhaps manifested
in the octopus experiments of Gutnick et al. (2011). Successful action is also the only
criterion for the ‘quality’ of what is represented about the animal’s body in its brain;
there is no need for any objective or veridical representation. Hence, the octopus has
been positioned on the far right of the x-axis in Figure 10.5. Insects would be even far-
ther right on this axis, with their ‘body in the nervous system’ so implicit that we may be
reluctant to call this representation altogether.

Similar arguments hold for primate brains, but to a lesser extent. Numerous sites
dedicated to representing the body were found (see Figure 10.3B and Figure 10.5C).
For reaching, some evidence is suggesting that common reference frames encoded in
neurons in the posterior parietal cortex may be used for movement plans (Cohen &
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Andersen, 2002), for example. However, ‘neurophysiological studies routinely fail to
find a significant population of cells whose activity explicitly encodes the output of
that transformation in a unique coordinate system. Instead the output may be im-
plicitly embedded in the distributed pattern of activity across the population ...~
(Cisek & Kalaska, 2003; see also Heed et al., 2015). This is perhaps even more prom-
inent in the motor cortex where it is still being debated what it is the cells are speci-
fying about reach—muscle force, movement direction, or a more abstract end goal
of muscle action (Lisman, 2015). Somatotopy is rather functional than based on the
spatial relationships of the body. The embodied perspective is also appropriate here
(see Corbetta, Wiener, Thurman, & McMahon, 2018, for example). At the same time,
compared to the octopus, much more of the body seems more explicitly represented.
Interestingly, Longo (2015) also considers the implicit-explicit axis for body repre-
sentations and draws a line roughly between the ‘body schema’ and the ‘body image’
In tasks more related to action and where humans do not consciously represent their
body, the body models seem more implicit and also less accurate. These representa-
tions may also be dominated by somatosensation and inherit some of the distortions
typical of the ‘somatosensory homunculi’. Conversely, tasks that relate to conscious
perception of our body seem to draw on more explicit representations that are also
more accurate/veridical (e.g., image of our hand). This is schematically illustrated in
Figure 10.5C.

Finally, works in robotics can also move toward more implicit models—this is in line
with the current advent of deep learning and end-to-end architectures. One example
from the iCub robot is shown in Figure 10.5B (Nguyen, Hoffmann, Pattacini, & Metta,
2019). From motor babbling experience, the robot learns to associate the head and eye
configuration and stereo-image input with arm joint configuration required to reach,
together with the body part that will contact the object. The complete mapping is impli-
citly represented in a deep convolutional neural network. Only the feed-forward com-
ponent is represented, not the motor execution, which is performed using traditional
methods.

10.3.4 Serial versus parallel processing

Another axis that separates robot body models from their biological counterparts is se-
rial/sequential versus parallel processing (y-axis in Figure 10.5). This has to do with the
design, but also with the computing substrate. Robot control architectures tend to have
a serial ‘sense-think-act’ design; in addition, their control systems run on substrates
derived from the classical von Neumann architecture. Biological brains are known for
their massively parallel processing. This is nicely illustrated in the example of visually
guided behaviour in Figure 10.6 (Cisek & Kalaska, 2003). Interestingly, Pitron et al.
(2018) suggest some serial aspect of body representations whereby the body schema
would be feeding the body image.
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Figure 10.6 Sequential versus parallel processing for visually guided behaviour. (A) The
traditional ‘sequential processing’ model of visually guided behaviour. In this model,
visual input is used to construct a model of the world which is used to make decisions.
After decisions are made, a desired trajectory is generated and executed. (B) Schematic
representation of the ‘specification and selection’ architecture for visually guided
behaviour. Under this view, visual information has two different roles: specifying the
parameters of potential motor actions; and defining criteria which bias competition
among those potential actions until a single action is selected. These biasing factors include
attention, behavioural relevance, prior reinforcement, required effort, behavioural context,
learnt associations, motivations, long-term behavioural objectives, desired outcomes,

and any other factor which influences action selection. The processes of specification and
selection occur in parallel and continue even during overt movement. A striking feature of
this architecture is the absence of a central model of the visual world.

Reproduced with permission from, Arbib, Michael A., ed., The Handbook of Brain Theory and Neural
Networks, second edition, Figure 1 from ‘Reaching Movements: Implications for Computational Models, © 2002
Massachusetts Institute of Technology, by permission of The MIT Press.

A second aspect is the presence of recurrent connections. In robot control systems,
the flow of information is sequential and also unidirectional. Conversely, in neural sys-
tems, recurrent connections are ubiquitous. In primate brains, due to their complexity,
hierarchies are formed and information flows back and forth, combining the bottom-
up and top-down influences at different stages of the hierarchy. This is valid univer-
sally, with the circuitry responsible for representing the body not being an exception.
The recurrent nature is also more pronounced in primate nervous systems than in
cephalopods, say—mainly due to the overall difference in the number of neurons and
layers of processing. This difference has also implications on the nature of the online,
or short-term, body representations. In traditional robot frameworks, state estimation
will be at the top of the sensory processing part, perhaps combined with priors from the
model. However, in the brain, state estimation is a highly dynamic, continuous process
combining multisensory integration, top-down priors, etc.—through recurrent loops.
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Finally, the robot case study (see Figure 10.5B) features a purely feed-forward, hence
sequential, neural network.

10.3.5 Modular versus holistic and centralized versus
distributed representations

A final graphical attempt to contrast body models in robots and animals is depicted in
Figure 10.7. At first glance, it would seem intuitive that robot models are centralized,
while ‘body in the brain’ is highly distributed. There is typically only one body model
for a robot. In contrast, in the brain, there are numerous distributed, incomplete body
representations. In this sense, there is some overlap between centralized versus distrib-
uted and explicit versus implicit distinction. However, centralized in this case does not
imply monolithic. In fact, robot body models and associated control modules are highly
modular, as shown in Figure 10.7A. There are distinct modules like forward/inverse
kinematics and dynamics that may draw from the same robot model and be recruited
for different purposes like state estimation, movement planning, etc. There would be
typically only one module of every kind (imagine a software library) providing this
functionality upon request. The representations/modules will thus be universal (as op-
posed to task-specific) and not overlapping. In nervous systems, on the other hand,
there would be often complete sensorimotor loops specialized in a particular task (and
hence task-specific rather than universal). In that sense, every such representation
would be, in some sense, holistic. Their functionality may also be partially overlapping
or redundant. Population coding is a good example; it is striking how unspecific the
receptive fields of individual neurons often are (e.g., Georgopoulos, Kalaska, Caminiti,
& Massey, 1982). Also, many tasks may require some form of representation of the
hand in space, say, but it cannot be excluded that this will be implicitly ‘implemented’
multiple times. This distributed, specialized, and holistic nature is highest for the ner-
vous system of the octopus (see Figure 10.7C); regarding body models in primates (see
Figure 10.7B), the body schema as evolutionarily older and more ‘low-level is on these
axes expected to be closer to the octopus, whereas the body image somewhat closer to
the engineered body models.

10.4 Robots as embodied models of body representations

How can the biological disciplines like cognitive psychology and neuroscience profit
from the viewpoint of robot models? The engineering perspective provides a mature
analytical machinery that deals with the relevant problems and this can be certainly
exploited. For example, consider again the ‘multimodal nature of body models’ dis-
cussed in Section 10.3.2. Next to the Kalman filter metaphor employed by Grush
(2004) to describe how estimating the current body state might work, mathematical
methods can be also employed to answer fundamental questions like under what exact



69

7/8s-£q/$9SUDII /810" SUOWWI09AN LAY //:5d1NY) VS-Ad DD/ 21191 -Ues[ :wd)shs snoatou sndojdQ *(0°¢/es-4q/sasuad1[/S10 suowrwoddAneand//:sdny) vs-xd DD /0N 12q[e -sndo)oo uowroy) :0J0yd (;
*(8ud- ¢ £Av1Dy:a]/Iy1M /810" _IpaWID{IM sUOWITOD// /:5d1)1]) UTRWIOP dT[qN{ :uTe1q afewr Apog (0°¢ V'S -Ad DD) paiiodun ¢¢ MI[ya1eys -uonnquny /Loums ydng woiy pajdepe ureiq ewoyds £pog *(3
TV U0ISH:I[LI /DM /310 BIpawD{IM suowrwod//:sd)y) urewop orqng :uewny Sunjfepp (g) ASo[ouyda], Jo 9ynnsuy uele)] ‘eUIdAR], BINe Jo £5931n05 paonporday :uooyred qn)I () :s71pasd a5v1

"wd)sAs snoarau sy pue sndojoo ay7, (D) (010 BOISY 29 IYdoN[Iag I9)je) (B[NSUI sy “ore Apoq BLIISBIIXD D) X93100 [ejarred 1or1o3sod) oet
Apoq pue (s[rejop 10j ¢'0T 21031 295) BWAYDS Apoq :suonejuasaidar £poq 105 Juejrodwur seare ureIq Jo WORIISI][T SNRWAYDS PUB UBWNE] () "SA[NPOW [0IJUO0D UK
PUE [OPOW dNRWAUDNY ST §0qOI plouewny qn)I () ‘PANGLISIP SNSISA PIZI[BIIUD PUL dISI[OY SNSIIA TR[NPOW :[] $O1ISLId)ORIRYD uonejuasaidar Apog 0T 2ang

a1sTjoY Ienpowr

< >
uonNIIXI Suruuerd UOTJRIUTISd A
JUSWIAOW JUSUWIdAOW Jers

——————T
— e
— -
— -

1
'
’
I
’
I
’
I
\
\
\
\
\
3

-

/

sorureup
3SIaAUT

sonewauny
Pplemioj

SOTRIAUDRY
9sI2AUL

[eSIoATUN X9
pazifennuad

[opour Joqox
afeur Apoq (V)

(@)

paziferoads
8 painqrusip

<€



70

Appendix B. Body models in humans, animals, and robots: mechanisms and plasticity

172 BODY MODELS IN HUMANS, ANIMALS, AND ROBOTS

conditions an agent (or ‘the brain’) can discover the (amodal) notion of space in which
it is embedded and infer its dimensionality from sensorimotor flow only. According
to Piaget (1954), for the infant, initially, ‘no constant relation exists between visual
and buccal space or between tactile and visual space. True, auditory and visual space
are already coordinated, as are buccal and tactile space, but no total and abstract
space encompasses all the others’ Later, these spaces are connected through prehen-
sion (reaching and grasping), and the ‘near’ and far’ spaces become differentiated.
Eventually, through ‘reversible operations'—e.g., whether the object moves in front
of me or I move the head, the image on the retina will be the same—the child may
overcome the space of individual modalities and ‘objectify’ the world, space, and its
body; the body, say, will appear as an object with certain dimensions, independent of
its perception by individual senses. Mathematical and algebraic tools and robotics can
formalize Piaget’s ideas and provide existence proofs for under what exact conditions
an agent may develop spatial knowledge and give precise content to these concepts.
Pioneered by Henri Poincaré, compensability (~ reversible operations) was exploited
by Philipona, O’Regan, and Nadal (2003) who showed how an agent can infer the di-
mensionality of space from proprioception and exteroception, and this was extended
by Terekhov and O’Regan (2016) to use coincidence detection in neural networks as
the basis of a way of discovering the notion of space. Laflaquiere, O’'Regan, Argentieri,
Gas, and Terekhov (2015) explicitly considered the agent’s ‘point of view’ in the sen-
sorimotor flows. An alternative approach makes use of self-contact; the ‘body in space’
can emerge from the structure of the proprioceptive-tactile space in self-touch con-
figurations (Roschin, Frolov, Burnod, & Maier, 2011; Marcel, Argentieri, & Gas, 2016).
Such models do not prove that these solutions are used by the brain, but they provide
hypotheses and one can then look for them in the neural code.

Second, next to models at high level of abstraction like the simulated sensorimotor
agents, robotics can provide a much higher degree of realism when it comes to mim-
icking biological bodies. This may be necessary to make progress beyond the existing
models addressing coordinate transformations or multisensory integration (Xing
& Andersen, 2000; Pouget, Deneve, & Duhamel, 2002) that typically concern very
simplified scenarios with one- or two-dimensional geometry, one or two joint angles
for the proprioceptive modality, etc. More than 15 years of research in the laboratory
of Yasuo Kuniyoshi stands out in this respect; a highly realistic musculoskeletal fetal
simulator (21 rigid body parts connected by 20 joints with 36 DoFs, 390 muscles with
proprioceptive receptors, and 3000 tactile mechanoreceptor models) has been devel-
oped and coupled to a spinal circuit model (neural oscillators, a and y motor neurons,
and sensory interneurons) and a cortical model (2.6 million spiking neurons and 5.3
billion synaptic connections) (Yamada et al., 2016). Figure 10.8 A shows the human-like
distribution of tactile receptors on the fetal body. Mori and Kuniyoshi (2010) studied
the effect of this distribution on the emergence of sensorimotor behaviours; with a nat-
ural (non-homogeneous) distribution, the fetus developed ‘normal’ kicking and jerking
movements (i.e., similar to those observed in a human fetus), whereas with a homo-
geneous allocation, it did not develop any of these behaviours—just one illustration
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Figure 10.8 Robots as embodied computational models of body representations. (A) Fetus
simulator (Yamada et al., 2016). (B) Musculoskeletal robot Kenshiro (Asano, Okada, &

Inaba, 2019). (C) iCub humanoid robot.

Image credits: (A) Reproduced from Yamada, Y. et al. An Embodied Brain Model of the Human Foetus, Sci Rep,
6 (27893), Figure 1d, doi:10.1038/ srep27893 (2016) under the Creative Commons Attribution 4.0 International
License CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/) (B) Reproduced with permission from (Yuki
Asano, Kei Okada & Masayuki Inaba, 2019) and courtesy of Yuki Asano and JSK robotics laboratory in the
University of Tokyo.

of the importance of the need for embodying the models related to body representa-
tions. Simulating physics can be computationally heavy and there is always a risk that
the simulator does not get certain properties right. Therefore, physical robots are an
indispensable tool. Figure 10.8B shows one of a series musculoskeletal humanoids—
Kenshiro (160 ‘muscles’ 50 in the legs, 76 in the trunk, 12 in the shoulder, and 22 in
the neck) (Asano, Okada, & Inaba, 2019). Such platforms provide the right challenge
to model the impact of the details of the motor system on body representations and
reaching behaviours. Richter et al. (2016) have combined a musculoskeletal robotics
toolkit (Myorobotics) with a scalable neuromorphic computing platform (SpiNNaker)
and demonstrated control of a musculoskeletal joint with a simulated cerebellum.
Finally, the iCub baby humanoid robot (see Figure 10.8C) is my platform of choice
for models of body representations. It lacks some of the biological details of the other
platforms—its whole body skin has a uniform density of tactile receptors and it is
driven by standard electric motors rather than by artificial muscles—but it is a very ver-
satile platform with all the key sensory and motor capacities. For example, we showed
how it can be used to learn its ‘somatosensory homunculus’ (Hoffmann, Straka, Farkas,
Vavrecka, & Metta, 2018) or self-calibrate using self-touch (Roncone et al., 2014) or
self-touch and self-observation (Stepanova et al., 2019).

10.4 Which characteristics of biological body representations
should robots take on board?

What properties that biological body representations manifest should robot models
copy? One feature that is clearly desirable is adaptivity. Robot models need to be
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developed in the first place. Then, additional calibration procedures may be required
for every robot exemplar and also after deployment on the factory shop floor. During
operation, the robot is subject to wear and tear or other conditions might change,
calling for additional calibration. All of these processes are costly and often require
the intervention of professionals with specialized equipment and possibly suspending
production. The ‘body in the brain, on the other hand, seems to develop largely from
scratch and displays plasticity on all of these timescales—adapting to growth or fail-
ures, as well as performing rapid recalibration when working with a tool, for example.
Automatic robot self-calibration is thus desired and solutions for this are being de-
veloped. For the robot to self-calibrate, it needs redundant sources of information
about its body. There is a growing number of powerful, yet economic, sensors for
robots available (cameras, RGB-D cameras, inertial measurement units, force/torque
sensors, tactile sensors) and they can be exploited for calibration. Multimodality—
another property of biological body representations—thus enables plasticity (see
Figure 10.4). Such an extension of robot models should thus be unproblematic and is
already happening.

I have sketched also other axes—robot body models are typically explicit, veridical
(see Figure 10.5), universal, centralized, and modular (see Figure 10.7). All of these
are—from an engineering perspective—very convenient properties. For example,
being explicit and universal often implies that the models are capable of extrapola-
tion; if transformations in three-dimensional space are represented using appropriate
mathematical tools, they will always work—even in previously unseen circumstances.
Implicit models would typically be expected to interpolate only, i.e., provide mean-
ingful estimations within the range of existing examples only. Being veridical, or ob-
jective, implies that robot body models can be easily validated from the outside. The
universal, centralized, and modular nature is ideal from a maintenance perspective.
The kinematic model is only in one place and any updates will be automatically propa-
gated to all other modules using it. One important additional convenient property that
is a consequence of the features listed above is interpretability; it is possible to under-
stand the model which is key for maintenance, debugging, etc. In this sense, there seem
to be good reasons for preserving these properties.

Yet, these very characteristics are responsible for some inherent limitations. In par-
ticular, robot body models and associated control architectures lack robustness. The
centralized and universal feature makes every module critical and that creates bottle-
necks. Redundancy is against software development principles, but it importantly
contributes to the resilience of animals. When faced with injuries, impairments, or le-
sions, they can find alternatives to performingatask. Implicit models are gaining popu-
larity with the advent of deep learning (Nguyen et al., 2019) (for a survey in robotics,
see, for example, Stinderhauf et al., 2018). This can be seen as a step toward brain-like
models. Making robot control more embodied—exploiting the body morphology
or local feedback loops—would be another step in this direction. However, there
are trade-offs associated with this; mainly, the interpretability of such implicit, or
black-box, models is reduced, which is a downside when they are part of applications
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where, for example, safety is at stake. Another difference is the sequential versus par-
allel processing (see Figure 10.6). Having multiple potential movement plans always
ready will also improve the robustness of robot behaviour when faced with unex-
pected situations.

In summary, the strategy employed in robot modelling and control—a single, uni-
versal, veridical body model associated with corresponding control schemes—makes
robots rather brittle when faced with failures or unexpected changes. Instead, the so-
lution evolved by animals—multiple, distributed, partially overlapping, task-specific,
and parallel architectures—makes them particularly robust and resilient.

10.5 Conclusion

I have outlined a number of characteristics of robot body models, as well as body rep-
resentations in nervous systems. Most often, the nature of these models is very dif-
ferent, often ending up on opposite ends of different schematic axes. There seems to
be a general trend—on many of the axes sketched in Section 10.3, the sequence is from
robot body models, over body image and body schema, to the body representation in
the octopus. Paraphrasing Brooks (1991), the octopus is most faithful to the strategy
that the body is its own best model. Despite the efforts of Brooks and others, robots still
heavily rely on models of their bodies—fixed, amodal, explicit, veridical, serial, cen-
tralized, and universal. Interestingly, the body image is the second closest to the robot
side, which begs the question—asked by Yochai Ataria—to what extent the robots may
be like Ian Waterman, the famous ‘man who lost his body’ (proprioception and touch)
(Cole & Paillard, 1995). Indeed, just like deafferented subjects who ‘lost their body
schema, robots rarely recruit an implicit sensorimotor representation of their body or
the body directly (without modelling it) (see also Hoffmann & Miiller, 2017). Also, as
their body models are explicit and veridical, they resemble the ‘pictorial, body image-
like representation of their bodies. Vision is also the main sensory modality and most
self-calibration approaches rely on it. One difference remains—robots have proprio-
ception, joint angle readings from encoders, and these, together with vision, are em-
ployed to bring about reaching movements. However, they rarely have touch (and may
be clumsy and slow, just like Ian Waterman) and without their body model cannot do
pretty much anything.

We have seen that the way animals and machines represent their bodies is quite dif-
ferent. Can robots contribute to our understanding of the ‘body in the brain'? As we
have seen in Section 10.4, this can be the case in two ways: (1) employing the math-
ematical machinery can provide proofs of what is possible—extracting body as an
object in three dimensions from multimodal sensory information, for example; and
(2) using robots as embodied computational models of body representations. In all
cases, one should reflect upon using robots, such that the ‘design decisions’ typical
for robot models are not blindly applied to the biological world. In terms of perform-
ance (Section 10.5), interestingly, the rather ‘messy’ way adopted by biology—which is
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also why our understanding of the mechanisms is still limited—is surprisingly good.
Neither the models nor the behavioural performance are optimal, but they are good
enough and highly robust. On the other hand, robot body models and control are very
neat, transparent, universal, and overall highly parsimonious and optimized. Yet, the
performance is fragile. One factor to consider here is that the criterion for quality of the
models in animals is the success in the action/task for which the particular body repre-
sentations were recruited. Robot body models ultimately also serve actions; however,
the criterion for model quality is typically rather that it is a veridical representation of
something—the robot link length, for example. The deep learning type of models may
provide one of the ways of bridging machine learning and neuroscience (e.g., Richards
etal., 2019).
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Synonyms

robot body schema, learning body representations, automatic self-contained robot
calibration, robot model identification

Definitions

body model refers to the representation of the robot body. Typical examples are
robot kinematic model (e.g., using Denavit-Hartenberg convention) or robot dy-
namic model.

self-calibration is the process of automatically finding or fine-tuning model pa-
rameters by the robot itself—without the use of external metrology.

Overview

Typically, mechanical design specifications provide the basis for a robot model and
kinematic and dynamic mappings are constructed and remain fixed during opera-
tion. However, there are many sources of inaccuracies (e.g., assembly process, me-
chanical elasticity, friction). Furthermore, with the advent of collaborative, social,
or soft robots, the stiffness of the materials and the precision of the manufactured
parts drops and Computer-aided design (CAD) models provide a less accurate ba-
sis for the models. Humans, on the other hand, seamlessly control their complex
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bodies, adapt to growth or failures, and use tools. Exploiting multimodal sensory
information plays a key part in these processes. In this chapter, differences between
body representations in the brain and robot body models are established and the
possibilities for learning robot models in biologically inspired ways are assessed.
When it comes to representation learning, the body is receiving little attention
both in cognitive science and in Artificial Intelligence and deep learning: the focus
is typically on world models or task learning. However, the body is not a mere in-
terface between the mind or brain and the world, but plays an absolutely key part in
behavior generation as well as cognition (e.g., (Pfeifer and Bongard 2007)). We can
distinguish between the body model as such—referred to as body schema or body
image in psychology and neuroscience—and forward and inverse models that link
the body state with motor action and add the temporal dimension (see (Hoffmann
et al 2010; Nguyen-Tuong and Peters 2011) for detailed accounts). Highly relevant
are also mappings between joint space and task space (forward and inverse kinemat-
ics, plus differential kinematics) and between accelerations and forces (forward and
inverse dynamics). Traditionally, robot model identification involves fine-tuning of
parametric models using external metrology systems and non-linear least squares
optimization (Hollerbach et al 2016). Mappings that are difficult to obtain analyti-
cally, such as inverse kinematics or dynamics, can be estimated using different re-
gression methods ((Nguyen-Tuong and Peters 2011; Sigaud et al 2011) for surveys).
Recently, deep learning applied to robotics (e.g., (Levine et al 2018)) has taken a
completely different approach focusing on task-specific end-to-end mappings that
largely sidestep body modeling. In line with this classification, an overview of three
main research strands is presented: (i) automatic self-contained calibration where
sensors on the robot and self-contact possibilities of humanoid robots are leveraged;
(ii) biologically inspired body model adaptation; and (iii) deep learning approaches.
There are many ways in which one can characterize the properties of body mod-
els. Fig. 1 schematically illustrates some of them in two dimensions: adaptivity and
“multisensoriality”. A number of prominent examples from robotics are shown, to-
gether with biological body representations in the brain. Traditionally, characteris-
tics of body models in robotics and biology are largely opposite. However, with the
advent of learning approaches in robotics, robot body models are catching up in
some aspects. Finding the optimal nature of body models is a major challenge.

Adaptivity of body models

Let us look at Fig. 1. The x-axis spans from fixed body models on the left to highly
adaptive (also called plastic in neuroscience) models on the right. Traditional robot
models are fixed: an industrial manipulator is shipped with its model. It may not
be directly available to the customer, but it will be embedded in the robot controller
which needs the robot model(s) for operation. The iCub humanoid robot (Metta et al
2010) and the kinematic model of its upper body is depicted in panel A. The model
has been essentially hand-crafted by following the Denavit-Hartenberg (DH) con-
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Fig. 1 Body model characteristics. (A) iCub humanoid robot and its kinematic model. (B) iCub
kinematic self-calibration using self-observation and self-touch (Stepanova et al 2019). (C) Hybrid
model of the ANYmal robot (Hwangbo et al 2019). (D) Deep generative model of iCub sensori-
motor space (Zambelli et al 2020). (E) Baxter robot poking — deep learning (Agrawal et al 2016).
(F) Robot manipulators learning to grasp end-to-end (Levine et al 2018). (G) Four-legged machine
learning its body structure (Bongard et al 2006). (H) Robot manipulator learning body structure
from self-observation (Sturm et al 2009). (I) Human and schematic illustration of brain areas im-
portant for body representations. Figure revised and expanded from (Hoffmann 2021). Credit: A —
iCub cartoon: Laura Taverna, Italian Institute of Technology. Credit: I — Walking human: Public do-
main (https://commons.wikimedia.org/wiki/File:BSicon_WALK.svg). Credit
I — Brain image source: Hugh Guiney / Attribution-ShareAlike 3.0 Unported (CC BY- SA 3.0).

vention and supplying the corresponding lengths and angles from the CAD model
of the robot. Body representations in primate brains (panel I) are located at the other
extreme of the adaptivity axis. Neural representations, including those pertaining
to the body are known for their plasticity on several time scales. First, body mod-
els need to be discovered by the brain, starting already in the fetal period. Second,
body models need to adapt as the body grows. Third, they adapt or optimize when
some body parts are frequently used in a specific task—when playing a musical in-
strument, for example. Fourth, they adapt also on very short time scales like when
adapting to tools or when the subject is tricked by some of the well-known illusions,
like the Rubber Hand illusion. Sometimes, the brain can be led into believing highly
improbable things, like the “nose elongation” during Pinocchio illusion, but there
are also limits to the plasticity. Important evidence suggestive of innate and fixed
components of body models comes from the phantom limb phenomenon, which
may be experienced even in subjects who congenitally lack limbs (e.g., (Ramachan-
dran and Blakeslee 1998)). That is, the basic body layout may be to some extent
hard-wired in the model and immutable.

Works in robotics feature different degrees and also types of adaptivity. The work
of Stepanova et al (2019) (panel B) is an example of kinematic calibration of the
complete robot body, including camera positions. The kinematic structure is known
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a priori and only the DH parameters of every link are calibrated. In case of panel
C (Hwangbo et al 2019), the degree of adaptation is limited to learning the actua-
tor dynamics: a mapping from motor commands to torques. The models in panels
D (Zambelli et al 2020), E (Agrawal et al 2016), and F (Levine et al 2018) are all
examples of deep learning. Zambelli et al (2020) use a variational autoencoder to
enable the iCub to learn representations of its sensorimotor capabilities from dif-
ferent sensor modalities. This is a data-driven procedure and the generative model
will essentially learn to reproduce “whatever is in the data streams”. Embodiment
constrains what these channels may contain and the body may thus be implicitly
“represented” in the whole pipeline and in a somewhat compressed/abstract form in
the hidden layers. However, no constraints on body layout, for example, are present.
The examples in E (Agrawal et al 2016) and F (Levine et al 2018) are extensions of
the traditional domain of Convolutional Neural Networks (CNNs), which is visual
object recognition, to robot grasping or poking: a Cartesian space representation of
the manipulation action is added to the images of the scene. Agrawal et al (2016)
learn a prediction of the consequences of a poking action (forward model) as well
as how to poke an object to achieve a desired effect (inverse model) within the same
network and claim that this regularizes the feature space, forcing it into a more ab-
stract representation than at pixel level. The network in (Levine et al 2018) predicts
whether a particular grasp will be successful. Both architectures use end-to-end,
model-free, learning and hence their degree of adaptivity is high in the sense that
the mapping that will be learned is not engineered or constrained a priori. This,
however, also means that what they learn is specific to the task at hand. They learn
a representation related to success of a manipulation action in a given visual scene
rather than a model of the robot body.

Bongard et al (2006) used a quadrupedal machine continuously “self-modeling”
itself. The robot model had a special nature: it consisted of a physics-based simulator
with a copy of the robot’s limbs, motors, sensors and even the environment. Sturm
et al (2009) had a robot arm observe “itself” using a camera and infer its model:
learning the structure of a Bayesian network. These self-calibrating robots (panels
G and H) are located most to the right from the works in robotics on the adaptivity
axis, as they are able to learn any topology of their body layout (unlike B and C) and
they are also able to adapt these reprentations online (unlike the other approaches
and especially the deep learning models, C-F, where extensive offline training is
typically required). Still, the machines’ body models are importantly lagging behind
the brain plasticity, as schematically illustrated by the break in the adaptivity axis
on the right.

Multimodal nature

The y-axis in Fig. 1, deals with the number of sensory (and motor) modalities that
enter the model. Standard robot models are amodal—they do not depend on any
sensory modality. They directly describe physical reality like the geometry of the
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body—the kinematic model of the iCub (panel A), for example. This holds in some
sense also for many other robot body models: panels B, G, H. In B, the robot model
itself is identical to that of A. The sensory modalities—proprioception, touch, and
vision in this case—are needed to collect redundant information about the body’s
position in space and update the model. This layer is separated from the model of
the robot geometry itself. In G, H, the situation is quite similar. In (Bongard et al
2006), the robot would search for its kinematic structure by comparing the actions
and their sensory consequences (touch, tilt and clearance) from the physical world
with those in the simulator. Sturm et al (2009) learn the structure of a Bayesian
network from motor actions and observations in the camera. The models in E and
F combine vision and some Cartesian vector related to action; the model in C maps
motor commands to joint torques. The model of (Zambelli et al 2020) (panel D) with
joint positions (proprioception), vision, touch, sound, and motor commands does not
lag much behind the brain in terms of the number of modalities. In general, leaving
aside how many modalities they use, the deep learning models (panels C, D, E, F)
are different than the other robotic models (B, G, H) in that they do not merely use
the sensory inputs to feed an amodal model. Instead, these neural network models
intrinsically operate within the multimodal space.

Body representations in the brain (I) are famous for their multimodality. Azafién
et al (2016) review the multisensory contribution to body representations: visual, so-
matosensory (tactile and proprioceptive), vestibular (inertial), auditory, and nocicep-
tive (pain sensation). Hence, “body in the brain” scores highest on the multimodality
axis. At the same time, body representations are assumed to be in some sense uni-
fied or coherent. In light of the works on robot self-calibration, this begs the question
whether the brain arrives in some sense to an amodal, modality-independent, model
of the, say, body in space, onto which different sensory modalities converge (see
(Grush 2004)).

Universal and modular versus specialized end-to-end models

There are also other axes that one can devise to investigate the character of body
models. For example, neural representations are known to be distributed, while tra-
ditional robot representations are centralized. Whereas this “spatial aspect” may be
also related to the computational substrate (neurons versus computers), more im-
portant is a functional division. Albeit centralized, robot body models are highly
modular. For the iCub (Fig. 1A), there would normally be a single model of its
kinematics and another one of its dynamics (mass distribution etc.). Then, there are
distinct modules like forward/inverse kinematics and dynamics that may draw from
the same robot model and be recruited for different purposes like state estimation,
movement planning etc. There would be typically only one module of every kind
(imagine a software library) providing this functionality upon request. The repre-
sentations/modules will thus be universal and not overlapping. For deep learning
applied to robotics, this is not the case. Levine et al (2018) or Agrawal et al (2016)
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specialize on a single task (grasping/poking); a different task will likely need a dif-
ferent network. The representations are thus end-to-end, task-specific and in case of
multiple tasks also overlapping.

In nervous systems, there may also be complete sensorimotor loops specialized
on indvidual tasks, partially overlapping or redundant. However, this approach does
not scale well. In the human brain, there are areas where speficic representations
of the body have been found. The somatotopic representations in the primary motor
and somatosensory cortices (e.g. (Penfield and Boldrey 1937))—the “homunculi”—
are well known. In the Posterior Parietal Cortex (PPC), the somatotopy is less pro-
nounced, but it is regarded as a site where information about the body from differ-
ent modalities converges. Specific areas related to representations of body parts or
reaching targets in different reference frames have been found. These are recruited
in different tasks or contexts and hence, there is certain universality and modularity.
More details and visualizations are available in (Hoffmann 2021).

Key Research Findings

The theory for traditional robot model identification is well established and deter-
mining kinematic as well as inertial parameters of robot manipulators is cast as
least-squares parameter estimation (Hollerbach et al 2016). For robot control, ad-
ditional mappings are often needed. Some can be readily obtained from the robot
model (e.g., forward kinematics) while some (like inverse kinematics or dynam-
ics) need to be approximated. A survey of different regression methods and their
performance is provided in (Nguyen-Tuong and Peters 2011; Sigaud et al 2011).
Here, a review of the following three research strands is provided: (i) automatic
self-contained calibration, (ii) biologically inspired body model adaptation, and (iii)
deep learning for robotics and its relation to body models.

Automatic self-contained calibration

For humans and animals, there are no external measurement systems to help them
calibrate their bodies and there is also no ground truth information regarding the ge-
ometric or inertial parameters of different body parts. Body models are developed in
infancy in a self-contained multisensorial fashion—by matching the redundant in-
formation about the body contained in different sensory modalities. There is a grow-
ing number of powerful yet economic sensors for robots available (cameras, RGB-D
cameras, inertial measurement units, force/torque sensors, tactile sensors) and they
can be exploited for automatic self-contained calibration. Calibration of kinematic
parameters is our focus here. The robot kinematic structure is typically represented
using the DH convention or modified versions thereof (Hollerbach et al 2016)—all
of which require only four rather than six parameters (3 translations, 3 rotations)
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to locate one reference frame relative to another. The DH convention, being more
parsimonious, is advantageous as the number of parameters being calibrated is re-
duced. However, it only applies to structures consisting of revolute and prismatic
joints. Sometimes, like for sensor locations on the robot body or custom end effec-
tors, general 6D transformations may be needed. Alternative parametrizations like
the twist representation used in (Martinez-Cantin et al 2010) are also possible. All
the parameters of kinematic chain may be subject to calibration (e.g., (Hersch et al
2008; Stepanova et al 2019)) or only joint offsets, sometimes dubbed “daily cali-
bration” (Nickels 2003) (e.g., (Vicente et al 2016)). Standard calibration proceeds
in batch, i.e. offline, mode using non-linear least squares optimization methods like
Gauss-Newton or Levenberg-Marquardt. Online methods, which are likely closer
to how body models adapt in biological systems, have also been proposed (gradient
descent for stochastic approximation (Hersch et al 2008); recursive least-squares es-
timation (Martinez-Cantin et al 2010); particle-based Bayesian estimation (Vicente
et al 2016)).

Self-observation

Cameras mounted on a robot can be used to calibrate its geometric parameters
through self-observation of its end effectors or other parts of the body. This is a nat-
ural extension of open-loop kinematic calibration (Hollerbach et al 2016), whereby
the external measurement system, like laser tracker, is replaced by a vision sensor
on the robot itself. The theory for this approach is laid out in Bennett et al (1991) for
a stereo camera system observing a robot arm, calibrating the manipulator’s kine-
matics, extrinsic and intrinsic camera parameters. The main difference to open-loop
calibration is that the location of the sensor will typically be calibrated as part of the
robot kinematics—as a chain leading to the camera and terminating with camera
extrinsic parameters—rather than a single 6D transformation from the robot refer-
ence frame to that of the external device. Sturm et al (2009) had a camera observe
a manipulator with markers allowing 6D pose estimation on every robot link which
provided enough information that even topology of the arm could be learned. More
often, only the robot end effector can be observed and if a standard camera is used,
robot pose cannot be observed in 3D space but only in camera reprojection (pixel
space). The remainder of the works cited used humanoid robots. Recognition of
the end effector can be facilitated by a colored marker (e.g., on a tool held by the
robot (Hersch et al 2008); attached to the hand (Martinez-Cantin et al 2010; Nickels
2003)). Such fiducial markers can be avoided when the robot wrist, hand, or fingertip
are identified directly in the image (Birbach et al 2015; Fanello et al 2014; Vicente
et al 2016). Self-observation can be used to calibrate the robot kinematics, while
camera parameters may be calibrated by other means and regarded as fixed (e.g.,
(Martinez-Cantin et al 2010)) or may be subject to calibration as well (extrinsic and
intrinsic (Birbach et al 2015); extrinsic only (Stepanova et al 2019)). Fanello et al
(2014), instead of tuning the robot parametric model, learned an additional trans-
formation that can be applied on top of the kinematic and camera models and that
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compensated for residual errors in different positions in the workspace. Finally, self-
observation can be also applied to learning models of higher order, such as velocity
kinematics for the end effector (Droniou et al 2012).

Self-contact

Self-contact constitutes a specific, less common, way of kinematic loop closure that
is available only to humanoid-like or dual arm setups. Additionally, correspond-
ing sensory and motor equipment such that this self-contact can be performed in a
controlled manner is needed. One possibility is to utilize artificial electronic skins
covering specific areas or complete robot bodies. A tactile array may be used for
contact detection and if the skin itself is calibrated then also to measure additional
components of the self-contact configuration—where contact occurs on each of two
intersecting chains. Roncone et al (2014) performed kinematic calibration on the
iCub using autonomous self-touch—index finger on the contralateral forearm; Li
et al (2015) employed a dual arm setup with a sensorized “finger” and a tactile ar-
ray on the other manipulator. Albini et al (2017) assumed the robot kinematics to
be correct and used self-contact for spatial calibration of artificial skin. For robots
without sensitive skins, if controlled self-contact can be established but the exact po-
sition not measured—typically when using force/torque sensing—such constraints
can also be employed for calibration, similarly to closed-loop calibration (Holler-
bach et al 2016).

Inertial sensing

Inertial measurement units (IMUs; composed of 3-axis accelerometer, gyroscope,
and magnetometer) constitute compact devices that many robots come already
equipped with. Accelerometers are truly miniature and cheap and are often part of
motor control boards distributed on the robot body, for example. Exploiting gravity
projection into individual axes can be used as a convenient self-contained kinematic
calibration method, avoiding the need for either self-observation or self-contact.
Canepa et al (1994), moving one joint at a time, used a 3-axis accelerometer at-
tached to the end effector of a 7 DoF robot arm to calibrate the axis orientation
and center of rotation. To avoid numerical integration of accelerometer readings,
D’ Amore et al (2015) instead employed angular rate gyroscopes to identify the axis
of rotation and used accelerometers without numerical integration. Mittendorfer and
Cheng (2012) used accelerometers embedded in multimodal skin modules (Mitten-
dorfer and Cheng 2011) to first perform “structural exploration” identifying which
skin module belongs to which robot link. Second, kinematic parameters of a single
kinematic chain were estimated. Finally, Guedelha et al (2016) using accelerome-
ters in control boards on every link of the iCub humanoid proposed a procedure that
does not require moving one joint at a time, but estimation is possible from slow
movements of the complete kinematic chain.
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Multisensorial calibration

The full potential of automatic self-contained calibration is in simultaneous deploy-
ment of the different approaches discussed earlier and their optimal combination.
While the brain seems to be good at (Bayes) optimal combination of multimodal
sensory information (e.g., (Doya et al 2007)), multisensorial robot calibration has
been rarely attempted. Using the multimodal skin (Mittendorfer and Cheng 2011),
Mittendorfer and Cheng (2012) combined knowledge about the modules’ dimen-
sions, communication capabilities that allow the units to identify their neighbors
and hence establish the skin topology, and accelerometer readings to reconstruct
every sensors’ pose. In (Mittendorfer et al 2014), this work is extended exploiting
the LEDs also embedded in the modules: selectively turning on different modules’
LEDs with different colors, salient visual features are formed. When observed by an
external monocular camera, 6D pose of such “adaptive visual markers” can be esti-
mated. Birbach et al (2015), using sensors in the head only, calibrated the humanoid
robot Justin observing its wrist — see Fig. 2, left. Sensors were fused by minimizing
a single cost function that aggregated errors obtained by comparing discrepancies
between simulated projections (left and right camera images, Kinect image, Kinect
disparity) and the wrist’s position from forward kinematics. An inertial term from
an IMU in the head was also considered. A self-calibration formulation combin-
ing self-observation and self-touch was proposed in (Hersch et al 2008). Stepanova
et al (2019) systematically studied on the simulated iCub humanoid robot how self-
observation, self-contact, and their combination can be used — see Fig. 2, right.
They found that employing multiple kinematic chains (“self-observation” and “self-
touch”) is superior in terms of optimization results as well as observability. This
approach was extended to a dual arm industrial robot in (Stepanova et al 2022).

Biologically inspired body model adaptation

Inspiration from biology in learning and adapting body models can have very dif-
ferent forms. In (Bongard et al 2006; Cully et al 2015) the inspiration is at a very
high, functional, level: animals are resilient and the walking robots in these works
are as well: they can compensate for a broken motor, for example, and find an al-
ternative gait. However, the body model used has little in common with nervous
systems. Other capacities typical of biological body representations addressed by
roboticists are tool use (e.g., (Nabeshima et al 2005)) or self-recognition (e.g., Gold
and Scassellati (2009)). In works like (Fuke et al 2007) or (Yamada et al 2016),
robots provide embodiment to models of the formation of body representations in
the brain. Hoffmann et al (2010); Kuniyoshi (2019); Lanillos et al (2017); Schillaci
et al (2016) provide surveys.
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Fig. 2 Multisensorial robot calibration. (Left) Sketch of calibration process of Agile Justin. The
robot observes (magenta dotted lines) a point-feature attached to its wrist W with its two cameras
and the Kinect sensor while moving the head (orange arrows). In addition, all measurements from
the IMU, mounted in the robot’s head, and the joint angle and torque sensors are recorded. This
data together with the corresponding measurement models is fed into a least-squares estimator. The
results are the calibrated poses of the left camera (L), Kinect sensor (K) and the IMU (I) relative
to the head frame H, the cameras’ spatial relationship (L relative to R), the cameras’ and the
Kinect’s intrinsic parameters while considering joint angle offsets and arm joint elasticities. Figure
and caption from Birbach et al (2015). (Right) Combining self-observation and self-contact. All
kinematic chains originate in a common Root which is located at the third torso joint. The left and
right arm chains are drawn in green and blue respectively. The eye chains have a common Root-
to-head chain part marked in red. White lines denote projection into the eyes/cameras. Figure from
Stepanova et al (2019).

Deep learning: where is the body model?

Deep learning is finding its way into robotics, inheriting a strong bias toward visual
perception and supervised, end-to-end, model-free solutions. Deep learning ((Good-
fellow et al 2016) for an in-depth treatment) and its successes have been domi-
nated by visual recognition problems, with convolutional neural networks (CNNs)
as the key component. Typical problems involved image recognition and hence pas-
sive vision. Expanding the application domain to robotics implies bringing in the
robot body and its actions in the environment—active perception and embodiment
(Stinderhauf et al 2018). The robot body is almost never explicitly modeled, but it
is inevitably implicitly present in many of the mappings being learned.

Black-box modeling of residual errors

In some cases, deep neural networks are applied on top of traditional modeling and
calibration approaches to compensate for remaining residual errors. These can be
taken care of by traditional machine learning approaches (e.g., mixture of experts
including Support Vector Machines and Gaussian processes for hand-eye calibration
in (Fanello et al 2014)) or using deep neural networks (e.g., (Zhao et al 2019)). The
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work of Hwangbo et al (2019) (see also Fig. 1, C), constitutes a more sophisticated
deployment of deep learning. An accurate simulator of the quadruped robot ANY-
mal is developed by combining classical rigid body modeling with a deep network
for the actuator dynamics. In the simulator thus obtained, model-free deep reiforce-
ment learning is used to learn policies—mapping of robot states to joint position
targets—for different behaviors of the robot.

End-to-end learning

End-to-end learning—training a learning system by applying gradient-based learn-
ing to the system as a whole—is at the core of the “deep learning revolution”, as
it avoids the need for hand-designing system components, sensory features etc.
Beyond recognition and classification problems, it has been successfully applied
to learning actions as well in so-called deep reinforcement learning. One learns a
policy—a mapping from states to actions—for a particular task. In what follows,
we are not concerned with abstract worlds like playing Go or Atari games, but focus
on robots acting in the real world. Then, we review approaches focusing on learning
input-output mappings related to the robot body rather than particular tasks.

Learning tasks. A straightforward example of applying deep learning to robotics
is (Pfeiffer et al 2017). An expert operator is driving a mobile robot, providing train-
ing data for a CNN to learn a mapping from raw laser scanner data to steering com-
mands for the robot. After learning, the robot can drive autonomously. In such cases,
the teaching signal is available and deep learning architectures can be applied out
of the box. In the work of Levine et al (2018) (see also Fig. 1, F), where end-to-end
learning is applied to robot manipulation, the system learns successful grasps from
experience. The CNN maps two input images of the scene—without and with the
robot arm in the image—and a movement vector in Cartesian space into grasp suc-
cess probability. The different movement vectors thus need to be sampled separately
to find the best action. The network performs both object localization and gripper
localization, subsuming both hand-eye coordination and grasp point detection. To
map the high-level movement vector into targets for the robot joints, standard in-
verse kinematics is still used, however. A large amount of training data is needed:
In the first experiment, about 800 000 grasp attempts were collected over the course
of two months, using between 6 and 14 robotic manipulators at any given time. In
the second experiment, 8 different robots were used to collect a dataset consisting
of over 900 000 grasp attempts. Levine et al (2018) discuss that their method can be
interepreted as a type of (deep) reinforcement learning. Overall, these architectures
provide a solution for a single task. Learning is model-free and the consequence is
limited generalization to other tasks.

The end-to-end approach can be augmented in several ways enforcing some reg-
ularization or model-building. Learning multiple tasks simultaneously is a natural
extension. In (Singh et al 2019), a robot manipulator learns to arrange objects, place
books, and drape cloth from a modest number of examples of successful outcomes,
followed by actively solicited queries, where the robot shows the user a state and
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asks for a label to determine whether that state represents successful completion of
the task. Agrawal et al (2016) achieve regularization of the learned mapping by si-
multaneously learning forward and inverse models. Imposing some modularity onto
the network can also be beneficial: Andrychowicz et al (2020), dealing with in-hand
object manipulation, separate the task into object pose estimation, learned with a
CNN, and control policy learning using an LSTM (Long short-term memory) net-
work. Finally, Lenz et al (2015) apply deep model predictive control to robot food
cutting.

Learning models. While the majority of end-to-end approaches focuses on
learning tasks, some works explicitly target learning models related to the robot
body. Laflaquiere and Hafner (2019) address robot visual self-recognition with a
CNN composed of two branches: one predicting the image the robot will see with a
given joint configuration and one estimating the error of this prediction in different
parts of the image. The region with high predictability constitutes a mask for the
robot’s body in the image. Zambelli et al (2020) (see also Fig. 1, D) use a deep gen-
erative model—a variational autoencoder—to learn statistical relationships in the
sensorimotor space of the iCub humanoid. The use of generative models and multi-
modal learning (Srivastava and Salakhutdinov 2014) constitute important directions
that bring deep learning closer to body model learning. Learning a multimodal for-
ward and inverse model linking the robot’s perception and action in its full generality
is, however, an immensely dificult task and we still do not fully understand how this
is performed by the brain.

Outlook: deep learning for robot body models

Hand in hand with the successes of deep learning, the community has also recog-
nized the limitations. Lake et al (2017) contrast the state of the art in deep learn-
ing, which they dub “learning as pattern recognition”, with the way humans learn
and think: “learning as model building”. End-to-end model-free supervised learning
is typically limited to a single task and the system lacks robustness and flexibil-
ity. There are several approaches that channel learning in the direction of learning
“good” representations (Goodfellow et al 2016, Chapter 15) like multi-task learning
(Rahmatizadeh et al 2018), coding alternatives (Chang et al 2019), learning param-
eterized skills (Da Silva et al 2012), and transfer learning, which is not restricted to
supervised learning tasks, but applicable to unsupervised and reinforcement learning
as well. The way forward may be to guide learning such that features corresponding
to underlying factors that appear in more than one setting are learned (Goodfellow
et al 2016, Chapter 15). In the context of robotics, or physics in general, it remains
to be seen whether higher layers of the networks will encode objects, general phys-
ical properties, forces, and approximately Newtonian dynamics (Lake et al 2017).
The same applies to learning body models rather than world models. Unsupervised
training or pre-training is likely to be most useful when the function to be learned is
extremely complicated (Goodfellow et al 2016, Chapter 15), which certainly applies
to learning the mappings related to the motors and sensors of the body. The brain
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cannot afford to have dedicated circuitry for every task. As the representations need
to be shared, they become regularized and possibly modular, albeit in a different
way than the classical engineering designs.

Examples of Application

Although learning and automatic updating of robot body models is highly desirable,
most of the existing approaches still have a proof-of-concept character and there
are few real applications so far. The works of Hwangbo et al (2019) or Levine et al
(2018), for example, are an exception—they are close to real practical deployment.
However, the learned models are tuned for the concrete robot and environment and
will likely catastrophically fail should the robot suffer some damage, for example.
The works (Bongard et al 2006; Cully et al 2015), on the other hand, are specifically
designed to cope with such situations. Yet, they are still rather “toy” than real robots.

Future Directions for Research

Standard robot body models are explicit, veridical, accurate/optimal, universal, cen-
tralized, and modular (see Fig. 1 and (Hoffmann 2021) for additional details). All of
these are from an engineering perspective very convenient properties. For example,
being explicit and universal often implies that the models are capable of extrapola-
tion; if transformations in 3D space are represented using appropriate mathemati-
cal tools, they will always work—even in previously unseen circumstances. Being
veridical, or objective, implies that robot body models can be easily validated from
the outside. The universal, centralized, and modular nature is ideal from a main-
tenance perspective. The kinematic model is only in one place and any updates
will be automatically propagated to all other modules using it. One important ad-
ditional convenient property that is a consequence of the features listed above is
interpretability: it is possible to understand the model which is key for maintenance,
debugging etc. In this sense, there seem to be good reasons for preserving these
properties. Yet, these very characteristics are responsible for some inherent limi-
tations. In particular, robot body models and associated control architectures lack
robustness. The centralized and universal feature makes every module critical and
that creates bottlenecks. Redundancy is against software development principles,
but it importantly contributes to the resilience of animals.

Biological body models and control with multiple, distributed, partially over-
lapping, task-specific, and parallel architectures have largely opposite properties
(Fig. 1, ). Up until ten years ago or so, brain-inspired body models were largely
confined to the cognitive developmental robotics community ((Asada et al 2009;
Hoffmann et al 2010) for surveys). Recently, with the advent of deep learning, there
are models that parallel the brain adaptivity in some aspects and that are also closer
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to real applications. However, as discussed above, typically, one learns a task in a
supervised end-to-end model-free manner, largely side-stepping learning of body
models. The limitation of this approach is the specialization on a single task and
lack of robustness in light of changing conditions.

One remedy to these shortcomings are hybrid models that marry the benefits
of classical modular design with deep learning of some modules. The work of
Hwangbo et al (2019), combining rigid body modeling with learning actuator dy-
namics and a mapping from state to action (policy), is a good example. Functional-
ity that can be accurately addressed with traditional frameworks, like forward and
inverse kinematics, can remain in use, while more difficult mappings like visual ser-
voing and grasp point selection (Levine et al 2018) may be addressed using deep
learning methods. A hybrid solution related to body models combines CNNs and a
spatial, “white-box”, model for body pose detection (Tompson et al 2014). Due to
the origin of deep learning in visual perception, there has been little work on mul-
tisensorial learning (Srivastava and Salakhutdinov 2014). As robots come equipped
with more and more powerful sensors, this aspect should certainly be incorporated
in the future.

Alternatively, one can imagine a more radical brain-like approach. First, the re-
sult of neural (or neuromuscular) control are feasible rather than optimal solutions
(Valero-Cuevas and Santello 2017). Second, there are typically multiple solutions
to any task which can be selected on the fly. From an evolutionary perspective, hav-
ing multiple good enough solutions at hand lends biological systems the versatility,
adaptivity, and robustness. Here, it is important to consider how biological neural
systems learn the models. There is evidence that different parts of the brain special-
ize on different learning types: cerebellum on supervised learning (mainly for motor
control), basal ganglia on reinforcement learning, and the cortex on unsupervised
learning (Doya 1999). Instead, the deep learning community is still heavily biased
toward supervised learning. If we consider learning to reach in children, for exam-
ple, it is still unclear how this ability is acquired. Herbort et al (2010) emphasize
the unsupervised learning aspect and learn a task-independent body model, which
encodes very general properties of the relationships between motor commands and
body movements. A task-specific inverse model is extracted from this body model
on the fly in the current context. To scale to the dimensionality of the motor system,
the model of Ehrenfeld et al (2013) introduces modularity to the representation. An-
other hypothesis is that children are intrinsically motivated to learn this and other
important skills (e.g., Oudeyer and Kaplan (2009)); there are many unstudied syn-
ergies between models of intrinsic motivation in developmental robotics and deep
reinforcement learning systems (Oudeyer 2017). However, such developments are
very far from current engineering practice. Intrinsically motivated, curious, robots
that play to learn robust general skills would also require hardware that is similarly
robust to what children have at their disposal. As new materials (e.g., McEvoy and
Correll (2015)), soft robots Laschi et al (2016) and biohybrid robots Mazzolai and
Laschi (2020) are gaining popularity, new, biologically inspired, methods for mod-
eling and calibration will be the natural candidates to enable their control. Finally,
with the bodies becoming more resilient and “intelligent”, more control can be of-
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floaded to them and the details of such interaction may not have to be modeled:
paraphrasing Brooks (1991), the body may sometimes be its own best model.
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Abstract—We have been observing how infants between 3 and
21 months react when a vibrotactile stimulation (a buzzer) is
applied to different parts of their bodies. Responses included in
particular movement of the stimulated body part and successful
reaching for and removal of the buzzer. Overall, there is a
pronounced developmental progression from general to specific
movement patterns, especially in the first year. In this article
we review the series of studies we conducted and then focus
on possible mechanisms that might explain what we observed.
One possible mechanism might rely on the brain extracting
“sensorimotor contingencies” linking motor actions and resulting
sensory consequences. This account posits that infants are driven
by intrinsic motivation that guides exploratory motor activity, at
first generating random motor babbling with self-touch occurring
spontaneously. Later goal-oriented motor behavior occurs, with
self-touch as a possible effective tool to induce informative
contingencies. We connect this sensorimotor view with a second
possible account that appeals to the neuroscientific concepts of
cortical maps and coordinate transformations. In this second
account, the improvement of reaching precision is mediated by
refinement of neuronal maps in primary sensory and motor
cortices—the homunculi—as well as in frontal and parietal corti-
cal regions dedicated to sensorimotor processing. We complement
this theoretical account with modeling on a humanoid robot
with artificial skin where we implemented reaching for tactile
stimuli as well as learning the ‘“‘somatosensory homunculi”’. We
suggest that this account can be extended to reflect the driving
role of sensorimotor contingencies in human development. In
our conclusion we consider possible extensions of our current
experiments which take account of predictions derived from both
these kinds of models.

I. INTRODUCTION

The presence of various “body maps” in the brain has
fascinated scientists and the general public alike, spurred by
the account of Head and Holmes [1] and the discovery of
somatotopic representations (the “homunculi”) in the primary
motor and somatosensory cortices [2]. The attention devoted
to the representations of the body in the brain has also led
to numerous attempts to describe or define them, and has
given rise to proposals of a variety of concepts including
superficial and postural schema [1], body schema, body image,
corporeal schema, etc. Yet, these concepts are umbrella notions
for a range of observed phenomena rather than the result of

identification of specific mechanisms, and it has been criticized
that this area of research is in a somewhat ‘“chaotic state
of affairs” [3], with limited convergence to a common view
[4]. Here, we will focus on body representations that mediate
implicit knowledge related to the body, its parts, and their
posture relevant in the context of sensorimotor coordination.

It seems clear that body representations in the adult brain are
a result of a complex interplay between genetic predispositions
and both pre- and postnatal development. Work in recent
years has focused on establishing the developmental trajectory
of their underlying multisensory processes. This development
starts in the fetus before birth (e.g., [5]; [6] for an embodied
computational model), and then continues for many years
(e.g., [7]-[9]). In this process, spontaneous movement and
self-touch (which may also involve “grasping” the body) may
play a key part. Infants frequently touch their bodies, with a
rostro-caudal progression as they grow older—with head and
trunk contacts more frequent in the beginning. As infants age,
contacts become more caudal including hips, then legs, and
eventually the feet [10]. The redundant information induced by
these configurations in the motor-proprioceptive-tactile-visual
manifold may facilitate learning about the body in space.
Furthermore, as self-touch configurations are unique—with
tactile stimulation on two different body parts and only in spe-
cific joint configurations—they might constitute a “contingent
stimulus” associated with a reward or neuromodulation that
bootstraps learning (e.g., [11]). As this knowledge develops,
infants gain the ability to reach directly to targets on the body.

In the present article, we first report results from a series
of completed as well as ongoing studies in which we observe
infants’ behavioral responses, including reaching and grasping,
to stimulation with buzzers on different body parts (Section
II). The results from these studies then provide constraints
for a sensorimotor account of our observations (Section III),
followed by a (brief) integration with evidence from the
neurosciences (Section 1V). Then we present our modeling
endeavor on a humanoid robot with artificial sensitive skin
(V) and close with a discussion (Section VI).
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Fig. 1. An illustration of buzzer locations in each study reported here.
Red dots indicate the cross sectional foot and hand locations study (Paris).
Violet dots indicate the longitudinal pilot study. Green dots indicate the cross-
sectional face and arms study (Tulane, New Orleans).

II. BUZZERS ON INFANTS’ BODY AND FACE

In two cross-sectional and one longitudinal study, we ana-
lyzed how 3 to 21 month old infants respond when a vibrating
buzzer is attached to different parts of their bodies. We
expected that differentiated movement patterns as a function
of stimulus location would emerge only after about 4 months
of age (c.f. [12]) and that well before infants are able to
retrieve the buzzer [13], they would produce other behavioral
responses that indicate knowledge of where their body was
being stimulated.

A. Participants and Method

In total we observed 122 infants of ages ranging from 3 to
21 months. The infants were supine, seated in an infant seat,
or on the caregiver’s lap. We attached a vibrating target to
locations on the face and body using double-sided tape [13],
a single location at a time and we left it there until either
the infant had removed it or approximately 35 seconds had
elapsed. The set of locations we used is shown in Fig. 1. From
the video recordings we coded the infants’ motor responses,
in particular their overall limb activity and any (attempted
or successful) reaches towards the buzzer. More details are
available elsewhere [13], [14].

B. Which limb is it? Increased movement of specific body parts

Our first cross-sectional study (Paris) involved 43 infants
aged 3-6 months, where the buzzer locations were confined
to the four limbs while the infants were in a fixed supine
position in an infant seat. Very few infants were able to
actually reach and grasp the buzzer, and their reactions mainly
consisted of moving the limbs — see Fig. 2. We found that
at 3 months, infants did not seem to differentiate stimulation
on their different limbs, since independently of which limb
was stimulated they responded to the buzzer stimulation in
the same way, namely by increasing movements of the whole
body. Interestingly, at 4 months, there was a global decrease
in limb activity, and we did not find significant differences in
limb activity across stimulation conditions. This may perhaps
be explained by the fact that at this age, with the onset of
reaching, the motor system is being reorganized and refined

Activity of stimulated and non stimulated limbs as well as baseline
activity across age groups

— I stimulated limb

B Contralateral limb

[] Opposite end ipsilateral
limb

M Opposite end
contralateral limb

[] Baseline whole body
activity

AT

Percentage of activity

Fig. 2. Mean percentage of activity of the limb stimulated with a buzzer
as compared to the three non-stimulated limbs and whole body activity at
baseline (averaged activity of the four limbs) across age groups. In case of
hand stimulations, ‘Opposite end limb’ refers to the feet and in case of foot
stimulations it refers to the hands. Within each age group, significant differ-
ences between means are marked with an asterisk (xp < 0.05; *xxp < 0.01),
as calculated with pairwise comparisons following the Generalized Estimating
Equations (GEE) procedure.

(e.g., [15]). From 5 months, infants demonstrated specific
movement patterns associated with the stimulated hand or foot
(moving the stimulated limb significantly more than the non-
stimulated ones or touching the stimulated limb).

C. Reaching for buzzers

To study reaching towards and grasping the buzzer, we first
conducted a pilot study with one child that was followed
longitudinally at home from age 4 to 18 months and with
a rich set of buzzer locations including the trunk and legs.
In this study, posture was not fixed but alternated between
sessions (mostly supine or infant car seat — collapsed in the
Figure). Fig. 3 summarizes the results for our infant (up to
12 months). Each data point is the result for a single trial:
“Contact” or “No Contact”. We found that first successful
manual buzzer contact was at the upper lip location — at 4.5
months. For the body locations, the abdomen, knee, and foot,
success appeared between 5 and 6 months, with an apparent
proximal-to-distal trend (the thigh location not following this
pattern). Success for other locations on the face (forehead and
below ears) appeared at around 7 months. Success for locations
on the upper limb started with the hand after 6 months, and
elbow locations only after 8 months.

We also conducted a cross-sectional study on 78 children
aged 7 to 21 months to investigate reaching for the buzzer
(Tulane, New Orleans). This time we only used buzzer loca-
tions on the face and arms. The results are summarized in
Fig. 4. Similarly to the longitudinal pilot study, infants at 7
months could already reach to the mouth locations, but the
ears and forehead developed more gradually. For the buzzer
locations on the body (elbow, crook of elbow, forearm, palm,
top of hand), infants at 7 months could already contact the
hand buzzers, but the other buzzers emerged later. For the
palm buzzer, 50 percent of buzzer contacts were made with
the ipsilateral fingers, and 50 percent were made with the
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Fig. 3. Buzzer contact success (C=Contact, NC=No Contact) is shown for the
pilot infant across age. The color code is chosen to match with the locations in
Fig. 4 below, including filled markers for face locations. Each buzzer location
is collapsed across left and right buzzer placement (hence the possibility of
both C and NC for the same location and age).

GEE Curves for Predicted Buzzer Contact Success
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Fig. 4. The GEE predicted value of the average response is plotted over age
for each buzzer location. Predicted responses were obtained using generalized
estimation equations (GEE) testing the effects of Age, Buzzer Location, and
the Age x Buzzer Location interaction on buzzer contact success. A value of
0 on the y-axis indicates an average prediction of no buzzer contact, while 1
indicates an average prediction of buzzer contact. Color codes match Fig. 3
for common locations.

contralateral hand. Contralateral reaches for the palm buzzer
(and other locations that could be reached with either hand)
increased with age. For the back of hand, all buzzer contacts
were made with the contralateral hand, since ipsilateral con-
tacts were impossible.

D. Conclusion of experiments with infants

Overall, our infant experiment results suggest that: (i) at 3
and 4 months the infant does not respond to a buzzer on a
limb by moving that particular limb, but rather responds in an
undifferentiated way by moving its whole body; (ii) the limb-
specific movement and buzzer-oriented reaching responses

develop dramatically between 4 and 12 months. Certain lo-
cations are reached earlier than others, presumably because
they correspond to innate reflexes (around the mouth), because
they are easier to attain from the infant’s natural postures, or
because they do not move very much relative to the body.

III. A SENSORIMOTOR FRAMEWORK

In order to understand the empirical data, we set out some
theoretical suggestions. We divide our considerations into two
parts: first, how does the infant’s brain determine which body
part is stimulated (to then possibly be able to move that body
part)? Second, how does the infant’s brain implement reaching
to the buzzer with a hand or other effector?

A. Determining which body part is stimulated

Evidence from the neurosciences suggests that somatosen-
sory and motor “homunculi”—orderly neural maps that receive
peripheral somatosensory input and, in turn, project from
the cortex to the periphery—are present in the brain very
early. However the mere presence of such map-like neuronal
organization does not mean that the infant’s brain “knows”
where a stimulation is on its body, or how to move its arm
rather than, say, its foot: the brain must establish mechanisms
that link sensory and motor maps and allow the infant to make
movements appropriate for the somatosensory input.

The basis of such mechanisms would presumably rely
on the analysis of the statistical relationships of sensory
and motor information, a mechanism that has been called
“sensorimotor contingencies” [16]. The idea is that infant
exploratory behavior may be guided by intrinsically defined
rewards related to sensorimotor information (perhaps specifi-
cally related to tactile receptors [11] or “the joy of grasping”
[17]), as articulated by the “intrinsic motivation” or “adaptive
curiosity” frameworks [18]. During exploration, the infant’s
brain continually elicits actions and attempts to catalogue and
organize the resulting sensory effects so as to become familiar
with, and be able to predict, the resulting interactions it has
with the world.

The existence of anatomically pre-wired maps in the brain,
which approximately preserve the topology of the body, may
be a starting point that facilitates the creation of coordinated
movement and the organization of the related sensorimo-
tor contingencies. Overall however, the task of extracting
sensorimotor contingencies will be a difficult task because
of the vast number of sensory inputs, motor outputs, and
their statistical dependencies. We therefore expect this process
of lining up sensory and motor information through their
statistical properties to be long and gradual. In particular, we
imagine that the correlations that will emerge most easily will
be those that are most systematic. Thus, perhaps the simplest
relationships to extract are those that link motor actions
to immediately resulting proprioceptive changes: Whenever
a muscle is innervated, accompanying muscle spindles will
systematically tend to fire. Relations between motor output and
tactile input will be almost as systematic. If the infant happens
to move its hand, then not only proprioceptive sensors, but
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also the skin on the hand will deform, possibly brush against
clothes or an object, and skin receptors on the hand will
systematically signal a change; if the infant happens to move
its foot, there will be systematic changes in the somatosensory
foot region (we use somatosensory to denote proprioceptive
and tactile afferents together).

Our sketch is simplistic in many ways. For instance, we
currently ignore the question about the origin and nature
of the initial movements. It is often assumed that infants
initially move randomly (“motor babbling”), but more detailed
accounts have been put forward of how behavior may emerge
from basic neural properties [6] and changes in the role of
transmitters and neuronal communication [19]. On the sensory
side, we must consider that body surface areas that cannot be
moved directly, like the back and abdomen, will also receive
tactile stimulation through movements of the limbs: if the baby
is lying on its back and pushes on a leg, stimulation on its back
will change as the leg push causes the body to roll over.

Finally, our current sketch, as well as the tactile-motor
experiments we have reported, ignore all social aspects of
child development. Social interactions not only lead to nu-
merous other-induced sensory experiences, but also embed
these experiences in complex, reciprocal interaction cascades
that are critical for the development of action concepts and
language. Such factors, in addition to the basic sensorimotor
processes we address in the current project, are most likely
also important determinants of body representations.

Knowledge of sensorimotor contingencies does, further-
more, not per se explain which motor commands must be
issued to attain a specific motor goal. Contingencies are devel-
oped as the sensory effects of ongoing movements, whereas
a motor plan requires establishing the reverse contingencies,
namely the motor commands necessary to obtain the related
sensory signals. In psychology, ideomotor theory formalizes
this approach and posits that motor actions are derived from
the intended resulting sensory consequences [20]. In the cur-
rent context, motor commands could be learned if the infant’s
intrinsic motivation mechanism includes the goal of increasing
and refining its knowledge of particular sensorimotor correla-
tions: this would cause the infant, given a sensory stimulation,
to use motor babbling and later, systematic exploration, to
discover the particular motor actions that give rise to that
particular sensation. In this way it would learn, over time,
which actions to undertake in order to obtain any particular
sensation.

What would be the behavioural manifestation of the pro-
gressive learning of sensorimotor contingencies? If we as-
sume that somatosensory and motor maps are, at first, only
crudely organized, and that the learnt contingencies are ini-
tially unspecific, stimulation of a body location would not
be expected to elicit movements of the baby specific to that
location. On the contrary, we would expect fairly global—
random or exploratory—motor responses of the whole body.
But as knowledge of the contingencies improves in precision,
the infant would progressively explore actions that more
specifically modulate the sensation at a particular stimulated

location. This is clearest in the case of stimulation of a limb:
prior spontaneous movement of the limb might often produce
tactile stimulation on that limb through rubbing of clothes or
contact with an object. At a later time, when stimulated in
a similar way on the limb, the infant’s brain might try to
explore how it could replicate or modulate that stimulation
by moving the limb that was previously stimulated. To find
the appropriate action, the infant would move the whole body,
and then progressively narrow down its exploration until it
finds the limb movement that most effectively modulates that
stimulation.

We hypothesize that sensorimotor experience and extraction
of contingencies are driving factors that guide the formation
and refinement of unisensory and multisensory maps that relate
body and environment. Presumably, these “body models” are
strongly related to space in parietal regions, whereas the
primary sensory and motor regions reflect statistics that are
predominantly related to the physical body. Accordingly, we
interpret the higher-level functions currently assigned to these
areas, such as multisensory integration, memory, and executive
control, as subfunctions related to the handling of the statistical
properties of the organism’s environment.

B. Reaching for a tactile stimulus

Our proposal may provide an account for how a baby
responds to touch on a limb, first by moving its whole body,
and later by moving the appropriate limb. In this section, we
apply this idea to our infant tactile stimulation experiments to
attempt an explanation of the infant’s hand reaches.

In the first stages of development, correlations between
somatosensory and motor maps will allow the infant to move
a limb that has been stimulated with a buzzer. More rarely
however, and therefore learned presumably somewhat later in
development, the infant will detect correlations deriving from
(unintended) self-touch, that is, one of its hands touches some
other body part, such as the trunk, the knee, the face, or the
other hand. Neurons that are specifically related to self-touch
have been reported in area 5 of the monkey parietal cortex
[21].

Equipped with the intrinsic motivation to further explore
such correlations, the infant will learn that, when stimulated
say on the abdomen, it can recreate such stimulation by a
certain motor command, namely moving one hand to that
location. This then provides a mechanism by which the infant
will eventually be able to reach towards a buzzer that is
attached to that location.

However, such a mechanism will presumably provide move-
ment trajectories only for previously used initial arm postures.
We would expect that, at least at first, accurate reaching
would only occur starting from these previously occurring arm
postures. Furthermore, this simple explanation cannot explain
how the infant might additionally account for the posture of
the target limb. Body parts such as the leg, foot, or other hand
can move in space relative to the trunk. Thus, information
about the posture of the target limb must be factored into the
movement.
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It may be, as suggested by Graziano et al. [22] for monkeys,
that such “factoring in” of a third, postural variable has been
innately pre-wired for some behaviors in the form of “complex
sensorimotor primitives”. This would account for an infant’s
ability to reach to its mouth from any arm posture, and
perhaps even independently of the head and mouth position.
However, it is also conceivable that such movement patterns
are learned in the womb, a place in which movement is
strongly restricted, thus favoring certain particular contingency
experiences. During development, these behaviors will be
tuned as motor abilities unfold and the body changes shape.
The tuning will be gradual and it will be based on learning of
third-order correlations involving proprioception and/or vision,
in addition to tactile and motor information.

The proposed mechanisms differ from the “classical” per-
spective based on vector geometry and transformation of
spatial information between different reference frames [23].
Robotic simulations to be presented in Section V-C will help
flesh them out.

IV. INTEGRATING SENSORIMOTOR AND NEUROSCIENTIFIC
ACCOUNTS

Over the last 30 years, neuroscientific research has es-
tablished that many neurons in parietal and premotor cor-
tex produce firing patterns that reflect spatial information in
many different reference frames, integrating information from
all sensory modalities. The prevalent view of sensorimotor
processing in these regions is that this integration requires
transformation between the reference frames inherent to the
different senses, such as a 3D-like reference frame in vi-
sion and a skin-based reference frame in touch [23]. Infant
development, then, would involve establishing and refining
unisensory spatial maps and the transformations between them
to allow sensory integration and their use for motor output.
For instance, the infant must learn how tactile information
on the foot must be combined with postural information of
the leg to learn a transformation, or “mapping”, from skin
to 3D space. Having derived the 3D location of a touch by
appropriate spatial transformation, an eye or hand movement
can then be planned towards the spatial location of the tactile
stimulus on the foot.

It is becoming increasingly obvious that these presumed
transformation and integration processes optimise the use of
information so as to be statistically optimal with respect
to the reliability of each integrated signal (e.g. [24], [25]).
In this view, development involves deriving the statistical
properties of the body’s sensory systems. For instance, the
infant must learn that proprioceptive information of the leg is
comparatively unreliable and learn to use vision to refine the
estimate of limb position.

Several computational mechanisms that achieve transforma-
tion and optimal integration for some specific sensorimotor
functions, such as integration of two senses, have been put for-
ward. Current proposals involve different levels of abstraction,
such as explaining behavior with Bayesian statistical principles
and explaining neuronal firing in neural networks. Although

they do not yet give a coherent view of the general mechanisms
the brain may be using (see [23], [25]), such accounts are
promising.

The sensorimotor contingency framework we have laid
out above relies even more strongly on the idea that the
brain derives statistical properties—those that link body and
environment. Here, integrating sensory information, transform-
ing between reference frames, and taking account of signal
reliability, are by-products of the brain’s main purpose of
relating body and world for the purpose of action. In this view,
the infant must learn that a concurrent touch on the left hand
and the nose, combined with specific postural information of
the arm, entails that the hand has touched the nose, and that
this sensory information must be reproduced to relieve an itch
on the nose at a later time.

These considerations represent interesting ideas for robot
development: they suggest that both the modular structure of
cortical regions and the characteristics of neuronal firing may
be emergent properties of an overarching processing principle.

V. REMAPPING AND SELF-TOUCH IN ROBOTS

The body, with its geometry and sensorimotor capacities,
is of course constitutive in the construction of body represen-
tations. Thus, simulated agents or, better, robots, constitute
the best tools for such a modeling endeavor. For human
body representations, humanoid robots are the platform of
choice. Robot “body schemas” often have quite different
characteristics (fixed, centralized, explicit, amodal) than what
we expect from their biological counterpart, but there has
been work on robot body models learning (self-calibration)
as well as modeling the biological body representations and
their development using robots (see [26], [27] for surveys).
The majority of this work is more in line with the “classical”
account of body representations (with explicit frame of refer-
ence transformations and perception separated from action),
which lends itself more easily to robotic implementations.
However, there are notable exceptions: in particular the work
of Kuniyoshi and colleagues (e.g., [6]) dealing with fetal
development.

A. The iCub humanoid robot with whole-body artificial skin

The morphology of the iCub humanoid robot (Fig. 5B,
[28]) is modeled after a 4-year old child: it has a similar
kinematic configuration and sensory repertoire to humans (on
some level of abstraction). Importantly, it has been recently
equipped with a whole-body artificial skin comprising around
3000 pressure-sensitive tactile elements (taxels) (Fig. 7 A).
Thus, it is now possible to model body representation acqui-
sition through tactile-proprioceptive-visual-motor correlations
on this platform. The parallel of a baby removing a buzzer
and the robot performing self-touch on the torso is in Fig. 5.

B. Reaching for a tactile stimulus using inverse kinematics

In Roncone et al. (2014) [29], we implemented reaching for
a tactile stimulus by modifying classical robotic solutions and
developing a new inverse kinematics formulation to deal with
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Fig. 5. Self-touch on torso. (A) Removal of buzzer from abdominal area
in 5-month old infant. (B) iCub touching its trunk with index finger. (C)
Tactile stimulation corresponding to “double touch” event—torso and right
index finger. (D) View from iCub’s left camera—contact location out of sight.
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Fig. 6. Model of tactile spatial localization. Adapted from [30].

the fact that the target is on the body rather than fixed in space
(cf. video: https://www.youtube.com/watch?v=pfse424t5mQ).
This work serves as a baseline here: the behavior is instantiated
in the robot, thus the whole loop from tactile stimulation to
motor action is in place. Our next steps consist of replacing
the engineered modules with those that are inspired by infant
development (behaviorally and neurally).

C. Remapping decomposed into modules

Longo et al. [30] propose that spatial localization of touch
may be obtained by combining (1) tactile localization on
skin and (2) spatial localization of body / position sense (i.e.
where in space the particular body part is). These components
(high-level percepts) draw on tactile and proprioceptive (and
possibly motor) inputs and three modules or representations:
superficial schema, postural schema, and a model of body
size and shape — as illustrated in Fig. 6. This approach
provides an easier starting point for robotic modeling than
the sensorimotor approach. We have set out to implement this
modular framework in the robot, which will be detailed in the
next sections.

1) Tactile homunculus (superficial schema): One compo-
nent or “representation” that seems necessary is the “tactile
homunculus” or superficial schema. In Hoffmann et al. [31],
we have obtained this homuncular representation for one half
of the upper body of the iCub humanoid: Local stimulations
of the skin surface were fed into a self-organizing map
algorithm (SOM) that was additionally constrained such that
the sequence of body parts on the output sheet mimicked that
from the cortex (area 3b) — see Fig. 7B. This representation
now provides a building block that we can deploy in further
modeling.

Fig. 7. iCub skin and tactile homunculus. (A) Photograph of the iCub robot
with artificial skin exposed on the right half of the upper body (1154 taxels
in total). (B) Representation of tactile inputs learned using a Self-Organizing
Map — a 24 X 7 neuronal sheet. (C) Schematics with skin patches unfolded and
colored to mark the correspondence with (B). Arrows illustrate the relationship
in orientation between the skin parts and the learned map. From [31].

2) Proprioceptive homunculus (postural schema): In Hoff-
mann and Bednarova [32], we strived to provide a com-
putational model of the representation of proprioception in
the brain and its development. We used a simulator of the
iCub humanoid robot and had it randomly move its arm
in front of the face and follow the arm with gaze, thus
“babbling” in Cartesian space, inspired by analogous behavior
in infants (“hand regard”). Unlike for the “superficial schema”,
attempting to obtain a robot “postural schema” revealed a
number of gaps in our knowledge.

As elaborated in [32] in more detail and with additional
references, first, the principal proprioceptors are constituted
by muscle spindles, which deliver information about muscle
length and speed. In primates, this information is relayed to
the primary somatosensory cortex and eventually the posterior
parietal cortex, where integrated information about body pos-
ture (postural schema) is presumably available. However, it is
not clear what variable neurons in the ascending pathway and
in the cortex are actually encoding. To an engineer, joint angles
would seem the most useful variables. However, the lengths
of individual muscles have nonlinear relationships with the
angles at joints and it is not clear where this transformation
would occur. Second, Kim et al. (2015) [33] identified different
types of proprioceptive neurons in SI, namely neurons that fire
proportionally to joint angle (single or multi-digit) and those
that directly register posture. The SOM algorithm seems to
naturally support the latter type only though, learning to pick
up the most frequent postures (or “postural synergies”). In
summary, the nature of encoding of posture as well as the
development of the postural schema remains unclear.

3) Spatial localization of touch — a neural model proposal:
Finally, we present our work in progress—a proposal for
a neurorobotic implementation of the scheme proposed in
[30] (Section V-C and Fig. 6) — see Fig. 8. Tactile afferents
are simply the pressure values read off the individual taxels
stimulated on the robot skin. Proprioceptive afferents consist
of joint angles of all the degrees of freedom (joints) relevant
for the task. The primary representations draw on the output of
previous sections. The activations in the superficial schema—
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Appendix D. Development of reaching to the body in early infancy
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Fig. 8. Spatial localization of touch — neural network model proposal (cf.
Fig. 6). FoR = Frame of Reference. See text for details.

which is a distorted map of the skin surface—provide tactile
localization on the skin. The key challenge is to determine the
form that the “model of body size and shape” will take. As an
initial hypothesis, we can consider this model as knowledge
embedded in (synaptic) weights in the connections from the
postural schema to the “position of body parts in external FoR”
(FoR = Frame of Reference) neural population. First guesses
as to what the information encoded may be are guided by
the forward kinematics mapping in the robot (segment lengths
and joint orientations in 3D). The “position of body parts in
external FoR” hypothetical neural population thus corresponds
to the spatial localization of body. Combining the inputs from
the “superficial schema” and the “position of body parts in
external FoR” populations finally gives rise to remapping of
the tactile stimulus into external coordinates (it seems that
knowledge about the position/offset of skin parts with respect
to some joints/landmarks will also be needed).

To wrap up the section on robotic modeling, our work so
far has a bias toward “classical”, modular, divide-and-conquer
solutions, as is often symptomatic of robotic and artificial
intelligence approaches to cognition. In the future, we will
strive to obtain the “modules” and the use of specific frames
of reference in an emergent fashion—as proposed at the end
of section IV. The primary homuncular-like representations
obtained for the robot may then still constitute useful building
blocks, but their connections and interactions should emerge
in a more holistic sensorimotor setting. The (intrinsic) motiva-
tional component that may drive the exploration and facilitate
learning constitutes one of our next foci.

VI. Di1sCcUSSION, CONCLUSION, FUTURE WORK

The empirical data, conceptual framework, and robotic
modeling described above are at present too disparate to allow
a proper connection between them. The sensorimotor approach
is not sufficiently developed to make precise predictions about
the course of infants’ responses to buzzers. Models using the
humanoid robot are currently mostly couched in the classical
framework in which “spatial remapping” to reach for the body

occurs through an explicit chain of frame of reference trans-
formations, rather than implicitly as presumably happens in
the infant’s brain. We are however planning work more in line
with the sensorimotor account. Meanwhile our collaboration
has generated new hypotheses, insights, and predictions that
will be investigated further in existing data or tested in future
experiments. Some of the points that have come to light are
as follows.

There undoubtedly exist some (more or less complex) pre-
wired primitive movement “reflexes” [22], that may help
bootstrap the baby’s acquisition of body knowledge. It will be
interesting to check whether such reflexes already incorporate
the equivalent of coordinate transformations, allowing, for
example, a reach to the mouth to occur independently of
the arm’s starting position, and independently of the rest of
the baby’s posture. Primitive reflexes, and more generally the
first reaching movements, may also be limited by the fact
that connections between brain hemispheres develop later than
connections within hemispheres. We are planning in future to
confront this idea with the empirical data.

Another factor that may prioritize development of certain
particular reaching capacities might be the baby’s habitual
resting posture, favouring natural frequent contact of the hands
with certain body parts, and thereby learning of reaching to
those parts. In particular, in our longitudinal pilot study with
a single baby we observed that between 5 and 7 months
of age, the infant’s arms initially rested around the waist,
but later, as the legs started bending, the hands would more
often spontaneously contact the knees and then the feet—
these habitual resting locations were then correlated with
the progression of buzzer removal success. This is to be
documented more accurately on a larger sample.

Presumably, but this remains to be confirmed in further anal-
ysis of the empirical data, reaching that necessitates remapping
of spatial coordinates (for example to the other hand or to
the legs) appears later than reaching to body parts that are
more or less fixed with respect to the body (the abdomen, the
face region — although this moves to some extent). Also, we
expect that a reach learned starting from an initial arm posture
will not be possible from a different arm posture. Evaluating
these claims will be a way of distinguishing sensorimotor type
models from the more classical models in which reaching
is realized in a sequential fashion composed of stimulus
localization, remapping into an external reference frame, and
computation of a reaching trajectory to that location—whereby
these transformations would have to automatically incorporate
current body posture. Another point is the implication of
vision. We have not yet included vision in our analyses—since
it seems that at first infants are not using visual feedback.
However clearly at the later stages of development visual
tracking must be included, and we will modify the models
that we postulate to accommodate the results.

Finally, we have been focusing on reaching with the upper
limbs in order to understand how body maps develop. It should
be noted, however, that the lower limbs are effectors as well
and can be used to localize targets on the body, especially those
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that are situated on the opposite leg. Our informal observations
suggest that young infants spend a considerable amount of
time rubbing their feet together as well as rubbing one foot
along the opposite leg. Infants also spend time bringing their
feet to their hands (or vice versa) and in some instances
bringing the foot to the face. Understanding how a fully
integrated map of the body develops will also require viewing
the feet and legs as effectors that are incorporated into an
overall sensorimotor representation of the body.

In conclusion, our converging program of infant and robotic
approaches has provided a starting point for further work on
modelling how the infant reaches its body.
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Goal-Directed Tactile Exploration for Body
Model Learning Through Self-Touch on
a Humanoid Robot

Filipe Gama, Maksym Shcherban, Matthias Rolf, and Matej Hoffmann

Abstract—An early integration of tactile sensing into motor
coordination is the norm in animals, but still a challenge for
robots. Tactile exploration through touches on the body gives rise
to first body models and bootstraps further development such as
reaching competence. Reaching to one’s own body requires con-
nections of the tactile and motor space only. Still, the problems
of high dimensionality and motor redundancy persist. Through
an embodied computational model for the learning of self-touch
on a simulated humanoid robot with artificial sensitive skin, we
demonstrate that this task can be achieved 1) effectively and
2) efficiently at scale by employing the computational frame-
works for the learning of internal models for reaching: intrinsic
motivation and goal babbling. We relate our results to infant
studies on spontaneous body exploration as well as reaching to
vibrotactile targets on the body. We analyze the reaching config-
urations of one infant followed weekly between 4 and 18 months
of age and derive further requirements for the computational
model: accounting for 3) continuous rather than sporadic touch
and 4) consistent redundancy resolution. Results show the gen-
eral success of the learning models in the touch domain, but also
point out limitations in achieving fully continuous touch.

Index Terms—Body exploration, body schema, goal babbling,
intrinsic motivation, reaching development, self-touch.

I. INTRODUCTION

HILE recent decades have seen vast progress in robot
Wtactile sensing [1], [2], touch is still rarely used as
a primary sense. Research largely focuses on tactile sensing
in robot hands for manipulation [3], which is overseen and
guided by vision. Systems with the ambition of comprehen-
sive touch as a primary sense are still the exception; if present,
touch is an add-on to existing sensing systems (e.g., in the
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iCub humanoid robot [4]). In stark contrast, touch is the first
sense to emerge in the biological fetus [5] and provides a
crucial scaffolding by which later motor and cognitive devel-
opment are grounded [6]. For touch to be used truly as a
primary sense, it is necessary to mutually ground and coordi-
nate tactile sensing, vision, and motor control, which poses an
enormous challenge to the development of robotic systems.
Self-touch may play a crucial role for the development of
these skills in infants [7], and indeed seems like a uniquely
well-suited calibration scenario: all three modalities are used
and create contingent [8] stimuli, which are much less depen-
dent on uncontrollable external factors than when touching
external objects. Generating self-touch requires coordinated
motor action, which can be challenging for systems with many
Degrees of Freedom (DoF) and sparse sensor arrangement.
This is true in particular for robots as their tactile sensing
is still rather rudimentary and self-contact does not occur
naturally like in infants.

The overarching hypothesis of this work is that the similar-
ities and shared challenges between self-touch and reaching
for objects external to the body demand for a shared concep-
tual, technological, and developmental framework. This leads
us to the technological hypothesis that learning coordinated
self-touch can be achieved with models initially proposed for
external reaching. Learning to coordinate one’s body by means
of inverse models [9] that suggest motor actions for desired
outcomes is a well-understood concept for external reach-
ing. We seek to transfer knowledge from this well-understood
domain to the much less understood touch domain, and trans-
fer specific concepts such as goal-directed and structured
exploration in order to allow mastery of highly articulated
motor systems. Learning inverse models through exploration
of random movements—often dubbed body babbling [10] or
motor babbling—has been employed in different models (e.g.,
the “endogenous random generator” in [11]). However, faced
with the dimensionality of the motor and sensory spaces,
trying out all possible combinations of motor commands
and observing their consequences is hugely inefficient. For
example, most motor commands generate movements that do
not result in any contact with the body and hence do not
generate useful experience to learn the motor—tactile contin-
gencies. Therefore, we employ two key ideas that help the
agent to channel the exploration in the right direction. First,
the agent should monitor its learning efficiency—the gain in
its knowledge or competence to achieve specific goals—and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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focus the exploration on regions of the search space that are
currently most promising. This is exemplified by the com-
putational frameworks dealing with intrinsic motivation (or
artificial curiosity) [12]-[15]. Second, the agent should focus
the exploration on the goal space (hence “goal babbling”)
rather than the motor space [14], [16]. The goal space—the
skin on the body in our case—may be lower dimensional and it
is where the “interest” of the agent lies. The key challenge that
self-touch adds to the learning problem, compared to reach-
ing, is that most motor actions do not result in any observable
self-touch outcome in any region of interest, and that sensible
outcomes only lie on a lower dimensional manifold (the skin)
in space [17]. In contrast, typical reaching setups [14], [16]
involve sensible visual outcomes at least for the majority of
possible actions spanning the entire volume of space, which
provides much denser and richer feedback.

Complementary to the technological hypothesis, we
promote the developmental hypothesis that a continuity of
mechanisms exists between self-touch and reaching in infant
development, rather than distinct mechanisms in each respec-
tive stage of development [7]. This aligns with the idea of goal
babbling, which itself is a continuity model [18] of exploration
and exploitation.

A. Related Work

A key requirement for a model to learn self-touch is effi-
ciency: the learner has to cope with limited learning time and
resources and learns to coordinate in a potentially high dimen-
sional motor space. Efficient learning of general sensorimotor
skills has been studied extensively. Our focus is “mechanisms
that drive a learning agent to perform different activities for
their own sake, without requiring any external reward” [14].
This phenomenon has been articulated in psychology as intrin-
sic versus extrinsic motivation—[19] provides an overview.
Oudeyer and Kaplan [13] strived to clarify the terms of
internal/intrinsic and external/extrinsic rewards and present a
computational perspective as well as the relationship to other
computational frameworks such as reinforcement learning. As
briefly outlined above, there are two key aspects of efficient
exploration: 1) monitoring learning progress and 2) focusing
on the “goal space.” The former has been addressed by a
number of frameworks that can be classified as knowledge-
based [13]. The latter aspect has been addressed by the goal
babbling approach of Rolf et al. [16] or by other competence-
based approaches, in which the agent self-generates goals
that it tries to accomplish. The idea is best illustrated on
the example of learning to reach, or learning inverse kine-
matics. The motor system is known for its redundancy: there
are multiple ways of reaching to a specific point in space.
Knowledge-based approaches that monitor learning progress
but are confined to the motor space (e.g., [20]) will discover
multiple solutions to the same goal, which can often be consid-
ered inefficient. Moreover, the space of solutions in the joint
space (motor space) is not convex: averaging between them
will often result in wrong configurations. Rolf et al. [16] ana-
lyzed this and developed a solution, goal babbling, that deals
with this problem: by exploring in the goal space, the agent is
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not “motivated” to look for alternative solutions. Furthermore,
following continuous paths through the goal space allows
to circumvent the issue of nonconvex solutions [16]. This
architecture has been also used to model the U-shaped curve
typical of infant development [21]. Technologically, it has
enabled to address the control of advanced biomimetic robots
such as an elephant-trunk-inspired robot [22]. Baranes and
Oudeyer extended their robust intelligent adaptive curiosity (R-
IAC) architecture [20] to self-adaptive goal generation R-IAC
(SAGG-RIAC) [14]—a competence-based strategy—that also
handles learning inverse kinematics in redundant manipulators.
Our work is employing the computational framework of [14],
as embedded in the Explauto library [23]. The algorithms for
both modeling and exploration embedded in Explauto heavily
rely on motor actions being discontinuous in time, whereas
path-based approaches [16] rely on continuity and exploit it.
Very recent work in [24] has, however, seen a first integra-
tion of path-based goal exploration [16] and competence-based
intrinsic motivation [14].

Learning to discover the surface of the body—a 2-D skin
surface embedded in the 3-D world and moving together with
the body parts—is similar to the problem of learning inverse
kinematics that is a typical showcase for many of the intrin-
sic motivation frameworks (e.g., [14] and [16]). The motor
space or joint space is identical; the goal space, or observa-
tion space, is different: for learning inverse kinematics, these
are the 3-D Cartesian coordinates of the end effector (e.g.,
the infant hand). For the body space, either skin activation or
spatial coordinates are candidate representations, which will
be explained in detail in Section III. The key difference to
reaching in general is that during reaching to one’s own body,
feedback is not available for many postures. Some, or most
(depending on morphology), motor actions will not result in a
significant self-touch, in which case there may not be a pos-
sible learning step for a model. Whether existing frameworks
(e.g., [14] and [16]) can be effective (i.e., functional) under
these specific circumstances has not been shown so far.

The work of Mori and Kuniyoshi [25] and Yamada et al. [26]
on the fetus simulator is complementary to this work, addressing
prenatal development and focusing on a lower level: first tactile—
motor interactions are emerging from the musculoskeletal body
model coupled to spinal and simple subcortical or cortical
circuitry. In comparison, the present study focuses on how
guided exploration on a higher level of abstraction can give rise
to efficient body exploration. More importantly, we are looking
for goal-directed coordination that will facilitate comparison
with infant data from experiments where dynamically chosen
locations were designated as touch worthy. The model in [25]
and [26] does not comprise any inverse models and therefore
does not allow for goal-directed movement, but scales by only
looking for broad correlations on statically defined interest
patterns.

The work most related to ours is that of Mannella et al. [27]
who specifically target the body (skin surface) as the explo-
ration target. The biggest experimental difference to the
present study is the scale of the task. While we are looking at a
humanoid scale motor problem with 2-D skin, Mannella et al.
only investigated a very simple simulation. It consisted of two
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arms in 2-D with three DoF each, and a “skin” emulated using
30 Gaussian receptive fields in a 1-D topology. Their architec-
ture is rather more complex compared to ours, consisting of a
Goal generator, Goal selector, Motor controller, and Predictor.
The motor controller is also highly complex, composed of a
dynamic-reservoir recurrent neural network, a random genera-
tor, and associative memory. The “skin receptors” are phasic,
as they respond to changes rather than sustained values.
These changes are then relayed into a self-organizing neu-
ral map (SOM) that “clusters” them. Coordination is achieved
by learning motion trajectories through reinforcement. The
inner number of variables, or dimensions, is therefore rather
high, which makes scaling to humanoid complexity chal-
lenging. Compared to this, our architecture is much simpler
and chosen specifically for efficiency by focusing on direct
inverse models that can estimate the necessary posture directly,
rather than having to learn to generate entire trajectories. The
motor space consists simply of the robot joint space. That is,
only the final configurations/postures matter—motor overlaps
with proprioceptive—and the actual movement production is
sidestepped. Additional discussion and pointers to related work
on this issue—Ilearning to reach “synchronously” by matching
points in space versus “asynchronously,” taking into account
movement trajectories, is presented in [28].

This work is a direct extension of our previous work [29],
adding in particular: 1) pilot analysis of infant reaching kine-
matics for targets on the body (Section II); 2) path-based goal
babbling (after [22]); 3) improvements of the experimental
setup; and 4) new experiments and analyses.

B. Structure and Outline

Section II reviews relevant behavioral studies on infants and
presents our own pilot study on reaching configurations used
by an infant to reach for targets on the body. We distill two
further key requirements to a computational model for the
development of self-touch: 1) accounting for not just singu-
lar touches, but continuous touching motion and 2) describing
a consistent and repeatable choice of redundancy resolution.
Section III presents the robot simulator and the exploration
framework. Experimental results (Section IV) show for the
first time the effectiveness of existing intrinsic motivation and
goal babbling frameworks in the touch domain, as well as their
efficiency. We summarize the key findings from the experi-
ments in Section V and discuss their implications and future
work in Section VI.

II. INFANT BODY EXPLORATION AND REACHING FOR
TARGETS ON THE BODY

Fetuses initially perform local movements directed to areas
of the body most sensitive to touch: the face, but also soles
of feet [30, pp. 113—114]. Later, from 26 to 28 weeks of ges-
tational age, they also use the back of the hands and touch
other body areas like thighs, legs, and knees [30, pp. 29-30].
In addition, from 19 weeks, fetuses anticipate hand-to-mouth
movements [31] (the mouth opens prior to contact) and from
22 weeks, the movements seem to show the recognizable form
of intentional actions, with kinematic patterns that depend on

the goal of the action (toward the mouth versus toward the
eyes) [32].

Hand-mouth coordination continues to develop after
birth [33]. Specifically related to body exploration, Rochat [34]
writes: “By 2-3 months, infants engage in exploration of their
own body as it moves and acts in the environment. They bab-
ble and touch their own body, attracted and actively involved
in investigating the rich intermodal redundancies, tempo-
ral contingencies, and spatial congruence of self-perception.”
Thomas et al. [35], biweekly recording resting alert infants
from birth to six months of age, showed that infants frequently
touch their bodies, with a rostrocaudal progression as they
grow older: head and trunk contacts are more frequent in the
beginning, followed by more caudal body locations including
hips, then legs, and eventually the feet. DiMercurio et al. [36],
following infants from 3 to 9 weeks after birth, found no
consistent differences in the rate of touch between the head
and the trunk. In summary, infants acquire ample experience
of touching their body, which allows for the learning of the
first tactile-proprioceptive-motor models of the body. The abil-
ity to learn from this experience goes hand in hand with
dynamic neural development in this period [37]; see [7] for a
review focusing specifically on self-touch. Yet, the behavioral
organization of such early tactile exploration not understood.
Are the touches on the body spontaneous or systematic?
If there is a particular structure—which seems to be the
case [35], [36]—what drives this developmental progression?
Piaget [38] theorized that in newborns, action and perception
as well as the “spaces” of individual sensory modalities are
separated (cf. [39] for evidence that visual and motor modal-
ities are connected early after birth). Until the connections
are established, infants explore their environment (and their
body) randomly. Piaget [38] also proposed a pivotal role of
repeated movements—primary circular reactions directed to
learn properties of the body and secondary circular reactions
driven by the interest on the effects they produce in the envi-
ronment. A computational account combining rhythmic and
discrete movements and reinforcement learning is presented
in [40].

Behavioral studies investigating infant spontaneous behav-
iors with a specific focus on touch to the body [35], [36]
provide data that inform our modeling. First, in the first weeks
after birth, contacts with the rostral areas of the body (head
and trunk) are dominant. Second, contacts are typically made
with the ipsilateral hand. DiMercurio et al. [36] also iden-
tified complex touches (as infants moved their hand while
remaining in contact with their body), performed a network
analysis of contact sequences, and identified points of cen-
trality on the body. However, to discriminate spontaneous
contacts from systematic (intrinsically motivated) exploration
remains a challenge. The observation of frequent “complex
touches” raises an important requirement for a computa-
tional model—it has to explain the continuous coordination
of the task across isolated touch points. Purely conceptu-
ally, path-based exploration approaches [18] seem to fit the
requirement of exploration “along the skin surface” more
naturally than sporadically sampling ones [14], where every
movement is started anew from some canonical (“home”)
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posture. However, sporadic exploration at some point also
has to move between points, even though that is typically
abstracted away and only end points are considered. Which
approach creates experimental data closer to infant observa-
tions is not clear yet, partially pending further quantitative
analysis of infant data.

A counterpart to recordings of spontaneous infant behavior
is provided by testing how they can reach to targets on their
body. Lockman and colleagues performed a series of stud-
ies [41]-[45] in which vibrotactile targets (“buzzers”) were
attached to infants’ body parts and their ability and their way
of reaching for the targets were analyzed. Targets above the
mouth and on the chin were successfully contacted already
from 2 months of age [42], followed by trunk area, legs,
hands, other areas on the face (forehead and ears), and elbows
(around nine months) (whole body—pilot study [43]; upper
body [44]). For targets on hands and arms, the arm with
the buzzer and the contralateral arm reaching for the target
often moved simultaneously—the arm with the target actively
facilitating the removal [41].

One aspect remained unexplored so far: how infants man-
age motor redundancy in this task. Do they use the same
arm configuration to reach for specific targets on the body
or do they have alternatives at their disposal? If the latter is
true, what does the choice of a solution depend on? Switching
solutions may depend on the initial/current posture—what is
known as motor hysteresis [46]. Finally, what is the devel-
opmental progression of this phenomenon? This kind of
information is important for the modeling work, as it con-
straints the inverse model—a mapping from body space to
joint space—representation. To this end, we performed an
analysis of reaching configurations of one infant tested weekly
with buzzers on her body, between 4 and 18 months (exper-
imental protocol described in [44] in detail; summary of
success in buzzer removal for this infant reported in [43];
study approved by Tulane University Social-Behavioral IRB).
From video recordings of the experiments, snapshots of final
postures—around the first contact with the target—were taken.
In this article, reaching to the face and trunk will be stud-
ied. Hence, we show the final postures the infant assumed
to reach for the right forehead (Fig. 1, top) and the left
trunk (Fig. 1, bottom). Interestingly, despite the fact that the
overall posture of the infant differed significantly (supine,
seated in a seat/on the lap, on the tummy, and freely sit-
ting) and that the snapshots span more than one year of
the infant’s life, the final reaching configurations are largely
similar. Thus, the constraints on the inverse model can be
relaxed. Although it seems clear that, at least eventually, alter-
native reaching configurations will be available [46], they
are not frequently spontaneously recruited. This observation
motivates the fourth key requirement: the model needs to
describe a consistent resolution of redundancy, rather than
selecting different postures in every attempt or across tri-
als. This is consistent with the notion of a direct inverse
model which stores exactly one solution to reach for any
goal. However, consistent behavior may be distally observable
also for different internal organizations of the motor control
skill.
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III. EMBODIED COMPUTATIONAL MODEL—MATERIALS
AND METHODS

This section provides an overview of the robot simulator
and the exploration framework.

A. Nao Humanoid Robot With Artificial Skin

The experimental platform of this study is a Nao humanoid
robot. A modified version, uniquely equipped with artificial
sensitive skin (Fig. 2), is available at our institute. The elec-
tronic skin covers the robot’s wrists, torso, and head (Fig. 2,
right). Every triangular module hosts ten pressure-sensitive
elements, or “taxels” [47]. The physical robot is currently not
employed in the results shown here—long exploration experi-
ments would be damaging to the hardware—but the simulated
version closely mimics it to allow the transition to the real
robot in the future.

Gazebo 9 simulation environment was used. A variant of the
publicly available naov40 URDF model was additionally fitted
with tactile/pressure sensors (“skin”), mimicking our physical
Nao robot (Fig. 2). In addition, a cylindrical “pen” tool with
a spherical endpoint was attached to the robot wrist to act
as a finger and facilitate localized touch. The model has 250
and 240 tactile sensors for the torso and the head, respectively
(see Fig. 3). Compared to [29], additional modifications were
performed to the simulator that included simplification of the
meshes composing the model, buffering the contact events, and
disabling collisions for other parts of the arm than the finger.
Overall, these changes resulted in faster execution and more
stable results. The code of our nao-gazebo-skin plugin
is available at [48]. Videos from our experiments are available
at https://youtu.be/dnJaffBHf1c.

B. Action and Observation Spaces

The action space Q consists of the robot joint angles. An
action ¢ € Q generates an outcome x € X in the observation
space X. Only the upper body of the Nao robot, which hosts
the artificial skin, is used. The robot uses its right arm to touch
either the torso or the head. Its action space is the robot’s joint
space, with five DoF per arm and two DoF on the neck. To
touch the torso, only the arm is used, hence Q € R3: to touch
the head, the neck joints may also contribute: Q C R’. The
effect of these two joints is specifically studied by comparing
with a configuration without the head joints (nohj). Position
control in every joint is used to command the simulated robot
to a desired joint configuration.

The observation space is the robot skin activation gener-
ated when the robot contacts its torso or face with its arm.
This is a discrete space of individual taxels and their activa-
tion (binary: activated or not). For the exploration methods
considered here, a distance metric on this space is needed. A
parallel planar projection (Fig. 4) is used (differently from [29]
where a cylindrical projection was used for “high-resolution”
skin). Thus, for the torso and head skin, X C R2,

C. Touch versus Motor and Task Errors

Not all actions or postures in this scenario result in a mea-
surable touch outcome. Fig. 5 illustrates various cases for the
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Fig. 1. Infant reaching to the body. Screenshots of final postures while reaching for a buzzer on: (a) right forehead and (b) left trunk. One infant followed
from 4 to 18 months. Only screenshots from sessions where she successfully contacted the target are shown. Age is reported in the notation years; months
(days).

simplified scenario of a 2 DoF planar arm, but for which the object. The observation space of 1-D touches is color coded
action space can be fully plotted. A touch signal is generated for different touch coordinates x together with actions that
if the tip of the arm gets in contact with the surface of the achieve precisely that touch outcome (shown both as postures



115

Fig. 2. (Left) Nao robot with skin performing self-touch. (Right) Robot with
exposed artificial skin.

Fig. 3. Nao robot model in Gazebo with tactile sensors.

i -0.05
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Fig. 4. Parallel planar projection of taxels’ coordinates for the (a) torso and
(b) head.

in the physical space, and action coordinates in Q; note that
the physical space is 2-D while the observation space is only
unidimensional—contour of the gray object). Some postures,
such as (1), do not generate a touch. Others, (2), would pen-
etrate the body and are impossible (the entire grayed out area
in the action space). Some postures generate physical contact,
(3), but may not be registered as a touch sensation if performed
with an area without sensors, such as the elbow.

Fig. 5, bottom, shows different errors and deviation that can
occur when performing a goal-directed touching motion. The
robot in this example could start from a neutral reset posture.
Trying to reach for some touch goal x*, the inverse model sug-
gests a posture ¢*. The underlying motor controller is tasked
with moving the robot to ¢*, which is physically unreachable
in this example. Instead, the arm at some point collides with
the skin and is potentially dragged along it while the motor
controller is still trying to reach ¢*. The robot eventually ends
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Fig. 5. Exemplary relation between the action space of a 2 DoF arm,

and its potential touch on the 1-D boundary (observation space) of a body.
Top: Examples of different types of touch (color coded) and nontouch events
(numbered)—a nontouching posture (1), an impossible posture (2), and a pos-
ture that generates a contact with the object that does not register as touch
(3). Bottom: Exemplary reaching attempt to a rest or reset posture with both
a reaching error in the observation space, and a motor discrepancy.

up in a different posture g, with a touch coordinate x (but
may generate a nontouch event in other cases). When attempt-
ing an impossible action ¢*, a motor discrepancy—difference
between the desired joint configuration ¢* and actual configu-
ration at the end of the movement g—is inevitable. A different
kind of error is to miss the reaching target x* by x. This partic-
ular motion is an example of a single sporadic touch. Complex,
or continuous, touches would describe a motion between sev-
eral different goals x* while maintaining touch with the skin.
During such complex motions, the motor discrepancies can be
subject to hysteresis as the effector is dragged along the skin.

D. Home Posture

The default “home” posture of the model in Gazebo that is
used to start reaching movements is similar to the one shown
in Fig. 3, with the difference that the wrist is rotated such that
the “finger” points downward. For exploration methods rely-
ing on separate movements to collect every action-observation
pair—referred to as sporadic touch here—this posture is of
little importance, provided that this posture does not impede
reaching to the goal space (torso or head) due to self-
collisions. However, for path-based continuous approaches
(Section III-F), the home posture is an important part of the
exploration process and it is beneficial if it lies in the goal
space. To this end and in order not to introduce biases or
asymmetries, home postures with the hand touching the cen-
tral part of the torso/head were chosen (see Fig. 6). This home
posture is used both for path-based continuous goal babbling
(PBCGB) and as the base posture to bootstrap the Explauto
methods.

E. Explauto Autonomous Exploration Library

Explauto (https://github.com/flowersteam/explauto, [23]) is
a framework for implementation and benchmarking of
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Fig. 6.
(b) head.

Home posture providing a touch feedback for the (a) torso and

sensorimotor learning algorithms, with a specific focus on
intrinsic motivation—monitoring learning progress in motor
or sensory (goal) spaces. For a detailed and formal explana-
tion, the reader is kindly referred to [14], [23], [49], and [50].
During exploration, a database is constructed with every entry
being a tuple: (g,x). We use the nearest neighbor model
from Explauto to represent both the forward and inverse
model (together, the sensorimotor model in the terminology
of Explauto). This is an example of lazy learning: training
data is processed only when a query is asked. Our focus
is on inverse models: learning how to reach for particular
locations on the skin (~ inverse kinematics). Given an obser-
vation x*, the inverse model will return the joint configuration
g* that corresponds to the observation stored in the database
that is closest to x*. Forward models are needed only for the
discretized motor babbling (DMB) exploration strategy (see
below) that uses forward predictions to gauge the learning
progress.

To choose where to focus exploration, an interest model
is needed, sampling from the interest space, which can be
either the action space Q (motor babbling strategies) or the
observation space X (goal babbling strategies). The exploration
strategies from Explauto used in this work are as follows.

1) Random Motor Babbling: A motor configuration ¢* € Q
is sampled uniformly from the action space, and then executed,
generating an observation x € X.

2) Random Goal Babbling: A goal x* is sampled uni-
formly from the observation space, and the inverse model is
used to find an action ¢* best matching the goal, with added
exploration noise.

3) Discretized Motor Babbling (or Motor Babbling With
Intrinsic Motivation): The interest space—the action space—
is discretized into ¢ = m x n cells (regions). We use 32 x 32
cells. The algorithm randomly selects one of the cells with
a probability proportional to the current state of an interest
value I that each cell possesses. A motor command g within
that cell is generated. The forward model is used to make
a prediction of the observation, x}. The motor command is
executed, resulting in the real observation x and allowing for
the calculation of an error (expected versus real). The interest
value of a cell is high when competence C = ||x} — x||,
rapidly increases or declines. The local competence progress
is formally defined in [49].

4) Discretized Goal Babbling: This method is analogous
to DMB but with the interest space being the observation

space (the skin) and the competence progress gauged on the
performance of the inverse model. The goal generation ran-
domly selects one of the cells, proportionally to their interest
value /. Then, a goal x} within that cell is uniformly gen-
erated. The robot attempts to reach for x} using the inverse
model (with exploration noise).

All experiments using Explauto were run for 1000 iterations.
Random goal babbling (RGB), DMB, and discretized goal
babbling (DGB) require a bootstrapping phase, during which
a few touches have to be generated. This phase is counted
toward the 1000 iterations limit. To this end, random motor
babbling (RMB) with constrained joints range is used by tak-
ing the home posture as a base and adding random exploration
noise that fits within the constrained range until ten touches
are observed. While a single touch was enough to bootstrap
these methods, the use of additional bootstrapping touches led
to more consistent results between trials of the same experi-
ment (with small improvements from 5 to 10 touches and no
effects with additional ones).

FE. Path-Based Continuous Goal Babbling

In addition to Explauto and related SAGG-RIAC methods,
we employ the PBCGB method originally developed in [16]
with modifications previously employed on the biomimetic
elephant trunk robot [22]. While Explauto explores by means
of sporadic random motion and discontinuous goal selec-
tion, [22] samples motor action along continuous paths. A
goal x}; is chosen randomly from the overall set of goals as
the end point of a motion. From the previous end point xg,
a straight path of subgoals x*(7) is then sampled toward xj.
Each subgoal x*(r) along the path is attempted to be reached
by querying the inverse model for a motor command g;. A
small random motor perturbation €(¢) is added to the com-
mand to encourage exploration. In order to ensure continuity,
this perturbation is not chosen independently in every time
step, but generated by an autoregressive random process sim-
ilar to a Brownian motion that can explore over a wide range
of values by accumulating small random steps (see [16], [22]
for details). The perturbed motor action ¢*(¢) + €(¢) is then
executed on the robot in order to try and reach for x*(r) along
the continuous goal path. The resulting observation x(¢) is then
used together with the motor command ¢*(f) + €(¢) to train
the inverse model. After attempting to reach the end point and
each subgoal in its path, either another end point is selected,
or, with a fixed probability, the home posture is designated as
the next end point.

This is illustrated in Fig. 7: we start from the home posture
(red dot in the center, 29), generate the first end point (red
dot 7), with subgoals between it and the home posture (blue
dots from 1 to 6). The model attempts to reach for 1, then 2,
until 7. After the attempt to reach for 7, a new end goal is
generated (red dot 15), with its subgoals. This happens again
to reach for 22, at which point the home posture was chosen
instead of another end goal. When the algorithm goes back to
the home posture, it uses the difference between the current
position and the home posture to reach it in steps—here, 7
steps from 22 to 29—but without generating subgoals. This
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Fig. 7. Example of exploration paths and goals generated by PBCGB. End

points in red, subgoals in blue, and taxels in black.

ensures that the robot is back on the home posture to start a
new exploration path no matter where it was, as there is no
guarantee that the goals were successfully reached.

An advantage of this continuous strategy is that the way
redundancy is resolved by the eventual inverse model is typi-
cally very smooth and does not involve unnecessary jumps. It
can moreover be controlled by choosing a home posture, from
which exploration starts and to which it repeatedly returns. If,
for example, the home posture is chosen in an “elbow up”
configuration, the path-based approach will develop an inverse
model that stays close to it and moves continuously around it
to reach goals. SAGG-RIAC [14] cannot achieve this continu-
ity because its sporadic random actions will sample elbow up
and “elbow down” postures equally, and the Nearest Neighbor
model has no means to reconcile them smoothly. Hence, the
inverse model would suggest repeatedly switching between
both kinds of redundancy resolutions while trying to generate
a continuous motion.

An important implication of focusing on a single, consis-
tent way of resolving redundancy is that this strategy has been
shown to work in extremely high-dimensional motor spaces,
such as 50 [16] or 100 [51] motor dimensions. The main
drawback is that the creation of continuous paths and explo-
rative perturbations requires more parameters (e.g., step widths
and amplitudes) than the sporadic exploration of SAGG-RIAC
which only requires to know the outer size of the goal and
motor spaces. The path-based approach is therefore more dif-
ficult to use “off the shelf.”” However, the path parameters
typically allow for effective experimentation over a wide range
of values [16]. The parameters used here were:

1) discretization of the observation space, generating the
main end goals (not subgoals): 10 x 10 list of end goals,
uniformly spread on the space;

2) probability to go back to the home posture instead of
reaching for another end goal: 10%;

3) maximum distance between two successive subgoals, in
meters: 0.01;

4) maximum distance joints can move in a single step, in
radians: 0.1;

5) motor perturbation: maximum amplitude of added noise
that can influence a joint’s position, in radians: 0.01.

G. Learning and Testing Models

In each experiment, the robot uses a given exploration
strategy for a certain number of steps: 1000 for Explauto
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Fig. 8. Testing set. Head (left); Torso (right). All skin taxels in black; the
testing set in blue.

methods, and 15000 for PBCGB. Unlike standard cases in
which every iteration of active exploration results in reaching
a point in the observation space and allows for calculating an
error (target versus actual outcome—Ilike in the case of learn-
ing to reach using vision), in our case, the movement does not
always result in contacting the skin. In that case, the step is
counted toward the maximum number of iterations but does
not contribute to learning the sensorimotor (forward or inverse)
model.

At each step, the target joint configuration (motor command
sent to the robot) and the actual joint configuration are com-
pared. If the difference for any joint is higher than 10% of
its maximum range, the results are discarded and are not used
to learn the model. The main reason for such discrepancy is
self-collision. Motor commands that would end up “inside the
robot” should be avoided. Because of collisions, such com-
mands often make the finger slide on the skin, creating an
important difference—sometimes equivalent to the distance
between two or three taxels—between the initial contact point
and the end point after sliding. This sliding behavior should
be avoided as it can influence the results in several ways. For
example, an initial contact that does not provide tactile feed-
back could—if the sliding finger activates a taxel a short time
after—be recorded and counted as successfully reaching for
the activated taxel.

A subset of taxels, shown in Fig. 8, is tested every 100 itera-
tions during the first 1000 iterations; then every 1000 iterations
up to 15000 in case of PBCGB, whereby testing refers to the
robot being asked to reach for each test taxel using the cur-
rent inverse model. In the same manner as for the exploration
phase, if no taxel is contacted, no error can be measured. For
all experiments, the environment is set to reset at each iteration
during the testing phase, and set back to its previous reset
settings before exploration starts again.

IV. EXPERIMENTS AND RESULTS

We present the results of a series of experiments. The right
hand is the robot’s effector and reaches either for the torso
skin (Section IV-B) or for the face skin (Section IV-C). In the
latter case, the action space will be larger as two neck joints are
available in addition to the five arm joints. Videos illustrating
our experiments are available at https://youtu.be/dnJaffBHf 1 c.

We will illustrate the results in the following ways: 1) mean
reaching error (MRE) every 100 iterations until 1000, then
every 1000 iterations (for PBCGB) (e.g., Fig. 12, left); 2) the
number of touch occurrences during exploration every 100
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Fig. 9. Right hand reaching for (a) and (b) torso and (c) and (d) head—
observation space. Comparing the mean reaching performance over five trials
between using the actual joint configuration for learning (left) and the tar-
get joint configuration (right). Goals generated during the exploration process
(gray). Testing after all learning iterations: Reached taxels with no error (blue);
Reached with error—taxels reached (magenta dots) with error magnitude
(magenta circles); and Unreached taxels—no taxel reached during reaching
attempt (red). (a) DGB actual joints. (b) DGB target + actual. (c) DGB actual
joints. (d) DGB target + actual.

iterations until 1000, then every 1000 iterations (e.g., Fig. 12,
right); and 3) the projection of the generated goals with details
about the reaching error for each test taxel after 1000 (or
15000) iterations (e.g., Fig. 9). The results are averaged over
ten trials for each exploration strategy; any result specific to
one trial or averaged over a different amount of trials will
be clearly stated. For projections, the observation space is
presented from the point of view of an observer looking at
the robot—Ilike in Figs. 2 and 3.

For the experiments on the torso, the Explauto explo-
ration methods (Section III-E) and the path-based approach
(Section III-F) are complemented by a special version of DGB
with no reset, DGB-nr, whereby the environment is not reset
at each iteration and thus the robot starts from the previous
configuration—partially mimicking “complex touches” and the
operation of PBCGB.

For the head, DGB, PBCGB, and DGB-nr were run. In
addition, two more experiments were added: first, a version
of DGB, DGB-nohj (“no head joints”) for which the neck
joints were disabled. Second, a version of PBCGB, PBCGB-
incgs (“increased goal step”) with a modified discretization
(9 x 9), and maximum distance between two successive sub-
goals (0.025). The significance of the parameters necessary
to organize paths in PBCGB has not so far been exhaustively
explored, which gives rise to the expectation that further tuning
could enhance its performance. When using the same param-
eters used for the torso, we observed many subgoals being
created in the central area of the head, where there are no
taxels. We decided to include both variants here to compare
their results.

The difference between RMB, RGB, and DGB in [29]
and this work are 1) the projection of the observation space,
impacting the calculation of the reaching errors; 2) the dis-
carding of target motor commands that are too different from

Touches
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400 600 800 1000
Iterations Iterations
(@ (W)

Fig. 10.  Right hand reaching for the torso. Touches generated during
exploration using the actual joint configuration (left) and the target joint
configuration (right). Each dashed line corresponds to a trial. The full line cor-
responds to the mean, with error bars corresponding to the standard deviation.
(a) DGB actual joints. (b) DGB target + actual.

the actual motor configuration; and 3) changes to the simulator
described in Section III-A.

A. Analysis of Motor Discrepancies

Unlike for reaching in free space, reaching to the body
inevitably results in self-collisions. Interesting preliminary
results arose related to the comparison between target and
actual joint configurations and the discrepancies between them.
To avoid the sliding effect (Section III-G) and improve the con-
sistency between what the models learn and what the robot
actually does, we tested feeding the models with the actual
joint configuration after a command instead of the target
command. Over five trials, we observed a significant drop
of performance and compared the results with another vari-
ant where we used the target motor command by default
and replaced it with the actual joint command when the
discrepancy for at least one of the joints was 10% higher
than its absolute range of possible values. The difference in
performance was barely noticeable for the torso, but striking
for the head, as shown in Fig. 9, as a significant amount of
taxels are unreached when using the actual joints, and reached
with small errors when using the target joints.

The difference is not only present in the reaching
performance but also, maybe more importantly, in the number
of touches generated: for DGB (both head and torso), there is
a +50% number of touches between the two cases, on average
400 touches when using the actual joints, and slightly above
600 for the mixed target and actual joints version, as seen in
Fig. 10. These results were observed not only for DGB, but
also for PBCGB (though only with two trials)—both for the
torso and the head. For PBCGB, using mainly the target motor
command provided about twice as many touches than using
only the actual joints after 15000 iterations, but the variance
between trials was higher.

Thus, commands that try to “penetrate inside the robot” are
important to ensure more consistent tactile feedback, as these
commands typically exert more force by trying to reach an
impossible position, contrary to commands using the actual
joint configuration that may end up only brushing against the
skin, and not applying enough pressure. To keep the advantage
of these commands while reducing the occurrence of the slid-
ing effect and its impact on the results, the solution described
in Section III-G was chosen, where the target motor configu-
ration is used but entirely discarded (instead of being replaced
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Fig. 11. Joint error through all iterations of the Elbow Roll joint in a single

trial from DGB when reaching for the torso. The red vertical lines are the
threshold. Iterations with tactile feedback (left), and without (right).
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Fig. 12. Right hand reaching for torso—comparison of exploration strategies
at 1000 iterations. (Left) MRE. (Right) Number of touches.

by the actual configuration as in the results above) if the differ-
ence with the actual configuration is above the 10% threshold
for any joint.

To further analyze motor discrepancies, we used histograms
of the errors (difference) between target and actual configura-
tions. Each joint was analyzed separately to estimate its range
of errors. We also separated the commands that resulted in a
tactile feedback, including the discarded ones shown outside
the threshold (Fig. 11, left), from the commands that did not
provide any feedback (Fig. 11, right).

The error ranges for the commands that did not provide
tactile feedback mainly stayed within the 10% threshold (see
Fig. 11, right). For the majority of iterations, there is zero, or
a very small, error. This was expected as commands that do
not produce a tactile feedback are often not in contact at all
with the robot. Without collisions, there is little discrepancy
between the target and actual commands. For commands that
produced tactile feedback, the range of errors is more spread
(see Fig. 11, left).

Over all methods and trials, the joint that was more often
outside the threshold and participated in the discarding of the
target command is the Elbow Roll, followed by the Shoulder
Pitch, Shoulder Roll, and the Head Pitch. The Elbow Yaw and
Head Yaw had the narrowest ranges of errors, keeping an error
close to zero and rarely going over the threshold.

B. Reaching for the Torso

For each method, we look at the average over all trials
of: the MRE and the number of touches through exploration
(Fig. 12), and the projection of the skin alongside the distribu-
tion of goals generated and the reaching error for each tested
taxel (Fig. 13).

Surprisingly, RGB has the lowest MRE after 1000 itera-
tions, close to DGB and DGB-nr. Continuous motion attempt
with DGB-nr has very close MRE to DGB with its sporadic
motions, contrary to PBCGB that shows an MRE about thrice
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Fig. 13. Right hand reaching for the torso—observation space. See Fig. 9

for details. (a) RMB. (b) DMB. (c) RGB. (d) DGB. (¢) DGB—no reset.
(f) PBCGB—1000 iterations. (g) PBCGB—15 000 iterations. (h) Legend.

the value of DGB (Fig. 12, left). DMB displays a low amount
of touches, close to RMB, while PBCGB is above RGB but
far below both DGB variants which have the highest amount
of touches (Fig. 12, right). Looking at the projections (Fig. 13)
reinforces the idea that MRE and the number of touches are
not good enough metrics by themselves: while somewhat in
the middle in MRE and touches, PBCGB shows a high amount
of completely unreached taxels, compared to DGB and DGB-
nr [Fig. 13(d) and (e)], and surprisingly does not show major
improvements even after 15 000 iterations [Fig. 13(f) and (g)].
The difference between DGB and RGB [Fig. 13(d) and (c)]
is small despite the gap in the number of touches. Compared
to [29], DGB shows a smaller amount of touches and of consis-
tently perfectly reached taxels. DGB-nr has similar or higher
reaching errors than DGB, and no taxel is consistently per-
fectly reached, but has several taxels with mean errors smaller
or equal to the distance from the target taxel to its closest
neighbor.

PBCGB takes on average 6 steps to go back to the home
posture and 6.5 steps toward an end goal (i.e., there are on
average 6.5 goals between two end goals), has 1895 end
goals for 15000 iterations, and it goes back to the home pos-
ture 206 times. At 15000 iterations, it averages 4777+1078
touches.
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Fig. 14. Right hand reaching for the torso—observation space—using 3-D
errors. See Figs. 9 and 13 for details. (a) DGB—1000 iterations. (b) PBCGB—
15000 iterations.

TABLE 1
MEAN PERCENTAGE OF DISCARDED MOTOR COMMANDS FOR TORSO
REACHING, RELATIVE TO 1000 ITERATIONS, EXCEPT
PBCGB AT 15000 ITERATIONS

[ RMB | RGB | DGB | DGB-r | DMB | PBCGB |
[ 03£0.1 | 25.8£9.2 | 186%£9.5 | 17.7E6.1 | 6.0£5.2 | 2.4E39 |
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Fig. 15. Right hand reaching for the head—comparison of exploration
strategies at 1000 iterations. (Left) MRE. (Right) Number of touches.

For the torso, we also retrieved the 3-D errors between the
end effector and the tested taxels. These errors serve as an
external evaluation for unreached taxels during testing (in red
in the projections)—they are not used for learning. The 3-D
errors are less accurate than the 2-D errors, as shown in Fig. 14
for DGB: reached taxels (in blue) will have an error due to the
physical size of the objects even if the finger is in contact with
the target taxel, or due to small movements (e.g., sliding) that
can happen in the delay between the touch and the recording of
coordinates. The 3-D errors in PBCGB are quite high. They
seem to intersect around the taxel touched from the home
posture, but an analysis of screenshots of the reaching attempts
showed that the finger is often away from the skin, rather than
around the home posture.

The mean percentage of discarded motor commands is given
in Table I.

C. Reaching for the Head

DGB-nohj performs almost as well as DGB with the neck
joints enabled with regard to MRE and the number of touches
(Fig. 15). The biggest difference is in DGB reaching more
accurately the ipsilateral side, while DGB-nohj has higher
errors there and instead reaches accurately the opposite side
of the face [Fig. 16(a) and (c)]. The goal generation also
highlights this shift.

DGB-nr shows a clear increase of the reaching error in the
projections [Fig. 16(b)], despite keeping up with the number of
touches and an MRE curve that seems close to DGB (Fig. 15).
Again, the goal generation is impacted, and more goals are
selected on the middle part of the face with no taxels.
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Fig. 16. Right hand reaching for the head—observation space. See Figs. 9

and 13 for details. (h) is only one trial that had been run to 30000 itera-
tions (not a mean of ten trials). (a) DGB. (b) DGB—no reset. (¢) DGB—no
head joints. (d) PBCGB—1000 iterations. (¢) PBCGB-incgs—1000 itera-
tions. (f) PBCGB—15000 iterations. (g) PBCGB-incgs—15000 iterations.
(h) PBCGB—30000 iterations (1 trial).

PBCGB only achieves poor performance on the head after
1000 iterations with the default version; no taxel was reached
during testing and no error could be measured [Fig. 16(d)].
The version with the increased step length reaches, but with
a high error—the intersection of the circles seems to indicate
that it mostly reaches for taxels very close to the home posture
[Fig. 16(e)]. The number of touches is low for both ver-
sions (Fig. 15, right). After 15000 iterations, the performance
improves significantly. There were on average 47784626 and
51614402 touches and the MRE dropped to 1 cm. The projec-
tions [Fig. 16(f) and (g)] show that reaching for the upper-right
part of the head was learned, but the remaining part of the skin
is not even reached with error. The goals projected are also
mainly present in the center of the middle stripe of the face.
This is mainly due to how the algorithm functions, as these
include the subgoals, and the middle area is bound to be cov-
ered by subgoals when attempting to reach from one side of
the face to the other.

We let one of the trials for PBCGB run until 30000 itera-
tions [Fig. 16(h)] instead of stopping at 15000. Its projection
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TABLE II
MEAN PERCENTAGE OF DISCARDED MOTOR COMMANDS FOR HEAD
REACHING. RELATIVE TO 1000 ITERATIONS, EXCEPT PBCGB
VARIANTS BASED ON 15 000 ITERATIONS

DGB-nohj ‘ PBCGB ‘ PBCGB-incgs
144+£54 | 2.1£392 | 0.7£0.9

DGB | DGB-nr |
[ 169%6.1 | 174%6.7 |

shows that the whole upper part of the head is reached quite
accurately, but it is still missing the lower part.

PBCGB takes on average 5.4 steps to go back to the home
posture and 6.5 steps toward an end goal; it has 1937 end
goals for 15000 iterations and goes back to the home posture
211 times. The variant with smaller discretization and higher
maximum subgoal distance, PBCGB-incgs, takes on average
4.8 steps to go back to the home posture and 2.8 steps toward
an end goal; it has 4504 end goals for 15000 iterations, and
goes back to the home posture 452 times.

The mean percentage of discarded motor commands is given
in Table II.

V. SUMMARY AND DISCUSSION OF EXPERIMENTS

The results presented in this work are to our knowledge
the first attempt to compare the intrinsic motivation frame-
work of the “SAGG-RIAC” type (e.g., [14]) with PBCGB
approaches [22]. Furthermore, we study a nonstandard sce-
nario of reaching to own body as opposed to reaching in
space. There are a number of complications (see Section III-C
and Fig. 5) having mostly to do with the fact that feedback
about the learning progress is not available at all times: if
no contact on the skin is generated, no error is available and
learning as well as “external evaluation” are compromised.
For this reason, we complemented the results presentation by
reaching error (MRE) with the number of touches achieved
and the goal space projection. None of these provide a com-
plete picture, but together they improve our understanding.
Additionally, the issue of discrepancy between target and
actual joint configurations has to be tackled.

In line with our previous results [29], DGB performed
best. Motor space exploration methods—RMB and Motor
Babbling with Intrinsic Motivation—performed worse than
any Observation space exploration methods—Random or
DGB. Beyond Explauto’s DGB, the novel PBCGB is intended
to learn a model that is both continuous and consistent. While
these two key requirements are known to be met for reach-
ing external objects [16], [22], the algorithm only achieves
a partial exploration of the touch space. The key limitation
of the current setup seems to be the discrete sensor layout
with gaps between sensor patches and regions, which makes
it hard for the path-based approach to discover the right local
movement direction. The difficulty of the requirement for con-
tinuous motion is also demonstrated by the degeneration of
DGB’s performance when generating continuous, “complex”
touches in the “no reset” condition.

In summary, this work makes an important contribution in
that it puts to test the algorithms developed for reaching in
external space on a new problem: learning to reach for the
agent’s own skin surface. The fact that many reaching trials
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do not contact the skin and hence provide no training data
for learning the inverse model poses a challenge. Additional
practical complications come from two facts: 1) self-collisions
can occur also between other body parts than the end effec-
tor and the target skin region and 2) the skin sensor sheet
is not continuous. The algorithms we tested proved to work
in this situation but their performance was degraded. Sliding
over the skin surface (or “complex touch”) provides an oppor-
tunity for more efficient learning; however, due to the nature
of our setup, it somewhat amplifies the effects of the practi-
cal complications mentioned above. A soft skin surface with
overlapping tactile receptive fields would be a solution.

VI. GENERAL DISCUSSION AND FUTURE WORK

First, the issue of motor redundancy should be discussed.
The inverse model—from skin space to joint space—was
learned directly from the training samples and when using the
Explauto methods, it was represented with the nearest neigh-
bor algorithm. While direct inverse modeling [52] is prone to
the ill-posedness of the general inverse kinematics problem
and the averaging over nonconvex solutions sets, our solution
circumvents this by performing the exploration in the goal
space: alternative solutions exploiting motor redundancy are
thus not sought. Additionally, in the nearest neighbor algo-
rithm, no averaging takes place. However, the solution found
will in our case be the first solution found; it may thus depend
on initialization or chance and may not be the best solu-
tion. Distal learning, or learning with a distal teacher [52],
as opposed to direct inverse modeling, is more versatile in
that it allows the incorporation of additional constraints to
channel the search for the (single) solution. However, while
initially, a single solution to a reaching target on the body
may suffice, we know that adults are capable of alternative
solutions depending on context. Distal learning allows the
incorporation of a forward model and inverse model in series.
Such a solution is more versatile in that the forward model,
which is unique, “disambiguates” between alternatives coming
from the, one-to-many, inverse mappings and can check their
correctness. Human motor control in the cerebellum may be
employing multiple paired forward and inverse models [9] (see
the MOSAIC model [53]). Distal learning can thus in principle
deal with a redundant system, but the problem is that the motor
error is not directly observable [16]. A solution that would
allow the agent to find one solution for every reaching target
first, but add and keep alternatives later on, remains our future
work. The mixed—composite forward-inverse models—can be
a solution (see [54] for a survey). In particular, associative
memory architectures have been proposed that allow to store
several solutions and dynamically switch between them [55].
In this way, it may be possible to construct a continuous model
of touch that can perform uninterrupted motion throughout
complex touches, only flipping to another solution branch if
necessary.

Self-touch configurations are also more kinematically con-
strained than reaching in free space in front of the body
and hence the effective motor redundancy is likely lower.
This is even more the case for the experiments used here,
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in which only five DoF of the Nao arm were employed. Other
relevant extension points in recent work concern the exploita-
tion of symmetries in the sensorimotor apparatus [56] that
can lead to a reduced need for exploration. While previous
work developed competence progress-based goal babbling [14]
and PBCGB [22] separately, and based on a rather different
overall organization of behavior, recent studies have demon-
strated their compatibility [24]. The results of the present study
regarding accuracy, but also consistency and continuity, sug-
gest that also the (self-)touch domain could benefit from an
integration of both approaches that prioritize some paths over
others.

Second, the use of the nearest neighbor algorithm for the
inverse model representation has to be discussed. It has the
following advantages: 1) incremental learning is simple and
requires registering pairs from input and goal space only (“lazy
learning”) and 2) there is no averaging or interpolation of sam-
ples (avoiding the problem of nonconvexity of the solution
space). The disadvantages are: 1) computational complexity:
all experience is stored in memory and upon retrieval—query
to the inverse model—time is required to find the nearest
neighbor; 2) susceptibility to noise: in our scenario, “phantom”
skin activation would be cataloged together with the current
joint configuration and contaminate the model; and 3) the
mapping will not be smooth: adjoining skin receptors will
not necessarily map to nearby joint configurations. Baranes
and Oudeyer [14] deemed nonparametric methods (like near-
est neighbor) suitable for their problems (including inverse
kinematics) and the complexity problem can be mitigated by
efficient implementation [57]. Alternative representations of
the inverse model could be local regression methods (e.g.,
Locally Weighted Projection Regression; Sigaud et al. [58]
for a survey). How such mappings are encoded by the brain
is an open question.

Third, the representations of the input and output spaces
importantly influence what can be learned and how. In the
input or motor space in this work, the actual execution of the
movement—initiation, termination, and its dynamics—has not
been addressed and such separation of movement preparation
and control may not be justified [59]. Mannella et al. [27]
do consider this aspect and observe, for example, that easy
postures are acquired before hard ones. The computational per-
spective of Cisek could be used as a starting point to add this
important dimension [60]. Dynamic Movement Primitives [61]
could be employed and possibly allow the incorporation of
rhythmic movements; Central Pattern Generators used in [40]
are an alternative. Regarding the “skin space,” one could come
closer to the biological reality by mimicking the nonuni-
form density of receptors (as done in [25] and [27]). On
the representation level, self-organizing maps seem like a
natural candidate [27], [62]. The distance metric required
for the exploration will then be distorted as is typical for
homuncular representations and present an additional chal-
lenge. Furthermore, the spaces of torso and head were treated
separately in this work. To make them part of the same
goal space, a metric connecting them would have to be
introduced. Alternatively, they could be separate goals, but
within the same exploration framework. Forestier et al. [63]

or Santucci et al. [64] provided possible solutions. Adding the
skin space of the effector would bring additional complexity.
Finally, the motor and sensory spaces could be treated in a
more integrated manner as proposed by Marcel et al. [65] who
present a mathematical analysis of building a sensorimotor
representation of a naive agent’s tactile space.

Fourth, it is also worth considering how the task studied
here—reaching to the body—differs from reaching in gen-
eral. As introduced in Section I-A, while learning to touch the
body, feedback is not available for most arm postures as the
arms are simply in free space. It is also important to consider
the role this feedback plays. When the intrinsic motivation
frameworks (e.g., [14] and [16]) are applied to reaching in
general, an inverse model is being learned and the reaching
error is used to monitor learning progress and channel it in
different directions. An alternative formulation is offered by
Caligiore et al. [66], employing reinforcement learning—the
agent is rewarded for contacting an object in front of it. In
addition, the reward is shaped such that the agent is motivated
to reach the final position with a minimum speed, thus mimick-
ing the minimum variance theory [67]. The third component
of this model is the equilibrium point hypothesis (e.g., [68]).
Thus, this model produces reaching trajectories, while remain-
ing at the level of reaching kinematics (circumventing forces
and torques). Remarkably, a number of kinematic variables
characterizing the development of reaching in infants is repro-
duced. However, it is not clear how the reinforcement learning
component could be transferred to our case—if reward was
delivered for any contact on the skin, the agent would not be
motivated to explore the whole skin surface. Related to this
is also the notion of goals in general. While in reinforcement
learning frameworks the agent is maximizing a sum of future
rewards, active goal exploration approaches like the one used
here assume that the agent can “imagine” goals—positions on
the skin here—and then attempt to achieve them. It remains
an open question whether activation of tactile receptors could
be interesting enough goals for the infant. Furthermore, and
this applies to infant development in general, there is evi-
dence suggesting that infants younger than two years cannot
make certain kinds of goal-directed action—they can produce
an action directed at a stimulus they see (using an inverse
model), but they cannot imagine a stimulus and practice the
action [69], [70]. A detailed discussion along with a compu-
tational model is presented in [8]. If this counts as evidence
for our problem and given that we know the body exploration
is mainly occurring during the first year of life, this would
exclude the strategies that performed best—goal babbling with
intrinsic motivation. However, this is still an open question and
it cannot be excluded that infants’ use of internal goals may
be task- or context-dependent.

It is our ultimate goal to ground the model in biological
data. The work of Schlesinger [71], investigating the looking
patterns of infants, is an example of such work. In our scenario,
there are two concrete ways how we plan to proceed. First,
in our study, the robot is learning an inverse model: which
motor commands to use to reach to targets on its body. The
performance for different body parts and at different stages
of development can be compared with behavioral data from
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infants reaching for vibrotactile stimuli on the body [44]. For
example, we should analyze how infants deal with the redun-
dancy of their motor system in this particular case: during
different “stages” in their development, do they use the same
or distinct configurations to reach for targets on the body? If
the latter were the case, the goal exploration strategies that
suppress the redundancy of the motor system may not be
appropriate. Also, with different initial postures, do infants
tend to go to a canonical posture first? There is evidence sug-
gesting that this may be the case in infants [72] and adults
learning a new task [73]. A pilot analysis in this direction—
following one infant from 4 to 18 months—has been presented
here, suggesting that the reaching configurations are quite
stereotypical. More quantitative analysis is needed.

Second, statistics obtained from studies observing sponta-
neous touches to the body in infants [35], [36]—such as how
often infants touch particular body parts, in which sequence,
etc.—could be fed into the robot simulator to train the inverse
model and the results in terms of reaching performance to
targets on the body compared with those obtained from the
computational exploration strategies. Alternatively, we could
aim to model the exploration process itself and obtain similar
self-touch statistics as an emergent property. Discovering sig-
natures of curiosity-driven learning in the brain is an active
research area [74], employing fMRI [75] or EEG and body
states [76]. Only behavioral data poses a greater challenge.
With carefully designed experiments, one may be able to dis-
cern which cost function the “learning machine” is using [77].
Discriminating spontaneous versus systematic exploration in
naturalistic observations (like [35] and [36]) remains to our
knowledge an open question.
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Robotic homunculus: Learning of artificial skin
representation in a humanoid robot
motivated by primary somatosensory cortex

Matej Hoffmann, Member, IEEE, Zdenék Straka, Igor Farkas, Michal Vavrecka,
and Giorgio Metta, Senior Member, IEEE

Abstract—Using the iCub humanoid robot with an artificial
pressure-sensitive skin, we investigate how representations of the
whole skin surface resembling those found in primate primary
somatosensory cortex can be formed from local tactile stimula-
tions traversing the body of the physical robot. We employ the
well-known self-organizing map (SOM) algorithm and introduce
its modification that makes it possible to restrict the maximum
receptive field (MRF) size of neuron groups at the output layer.
This is motivated by findings from biology where basic somato-
topy of the cortical sheet seems to be prescribed genetically and
connections are localized to particular regions. We explore dif-
ferent settings of the MRF and the effect of activity-independent
(input-output connections constraints implemented by MRF) and
activity-dependent (learning from skin stimulations) mechanisms
on the formation of the tactile map. The framework conveniently
allows one to specify prior knowledge regarding the skin topology
and thus to effectively seed a particular representation that
training shapes further. Furthermore, we show that the MRF
modification facilitates learning in situations when concurrent
stimulation at non-adjacent places occurs (“multi-touch”). The
procedure was sufficiently robust and not intensive on the data
collection and can be applied to any robots where representation
of their “skin” is desirable.

Index Terms—artificial skin, self-organizing maps, somatosen-
sory cortex, tactile sensor, humanoid robot.

I. INTRODUCTION

HE somatotopic representations discovered in the pri-

mary motor and somatosensory cortices of primates [1],
[2] have attracted extensive attention because of their unques-
tionable importance in “interfacing” the brain with the body.
Somatotopy of these brain areas is often visualized in form
of “homunculi” (“little men”) that facilitate presentation to a
wider audience and stimulate researchers to investigate the ori-
gin of the correspondence of the cortical representations with
the motor and somatosensory systems. The pioneering work
of Leyton, Sherrington, Penfield and others was later refined
using more accurate techniques; the single “somatosensory
homunculus” of [3], Fig. 1 (A), for example, was replaced
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Fig. 1. S y h ulus. (A) Famous somatosensory ho-

munculus of man after Penfield and Rasmusen [3]. Reprinted from
[5] under a CC BY license, with permission from OpenStax College,
original copyright 2013. Download for free at http://cnx.org/contents/
29cade27-ba23-4f4a-8cbd- 1287242031 @5. (B) Dorso-lateral view of the
brain showing the location of area 3b. (C) Organization of the representations
of body surface in area 3b of the cynomolgus macaque. Area 3b is shown
“unfolded” from the central sulcus and medial wall of the hemisphere. Cortical
areas activated by designated body surfaces are outlined. Representations of
individual digits of the hand are outlined and numbered (D; corresponding
to thumb, Ds to little finger); the dashed line indicates the region along the
medial wall where portions of the representation are contained in the cortex
on the medial wall of the hemisphere. Redrawn and simplified after Fig.1,

[41.

by four individual full homunculi in the areas 3a, 3b, 1, and
2 of the anterior parietal cortex. The two areas fed primarily
by tactile (rather than proprioceptive) inputs are 3b and 1,
with area 3b being the most “primary”. Detailed somatotopic
organization in area 3b of the macaque based on the results
of [4] is shown in Fig. 1 (C).

The formation of these representations has become an
important topic in the “nature vs. nurture” debate. Two extreme
positions are constituted by the activity-independent view,
which claims that establishment of topographic maps is a
result of patterning intrinsic to the nervous system and does
not require specific neural activity, and the activity-dependent
or self-organization view, which attributes a key role to the
patterns of neural activity in the process of somatosensory
neural circuits development. This idea was elaborated by Crair
[6] who concludes: “Where the development of a particular
neural circuit lies in this continuum probably depends on a
number of factors, including the presence of neural activity in
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the developing neurons, the particular stage of development
involved, and whether there is competition between different
pools of neurons for postsynaptic target territory.” While
this statement applies to central nervous system development
in general, we will focus on the somatosensory cortex, in
particular on the representation of cutaneous inputs (i.e. inputs
originating from the skin; in the remainder of this article, we
will use “tactile” to refer to these inputs, because this term is
more compatible with the terminology in robotics). The inter-
play of genetically determined and activity-dependent factors
encompasses the whole ascending pathway—specifically the
posterior column—medial lemniscal pathway that carries “fine
touch”. Somatotopy is present in the ascending fibers and at all
“relay stations”: the dorsal root ganglion, the medulla, the VPL
nucleus of the thalamus, and finally in the neocortex (with area
3b considered the most “primary”). The activity-independent
topographical arrangements may come from molecular gra-
dients between specific areas. Vanderhaeghen et al. [7], for
example, provide evidence that certain proteins act as within-
area thalamocortical mapping labels in rat’s S1 and affect
topography as well as the relative size of individual areas.
Conversely, others have amassed evidence for the activity-
dependent factors in map formation (e.g., [8], [9]). The in-
terplay of these two factors will be central to our experiments
on a humanoid robot with artificial skin.

There have been different models of topographic map for-
mation proposed. Some of them contain considerable neurobi-
ological detail: von der Malsburg and Willshaw [10] modeled
the axon growing mechanism between two neural sheets.
Pearson et al. [11] studied breaking up of their “model cortex”
into clusters, applying the neuronal group selection theory.
Models that choose a higher abstraction level include the
dynamic field theory [12] and self-organizing maps (SOMs)
[13]-[15]. These computational models were restricted to
small simulated “skin patches” and controlled stimulation.
Some researchers moved beyond bottom-up single modality
processing models to multisensory settings (Pitti et al. [16]
studied visuo-somatosensory alignment in the superior col-
liculus) or fully embodied sensory-motor settings: Kuniyoshi
and colleagues (e.g., [17]) developed a fetal simulator with
the aim to investigate the effect of its embodied interaction in
the uterine environment on early neural development. Some
of these works specifically addressed somatosensory cortex
development (e.g., [18], [19] using Hebbian learning and
denoising autoencoder, respectively).

With the advent of robotic tactile sensing technologies
[20]-[24], learning the skin representationy gains practical
importance: robots are in need of such representations of their
skin surface that can be used in control (e.g. in collision
isolation and reaction) or in tactile human-robot interaction
(see [25] for a survey; [26] for a recent implementation on the
iCub humanoid robot). Denei et al. [27] provide an overview
and present a method of obtaining a 2D tactile map, which
can be advantageous for control purposes, from a previously
obtained 3D skin mesh (using [28] or [29], for instance).
McGregor et al. [30] developed a method based on information
distance (ANISOMAP) that is able to reconstruct 3D tactile
surface (in a topological, not metric, sense) from uninterpreted

tactile data. In these approaches, every tactile sensor is typ-
ically represented—without compression of the input space.
The SOM algorithm, on the other hand, possesses the vector
quantization property in that it allocates a smaller number of
output representatives (“neurons”) in an optimal fashion with
respect to the density of input vectors (resembling the cortical
representations that reflect the innervation density of different
skin parts as well as the stimulation frequency). Pugach et al.
[31] used the SOM to learn a representation of the surface of
a conductive material that did not have any discrete tactile
sensors; instead, the stimulus location and pressure on a
continuous sensor surface were reconstructed using electrical
impedance tomography and the voltage matrices thus obtained
were fed as inputs to the SOM.

Our overarching research approach is the so-called synthetic
methodology [32]: understanding natural phenomena by real-
izing them in artificial systems and, at the same time, seeking
how to turn the artifacts into applications. First, the biolog-
ically motivated line of this work consists in using a baby
humanoid robot with tactile arrays covering most body parts
to investigate the possibility of somatotopic map formation
from physical stimulation of the skin. With the map from the
primate somatosensory cortex as an approximate target, we
explore the effect of parameters of the SOM algorithm, initial
conditions, constraints, and input data properties on the output
map. To this end, we introduce a SOM modification that makes
it possible to restrict the maximum receptive field (MRF)
size of neuron groups at the output layer—mimicking the
activity-independent “patterning” of the cortex. At the same
time, mirroring the organization of primary somatosensory
cortex is only one possible target. The embodiment of the
humanoid robot is obviously not identical with primates—in
particular, the characteristics and placement of tactile sensors
and the “neural system” and its constraints are different—,
therefore, we also study the behavior of the algorithm in less
constrained settings and analyze representations that emerge
from the contingencies intrinsic to the robot. To the best of
our knowledge, this is the first investigation in this scale and
in a real robot. The output of this work, the different “robotic
tactile homunculi”, will be used in subsequent research on
the iCub that targets the development of multimodal body
representations (see [33] for a survey of the notion of body
schema in robotics, [34] for an account of the iCub learning a
peripersonal space representation using the artificial skin, and
[35] for learning a proprioceptive representation).

Second, pursuing the “useful artifacts/algorithms” line, the
modified SOM algorithm proposed is surely applicable more
generally in engineering settings. The presented procedure
was found sufficiently robust and not very intensive on the
data collection and can thus be applied to any robots where
representation of their “skin” is desirable. The fact that the
desired map organization can be easily specified is particularly
convenient, as it allows to seed the representation exploiting
prior knowledge about the skin spatial arrangement (which is
often available) and/or consider other criteria on the properties
of the output map that may be dictated by how this represen-
tation will be used in subsequent processing. Furthermore, we
show how the MRF modification improves SOM learning in
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case of “multi-touch”.

This article is structured as follows. The Materials and
Methods with detailed descriptions of the setup and the
algorithms used comes immediately after the Introduction,
followed by Results, and finally Conclusion, Discussion, and
Future Work.

II. MATERIALS AND METHODS
A. iCub Robot and Artificial Skin

The iCub is an open-source platform for research in cog-
nitive robotics [36]. Its mechanical design is detailed in [37].
The iCub was recently equipped with an artificial pressure-
sensitive skin covering most body parts [38]. There are skin
patches on the torso (440 taxels), arms (380 taxels on each
upper arm), forearms (230 taxels each), palms (44 each), and
fingertips (12 taxels per fingertip). In total, these comprise
1928 tactile elements. In this work, we use the skin on the
right half of the upper body—a schematic and photo of the
skin layout on the trunk and one arm is depicted in Fig. 2. With
the exception of palms and fingertips, the skin is composed
of triangular modules, each of them hosting 10 taxels. The
taxels respond proportionally to the pressure applied to them.
However, in this work, we restricted ourselves to binary values
(0 ~ inactive, 1 ~ active) only. The data were sampled at 50
Hz.

Fig. 2. Artificial skin on the iCub. (left) Schematic illustration of the
layout of skin patches on one half of the upper body. The patches covering
arm and forearm that would not be visible in this view have been unfolded.
(right) Photograph of the real robot in analogous posture and exposed skin
on corresponding body parts.

B. Training Data

1) Synthetic Training Data: In order to analyze the prop-
erties of the algorithm under controlled conditions, synthetic
data sets were used in the first step. The training data were
generated on a simulated skin with a rectangular grid—nodes
of the grid representing taxels. Skin activations were simply
represented by a matrix S.

o 1 for a stimulated taxel
S(i,j) = { @

0 for a non-stimulated taxel

3

The simplest method of generating a single touch,
with m = numRows and n = numCols, would be:

1) Randomly choose a taxel ¢; (with a position (4, j), i €
{1,.,m}, j €{1,..,n}).

2) Find all adjacent taxels {ts,t3,...,t,} to the taxel t;
chosen in the previous step. If the taxel ¢; is not on the
edge of the skin, the number of adjacent taxels is eight,
otherwise the number of adjacent taxels is lower.

3) For all (k1) € {1,..,m} x {1,..,n} set

S(h 1) = 1 if pos.(.k,l) matches one of {t1,..,%,}

0 otherwise

However, application of this algorithm would lead to a
nonuniform distribution of taxel activations, with those at the
edges less frequently activated (there is a smaller number of
adjacent taxels that could serve as the locus of simulated
touch). In order to guarantee a uniform distribution of taxel
activations, the grid was circumscribed by a row/column of
“virtual taxels” along all edges. Each of the “virtual taxels”
could be chosen as the central taxel ¢; of a touch. The actual
activations calculated according to the pseudocode above were
confined to the original dimensions of matrix S though. The
code implementing this is available under S1_Code (function
createTouches?2) in [39]. Multi-touches were generated
by independently iterating the algorithm above, giving rise to
an activation matrix for each touch. These were then summed
and finally a ceiling function was applied to each element to
ensure it is bounded by 1.

2) Tactile Stimulations in Real Robot: Whenever individual
skin parts were stimulated, the experimenter was sliding with
the tip of a single finger, mostly the thumb, along the skin
surface, stimulating on average between 6 and 12 taxels at a
time (for the fingertips, only 3). In some regions, such as on the
“edges” of the arm (see Fig. 2), there are small gaps between
individual skin patches. In one place, the fabric covering the
skin has also a stitch on the surface. In these locations, two
fingertips were sometimes used to ensure co-activation of the
regions along the boundaries. The stimulation sequence was
random—to the extent that this could be ensured by a human
experimenter.

To study multi-touch on the robot, the torso was used and
two experimenters were sliding along the torso with one thumb
each, giving rise to the double-touch data set that will be
used in the second part of Section III-A. The experimenters
were trying to move independently and to spend roughly
equal times at different locations. The total stimulation time
was around 9 minutes, giving rise to 28000 data points—see
VideoMultitouch.mp4 at [39] for an illustration.

Finally, to generate the training data for the complete “tactile
homunculus”, stimulations from the whole skin surface were
necessary. Individual skin parts were stimulated as described
above. However, in addition, the data had to contain co-
activations of abutting skin parts in order to provide input
material to the SOM algorithm to extract the topological
relationships. Compared to humans, the skin parts in the
robot are less continuous—joints, for example, are lacking
skin coverage. To mitigate this effect, special stimulations
that generated activations along the borders of neighboring
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skin parts (such as adjacent fingertips, fingertips and palm,
palm and forearm etc.) were necessary. The robot was put
into configurations where the skin parts in question were not
too far apart. Even so, the gaps did not allow for the co-
stimulations to be generated using a single object and two
hands had to be used instead. An illustration of how this was
done is provided in VideoStimulationIllustration.mp4 and
VideoStimulationIllustrationDesktopRecording.mp4 at
[39]. The number of data points per skin part that formed
the training set is detailed in Table I. Less than half an hour
of stimulation time was necessary for a complete half of the
robot’s body. The logic behind the particular choice of ratios
will be explained under III-B.

TABLE I
STIMULATION FREQUENCY OF INDIVIDUAL SKIN PARTS FOR HALF OF THE
ROBOT’S BODY

Nr. taxels | Nr. data points | stimulation time [s]

individual digits 5x12 9000 180
palm 44 6300 126
forearm 230 15700 314
upper arm 380 15700 314
torso 440 22000 440

1154 68700 1374

adjacent digits 6700 134
palm+digits 1000 20
palm-+forearm 1000 20
forearm+upper arm 2000 40
upper arm-+torso 3000 60
13700 274

C. Self-organizing Map with Maximum Receptive Field Size
Setting (MRF-SOM)

The classical version of the self-organizing feature (Koho-
nen) map was described in [40], [41]. We use the variant with
the dot product application to determine the best matching unit
(winner) for a given input: DP-SOM (rather than the variant
with Euclidean distance—the motivation for this choice will
be explained below). We follow the formalization of [41], in
which both variants are presented. The same formula—dot
product—is used to determine the activation of output neurons
after learning.

The classical SOM, as its name suggests, relies purely on
self-organization and learns from the inputs in an unsupervised
way. While this may be ideal in many situations, in some
other cases, there may exist prior knowledge or constraints that
should be applied to steer the adaptation in specific directions.
In our case, which deals with the problem of mapping the
whole-body skin surface to a 2-dimensional output sheet, there
is no perfect solution. Evolution of primate nervous systems
has led to one particular solution to the problem that reappears,
with variations, in different species. With this coarse topology
as our target, we were seeking a modification of the SOM
algorithm that allows to impose some constraints on the output
layer topology. Our proposed solution is loosely inspired
by the synaptic connections in the ascending somatosensory
pathway, which are not all-to-all, but confined to specific
regions, with overlaps to neighboring regions (see e.g., [42]).
In a similar way, we have developed a solution to impose

output layer (neurons)

input layer (taxels)

Fig. 3. Illustration of MRF-SOM. Four output neurons, ni,nz, n3, n4, are
shown at the top. At the bottom layer, there are 25 inputs, taxels t1, ..., t25.
The color code and the weight vectors (weights shown only for n1, n2) mark
the maximum receptive field size setting of the output neurons. See text for
details.

“masks” on weight vectors between the input and output
layers, allowing to nullify certain connections. Conversely,
each output neuron has a mask of 1’s to certain regions of
the input space, thus defining a maximum possible extent of
its receptive field—hence the name MRF-SOM, SOM with
Maximum Receptive Field size setting. After learning, each
neuron will specialize on a specific part of the input space,
which will necessarily lie within the MRF constraint.

We will illustrate how this is implemented with the help of
Fig. 3. There are four output neurons: m1,ng, ng, ng. At the
input layer, there are 25 taxels arranged on a square grid. Let us
further assume that we want to define a 3x3 maximum recep-
tive field (MRF) for each output neuron, pointing to respective
corners of the input grid. This is schematically illustrated with
color codes of the neurons and their respective RFs on the
input grid; taxels with multiple colors indicate overlapping
MREFs of the neurons. The way this is implemented is through
the weight vectors: for each output neuron, a mask is applied
to the elements of its weight vector. So, taking neuron n;, for
example, the mask applied to its weight vector is specified in
Eq. 2:

mask; = [1,1,1,0,0,1,1,1,0,0,1,1,1,0,0,
0,0,0,0,0,0,0,0,0,0] 2

This is also schematically depicted in Fig. 3: the dashed
lines correspond to weight vector components of n; that have
a “1” component in the mask. The missing lines correspond
to the nullified connections. Analogous pattern is shown for
ng. The mask will be reapplied to the weight vector at each
iteration of the algorithm—elements outside the MRF may
have been subject to adaptation and hence become non-zero
until the mask is applied.
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Now we will show how we modified the learning of the DP-
SOM. Let’s have a DP-SOM with k neurons. Each neuron has
its own weight vector. We will denote by m; the weight vector
of the neuron i. The winner neuron (indexed by c) is deter-
mined by using the dot product as ¢ = arg max;{m; - x(¢)},
where x(t) € {0,1}! is an input vector whose dimension in
our case equals the number of taxels. Adaptation of the weight
vectors of the DP-SOM during learning is then realized by the
rule in Eq. 3 below (the “bell curve” neighborhood as per I1.B
and the dot product formulation from Section IL.F in [41]):

(i (£) + hei(£)x ()]

where ||| denotes the Euclidean norm, he(t) =
a(t) exp(—||r;—r||2/(20%(t))) is the Gaussian neighborhood
function, where the learning rate 0 < «a(t) < 1 decreases
monotonically with time, r;,r. € R? are the vectorial
locations on the output grid, and o(t) corresponds to the
width of the neighborhood function, which also decreases
monotonically with time. Adaptation in MRF-SOM is realized
by these steps:

m;(t+1) = 3

1.

’

m; = my(t) + he (6)x(2) 4)
ii.
m,; = m,.x mask; 5)
iii. ,
m.
m;(t+1)=— (6)
([ |

where the vector mask; € {0,1}! is the mask of the neuron
i. Application of Eq. 5, using component-wise multiplication
of two vectors, sets the elements of the weight vector m;
corresponding to taxels that are not connected with neuron
to zeros. Everything else in the MRF-SOM algorithm is the
same as in the DP-SOM algorithm.

The choice of the DP-SOM as opposed to the Euclidean
distance version was primarily motivated by the winner se-
lection step. For every neuron in the MRF-SOM, the weights
outside its MRF are nullified as per Eq 5. Thus, the input
vector components outside a neuron’s RF do not affect the
winner neuron determination. However, this would not be the
case in the Euclidean distance version. Furthermore, it is a
characteristic feature of our data set that the majority of input
vector components are 0; the dot product computation in this
case is faster.

1) Implementation and Parameters of MRF-SOM Training:
A freely available SOM toolbox [43] was used. Training is
implemented in the som_segtrain function. However, this
is the Euclidean distance variant of the algorithm. Therefore,
we performed necessary modifications for the dot product
version as well as added the maximum receptive field size
setting as specified above (MRF-SOM).

The following input parameters were used: a hexagonal
lattice in the shape of a sheet, a Gaussian neighborhood
function with initial radius of 5 and final equal to 1, and the
learning rate decayed from the initial value 0.5 according to
a(t) = a/(t+0b) with suitably chosen parameters a and b. The

5

000
000

RF of the neuron i

&

neuron i

.74 .08

input layer (taxels)

Fig. 4. Receptive field determination from weight vectors. For a given
threshold, here 0.3, all taxels connected with a neuron with a weight exceeding
the chosen threshold are marked as belonging to the RF of the neuron.

remainder of the parameters followed default settings; for more
information use the online documentation of the SOM toolbox
[44]. In addition, the MRF input parameter was added. Rows
of the parameter MRF express the maximal possible ranges of
RFs of the neurons. The code used is available under S2_Code
in [39].

D. Receptive Fields and Visualization of Learned Maps

Given the relation of our study with somatotopic maps
from biology, it is the receptive fields of neurons in the
learned maps that are crucial. That is, for each neuron of the
output map, we need to know the region of skin (the set of
taxels) whose stimulation evokes that neuron’s response. Two
different techniques were employed in this work.

1) Weight Vector Components Exceeding the Threshold:
The first method of receptive field determination is straight-
forward: for each neuron, its weight vector is inspected and
all the taxels that are connected with the neuron with a weight
exceeding a certain threshold are marked as belonging to
its RF. This is illustrated schematically in Fig. 4. However,
this method is rather a top-down shortcut that gives only a
quick overview. Furthermore, the threshold needs to be set
empirically and depends on the weight vector size.

2) Biomimetic RFs Determination: The second method
we used was inspired from biology and the way RFs are
determined using microelectrode recordings in electrophys-
iology, where localized tactile stimulations are applied and
neuronal responses recorded. In a similar vein, we emulated
this procedure by replaying a testing set that consisted of
stimulations (single localized stimulations, not multi-touch)
similar to the ones used for training and recorded the winner
neurons. A pseudocode of this “bottom-up” algorithm is given
below. Basically, every neuron has its RF (rf), which is
initially an empty set. As the algorithm iterates through the
stimulations, winning neurons enlarge their RFs by including
the taxels stimulated at a given time. An example of a map
visualized using this method is Fig. 11.

Pseudo-code of the “biomimetic RF determination” algo-
rithm:

Input: Mtest (test set with touch stimulations), threshold K

1) Init:
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M; =1[0,0,..,0] forall i € {1,2,.., N}, where the
length of all M; is equal to the number of taxels
and N is number of neurons.
rfi =0 forall i € {1,2,..,N}

2) For each touch tch from Mtest

determine the winner w for touch tch
M, = M,,+tch i.e.increment number of taxels
stimulations from tch for winner

3) For each neuron 7 in the grid

add taxels from M, that exceed threshold K to rf;
plot taxels from rf; with red color, others with
green color
3) Heuristic Visualization of Learned Maps: To obtain a vi-
sualization of the learned maps, we preferred the “biomimetic”
method. However, sometimes, there was a fair amount of
neurons that ended up with empty RFs after application of
this method—they never won after any stimulation from the
testing set. Yet, these neurons did learn to represent some
parts of the skin, as revealed by analysis of their weight
vectors. In this case, the first method—Ilooking at weight
vector components exceeding the threshold—was applied in a
second step, allowing to assign RFs to the remaining neurons.
A heuristic threshold was applied. In this way, we could
generate visualizations where each neuron can be colored
according to the body part(s) it represents, as will be shown
in Figs. 14, 16, 17.

E. Topology Preservation Measure with External Distance
Metric (TPMEDM)

To complement visual inspection of the learned maps and to
allow for quantitative comparison of different settings of the
algorithm, numerical measures assessing the quality of learned
maps are desirable. Various measures have been proposed to
numerically assess the organization of the trained SOMs (for
an overview, see [45] and references therein). For instance, the
topographic product [46] considers only the codebook vectors
(weight vectors) after learning and measures the distances of
k nearest neighbors of each neuron in the output space as well
distances between the prototypes in the input space, eventually
combining them into a single number that summarizes the
quality of the topology preservation. However, the input space
we are dealing with here renders this method inappropriate
due to the particular nature of distances in the input space.
Although a skin patch is a 2D surface (embedded in a 3D
space), our input space is very different: it has as many
dimensions as there are taxels and every dimension can take
only discrete values {0,1}. Imagine a 3x3 skin patch with
taxels t1, ...,t9 shown in Fig. 5.

t t t
t ts t
t tg ty

Fig. 5. Schematic illustration of a 3x3 skin patch with 9 taxels.

The input will simply be a 9-dimensional vector of activa-
tions A, like in Eq. 7.

A= (Aby, Avys Avys Arys A, A, Avr, A, Arg) - (7

It is apparent that using the Euclidean distance formula,
different “atomic” touches (activation of only one taxel) will
have identical distances from each other—no matter where
they lie on the skin. For example, stimulation of taxel 1 (AL,
Eq. 8) will have the same distance from the neighboring taxel
2 (Eq. 9) and from a “far away” taxel 9 (Eq. 10)—all distances
being equal to v/2.

Al =(1,0,0,0,0,0,0,0,0) ®)
A*=(0,1,0,0,0,0,0,0,0) ©)
A® =(0,0,0,0,0,0,0,0,1) (10)

In case of multiple concurrent taxel stimulations, the dis-
tance will get smaller if the stimulations overlap on some
taxels. However, the set of Euclidean distances computed for
the given input data will be very discrete (“step-like”), rather
than continuous, so it cannot give satisfactory results.

Another commonly applied measure, topographic error,
does not rely on any distance measurements. For every input
data point, it determines the first and second best-matching
units and checks whether these are adjacent on the output
map lattice. This information is then aggregated and normal-
ized. This measure is more suitable in our situation and we
experimented with it.

However, we finally decided to employ a quality measure
that directly measures the main objective of the representation:
how the actual skin surface topology is preserved in the
“cortical sheet”—the output lattice. That is, we decided to
utilize information that is external to the algorithm itself,
namely the actual distances between the taxels on the skin.
This information is not available to the SOM algorithm—
only indirectly through the co-stimulations of adjacent taxels
present in the input data. However, it is available to us (at
least for the simulated skin and for individual skin parts, like
the torso) and we will thus directly use it to assess the quality
of learned maps. Our measure also uses the RF concept, as
defined in II-D above.

The measure we are proposing, Topology Preservation
Measure with External Distance Metric (TPMEDM), basically
evaluates whether the taxels composing RFs of adjacent neu-
rons on the cortical sheet are also close to each other on the
skin surface. This is schematically illustrated in Fig. 6.

The TPMEDM measure is evaluated as follows:

1) Determine RFs rf; for all neurons i = 1,2, .., N, using

the biomimetic method specified in II-D.
2) For all adjacent neurons 7,j on the output map lattice,
make a union of their RFs rf; ; = rf;U rf;
For all pairs of taxels k,[ € rf; ;, compute the taxel
distance using the external distance function.

3) Return the mean taxel pair distance.

Experimentation with this measure on our data proved that
it is superior to the topographic product and topographic
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Fig. 6. Union of two receptive fields. Top: In each case (A, B, C), the
red taxels in the two panels represent hypothetical RFs of two adjacent
neurons. Bottom: Blue taxels represent the union of the RFs from the top
row. The distances between every taxel pair in this union forms the basis of
the TPMEDM. (A) RFs of adjacent neurons are close to each other and partly
overlap. (B) RFs are distant. (C) One of the RFs is not compact. Since RFs
of adjacent neurons are closest in the case A, the mean of distances of all
pairs of blue taxels in union of both RFs is smaller than in the cases B and
C.

error measures (but keeping in mind that it utilizes external
distance information) and in most cases it matches well with
the visual assessment of learned maps. The code implementing
this measure can be found under S1_Code in [39].

III. RESULTS

The Results section is split into two parts. The first part
is devoted to learning correct topology of a skin surface
using the SOM from input data that contain multiple concur-
rent stimulations. A modification of the SOM algorithm that
mitigates the problems resulting from “multi-touch” will be
presented and tested in a series of experiments on a simulated
skin surface and later on real data coming from concurrent
stimulation of the robot torso. The second part presents a series
of experiments where the SOM algorithm together with the
proposed modification is used to learn a single representation
of the skin surface of one half of the robot’s body—giving
rise to the “robotic homunculus” analogous to the lateralized
representations in primate somatosensory cortex.

This section will feature both figures with actual results
(such as learned maps) and schematics showing the algorithm
settings, for example. For better orientation of the reader, all
“Results figures” captions will be preceded with “Results — .
All Tables report results.

A. Toward More Realistic Stimulation — Learning From Multi-
touch

1) Multi-touches on Simulated Skin: In these experiments,
we simulated different numbers of concurrent stimulations on
a skin model and investigated their effect on map formation.
Multi-touch in general degrades the quality of learned maps,
because the standard SOM algorithm is not able to naturally
cope with multiple concurrent stimulations: it treats them
as a single point in the input space, resulting in learning
(weight vector adaptation) in undesired directions. However,
the SOM modification presented here, MRF-SOM (see the
corresponding Section II-C under Methods for details), can
be employed to mitigate this effect. For each neuron at the
output, a maximum possible extent of its receptive field (RF)
is prespecified; subsequently, each neuron will learn to be
sensitive to a subset of this maximum region of input space.

7

1 MRF

2 MRF 4 MRF

Fig. 7. Illustration of three variants of MRF setting for simulated skin
experiments. From left to right: 1 MRF, 2 MRF, 4 MRFE. There are 8x8
output neurons shown at the top and 20x20 inputs (simulated taxels) at the
bottom. The color code and the span of weight vectors mark the maximum
receptive field size of every output neuron area. Taxels with multiple colors
mark the overlap of maximum receptive fields.

The maximum receptive field (MRF) regions with only a
partial overlap will then ensure that activations will remain
grossly localized and hence interference between far away
input space regions will be reduced.

The skin model had a size of 2020 taxels (tactile elements,
modeling individual pressure sensors in the robot). Training
data consisted of 100 000 k-touches, with k& € {1,2,4,6,8}
fixed for each training set. Stimulations of taxels followed a
uniform distribution; for details of the generation see Section
“Synthetic training data” under II. The MRF-SOM had a size
of 8x8 neurons and was trained for 24 epochs. Additional
parameters and details of the implementation can be found in
Section II-C. Three variants of the MRF setting were studied.
In the first case, each neuron’s MRF contained all taxels (1
MRF), which is equivalent to unmodified SOM (the MRF
setting having no effect). This is illustrated schematically in
Fig. 7, left panel. In the second case (2 MRF), if neuron ¢
is on the left half of the map, then its MRF contains only
taxels from the left part of the skin. Two rows of taxels in
the center of the skin are shared by neurons from left and
right halves of the map. The third case (4 MRF) is similar to
the second but the neurons and their MRFs are divided in four
partially overlapping squares. The overlap is necessary in order
to smoothly connect the representations at the boundaries.

An illustration of the results is depicted in Fig. 8 (right) for
the most challenging input type: 8 concurrent stimulations.
For visualization, we used a biologically inspired method of
determining the RFs of individual neurons — please see Section
“Biomimetic RFs from simulated skin stimulation” under II-D.
The left panel (1 MREF, i.e. standard SOM without MRF)
shows the difficulty the standard SOM is facing with this input:
practically all neurons learn discontinuous RFs (red areas
in every subplot). Conversely, the problem is significantly
mitigated in the case of four MRFs — see the right panel,
where the majority of neurons have a single continuous RF in
the input space.

Space limitations will not permit us to graphically demon-
strate all the combinations of input types (number of con-
current touches) and algorithm settings (number of MRF).
Therefore, we developed a custom measure of the quality of
learned maps: TPMEDM (see Section II-E for details), which
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Fig. 8. Results — Learning from 8-touches in simulated skin. 1 MRF
(left) vs. 4 MRF (right) settings. The 8§x8 matrix is the lattice of the
output neurons. Every element (subplot) then depicts a miniature version of
the simulated skin, in which the set of red taxels represents the receptive field
of the corresponding neuron. If there is more than one red area per subplot,
it means the neuron’s RF is not continuous.

TABLE 11
MULTI-TOUCH ON SIMULATED SKIN. QUALITY OF LEARNED MAPS IN
TERMS OF TPMEDM FOR DIFFERENT COMBINATIONS OF INPUT
(1-TOUCH TO 8-TOUCH) AND MRF SETTING, USING THE mean =+ std
NOTATION TO SUMMARIZE 10 RUNS OF THE ALGORITHM. LOWER VALUES
CORRESPOND TO BETTER MAPS.

1 MRF 2 MRF 4 MRF
I-touch | 2.97 & 0.01 | 3.01 £ 0.00 | 3.03 £ 0.01
2-touch | 3.13 £ 0.15 | 2.99 4+ 0.04 | 3.03 £ 0.16
4-touch | 5.86 £0.99 | 4.17 £ 041 | 3.43 £ 0.10
6-touch | 6.80 + 0.80 | 4.23 +0.26 | 3.61 £ 0.13
8-touch | 648 + 1.77 | 439 +£0.28 | 3.57 £ 0.14

correlates with the visual intuition regarding the topology
preservation. For every combination of stimulation type and
MREF setting, 10 repetitions of the learning algorithm were
run, using a different training set and initial weight settings.
Aggregate results in terms of TPMEDM between the runs are
shown in Table II (including the standard deviation) and Fig. 9:
the lower the TPMEDM value, the better the quality of the
map. It is evident that the topology preservation capability
of standard SOM (1 MRF) degrades rapidly in the case of 4
and more concurrent touches. This is significantly improved
already if two MRFs are used; 4 MRFs make the degradation
in performance even for 8-touch very small. The apparent non-
monotonicity in some of the values along the k-touch axis lies
within the standard deviation intervals.

The data and code related to this section are available under
S1_Data_and_Code in [39].

2) Multi-touch on the iCub Torso: In this section we
verify our findings from the simulated skin on the real robot.
The largest single skin surface, the torso with 440 taxels
(see Section II-A) was chosen and stimulated by either one
experimenter (1-touch or single touch) or two experimenters
(2-touch or double touch). Please recall that single touch
stands for a single stimulated area of a couple of adjacent
taxels (around 12 on average in this case) at a time; double
touch corresponds to two such independent, disjoint areas. The
procedure gave rise to 28000 samples and is described in more
detail in Section II-B, “Tactile stimulations in real robot”, with
a link to a video.

Similarly to the previous section, the output layer of the map
had 88 neurons and the map was trained for 25 epochs, with
the same parameter settings. Four MRF settings were tested: 1
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Fig. 9. Results — Multi-touch on simulated skin — gra 1 representation

of the means from Table II Lower values correspond to better maps in terms
of TPMEDM. The plot reveals the drop in performance of standard SOM (~
1 MRF) when faced multi-touch and how this effect is counterbalanced by
the use of MRF.

(i.e. standard SOM), 2, 4, and 8. This is illustrated in Fig. 10.
The MREF regions were overlapping at their boundaries.

2 MRF

4 MRF 8 MRF

Fig. 10. Illustration of three variants of the MRF setting for multi-touch
on iCub torso. From left to right: 2 MRF, 4 MRF, 8§ MRF (1 MRF not
shown). There are 8x8 output neurons at the top; 440 taxels of torso skin
in a 2D arrangement (before its attachment on the 3D robot torso) are at the
bottom. Color code and weight vector span mark the MRF setting of output
neurons; taxels with multiple colors signify MRF overlap.

Analogously to our findings on the simulated skin array,
multi-touch makes it more difficult for a SOM to capture the
input space topology also for real data sets. This is illustrated
in the left panel of Fig. 11. Some neurons have learned
discontinuous RFs; furthermore, the overall topology of the
torso skin is not well represented in the map. Conversely, “pre-
parcellation” of the space into coarse, partially overlapping
regions using the MRF setting significantly improves the
situation. The case of 8 MRF is shown in the right panel: the
RF sizes are comparable to the 1 MRF case, but the topology
preservation is clearly superior.

Aggregate results for all combinations of stimulation type
and MREF settings using TPMEDM (see 1I-E) are depicted in
Table III and Fig. 12. The quality of learned maps clearly
degrades when the training set contains double touches. The
MREF setting successfully mitigates this effect and performance
correlates with the number of MRFs used.

Compared to the results from the simulated skin, shown
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Fig. 11. Results — Learning from 2-touches in iCub torso skin. 1 MRF
(left) vs. 8 MRF (right) settings. Every element of the 8 x8 matrix depicts
a miniature version of the torso skin array, in which the set of red taxels
represents RF of the corresponding neuron—according to the position on the
lattice.

TABLE III
SINGLE TOUCH AND 2-TOUCH ON ICUB TORSO SKIN. QUALITY OF
LEARNED MAPS IN TERMS OF TPMEDM FOR DIFFERENT COMBINATIONS
OF INPUT (1-TOUCH OR 2-TOUCH) AND MRF SETTINGS, USING THE
mean + std NOTATION TO SUMMARIZE 10 RUNS OF THE ALGORITHM.
LOWER VALUES CORRESPOND TO BETTER MAPS.

9

and the portions of skin at the borders being significantly less
stimulated (for the case of double touch see S1_Fig.eps at
[39]). This nonuniformity will naturally be reflected in the
learned map. Furthermore, there is a difference between the
synthetic and the real training set: the “real” touches, unlike
synthetic ones, are not completely independent (even if each
of them is made by a different experimenter). These problems
are in a sense inherent to data sets collected by humans
in this way. However, our results show how the problem
can be largely alleviated using the proposed MRF-SOM—if
approximate topology of the surface to be mapped is known
beforehand.

The data and code related to this section are available in
S2_Data_and_Code in [39].

B. Robotic Tactile Homunculus

In previous sections, we studied the effects of different
stimulation and algorithm parameters on a problem where all
inputs were located on an essentially 2D input space (the torso

of the real robot is not exactly planar, but can be approximated

1 MRF 2 MRF 4 MRF 8 MRF
I-touch | 28.99 + 0.51 | 28.65 £ 0.18 | 28.63 £ 0.12 | 28.08 & 0.08
2-touch | 4040 &+ 1.17 | 37.06 £ 1.22 | 33.99 £ 0.60 | 30.65 & 0.69

as such) and then represented by a SOM with 2D topology on

in Table II and Fig. 9, double touch appears to present
significantly higher difficulties in the case of real data. (Note
that the comparison can take into account only the differences
within a data set; the absolute values of TPMEDM cannot
be compared between data sets, because the measure utilizes
the actual distance between taxels, but the scale of the two
skin arrays is different.) We attribute this to the overall less
favorable statistical properties of the real data sets, mainly
due to the data collection procedure. Despite every effort of
the experimenters to stimulate all taxels uniformly, a plot of
the distribution of taxel activations within a data set reveals
that this was not the case, with number of stimulations per
taxel ranging from around 400 to around 2500 stimulations

0
1 MRF > MRF 4 MRE
number of MRF 8 MRF
number of simultaneous stimulations on the skin

2-touch

1-touch

Fig. 12. Results — Single touch and 2-touch on iCub torso skin — graphical
representation of the means from Table III. Lower values correspond to
better maps in terms of TPMEDM. The plot reveals the drop in performance
on 2-touch and how this effect is counterbalanced by the use of MRFE.

the output layer. There was thus a relatively clear optimum,
which the algorithm with its properties (optimal representation
of input space, topology preservation) could come close to.
In this section, the goal is to represent tactile sensors of the
“whole”, or significant parts of, the body surface in the same
output sheet with 2D topology. Some skin parts are locally
planar, but already relatively simple parts, such as an upper
arm, present a problem to the standard rectangular lattice, due
to the neighborhood relation on opposite sides of the sheet
(there is no beginning and end of the skin around the arm).
This could be mitigated by using a toroidal lattice, but for
the case of the whole skin surface, all body parts cannot be
possibly arranged on a 2D sheet preserving all neighborhood
relations. Thus, some discontinuities are inevitable.

To test our algorithm, we have targeted one particular type
of solutions to this problem, namely the one resembling those
present in the primary tactile cortex of primates — see Fig. 1.
Primary representations in the brain are always lateralized;
therefore we focus on building representations of the right
half of the body only (including the trunk, which is present in
both halves). Another striking factor of cortical representations
is the magnification of certain body parts, which is primarily
attributed to different degrees of skin innervation. Our target
roughly corresponds to the part of area 3b from the trunk to
the digits (fingers). This region is highlighted in Fig. 13 (A),
along with the correspondences on the macaque monkey body
(B).

Of course, the robot and its artificial skin differs from the
monkey in numerous aspects. First, our version of the robot
does not have capacitive skin on the face or the legs. Second,
the skin is composed of identical modules, which corresponds
to constant innervation density (with the exception of the palm
and fingertips that use different technology, but still with a
similar density). Moreover, there is a much larger absolute
number of taxels on larger body parts: 440 on torso, 380
on upper arm, compared to mere 104 on palm and fingers
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Fig. 13. Representation of tactile body surface in monkey and robot. (A-
B) Simplified representation of selected body parts in area 3b of macaque
monkey. Numbers and color code mark the correspondences between the
cortical areas and skin surface on the body parts that will be modeled using
the iCub robot. Redrawn and adapted after [4]. (C-D) Schematics of analogous
situation in the robot — approximate target for the SOM algorithm.

(see II-A for details). A “uniform” stimulation of the robot’s
surface would thus give rise to very different proportions of
the homunculus. Therefore, to be able to influence the number
of neurons devoted to different body parts at the output layer,
we will manipulate the stimulation frequency of individual
skin parts. Roughly inspired by these proportions, but taking
the actual taxel counts per body part in the robot also into
account, we chose corresponding ratios of stimulation time,
and hence also the number of training data points, per skin
part. The details of the stimulation procedure (i.e., touching the
robot’s skin), including a video and a table showing the exact
numbers, are in Section II-B. In all experiments in this section,
the output map lattice was 24x7 (to mimic somewhat the
elongated shape of the tactile homunculus in the cortex) and
the map was trained for 25 epochs; all remaining parameters
are specified in Section II-C.

1) Homunculus Learning without MRF Setting: 1In the
first step, we have applied the standard SOM algorithm (dot
product version, DP-SOM) without additional constraints (no
MREF setting) using the training set as described above. Five
complete independent runs of the algorithm were executed;
the results of three of them are depicted in Fig. 14. We
want to make the following points regarding the distribution
of RFs on these maps: First, there is high variability in the
outcome of different runs of the algorithm resulting in very
different topology of the learned map. Sometimes, some skin
parts’ representations fill a compact “strip” across the whole
longer dimension of the map; sometimes, they extend along
this longer dimension. Torso, palm, and fingers’ portions of
the map remain always compact (in the right-most map, palm
and fingers not neighboring though), whereas the forearm and
upper arm representations are often separated into multiple
disjoint areas. This could be attributed to the fact that they
are composed of multiple skin patches wrapped around a
toroidal or smooth cuboidal shape, which is far from planar,
and perhaps also the fact that they are centrally located in
the chain and thus may be pulled by their neighbors to
different directions. Second, the size occupied by different
body parts in the learned map also varies: for example, from
64 to 80 neurons devoted to the torso or from 26 to 38
for the forearm. Third, as anticipated, the outcome departs

considerably from the arrangement present in the biological
maps (area 3b — cf. Figs. 1 and 13). The results confirm the
intuition that the problem of fitting the whole skin surface
onto a 2D sheet is under-constrained and there is no perfect
solution. It seems that there are multiple local extremes that
the algorithm may converge to. The convergence properties
could improve if significantly larger training set was available
and slower learning rate was applied. However, it seems
impossible that self-organization alone would bring about the
same representations of palm and finger regions in the map as
it is in the somatosensory homunculus, for example.

W 2t
B @

3¢
001

Fig. 14. Results — Learning from tactile stimulation on right side of robot
body with standard DP-SOM. The three panels on the left depict the maps
(247 neurons) after learning as a result of three runs of the algorithm on
the same training set. The visualization, which colors the maps according to
the RFs of individual neurons, is the result of the “Heuristic visualization of
learned maps” procedure described in Section II-D. Neurons with multiple
colors signify that the taxels belonging to their RF are part of more than one
skin part. The right panel shows body parts that correspond to the colors in
the maps. Supporting material illustrating how the visualization was arrived
at for the map in the middle and on the right is shown in S2_Fig.svg and
S3_Fig.svg respectively at [39].

2) Homunculus Learning with MRF Setting: In order to
address the shortcomings of the maps learned in the previous
section, here we employ the MRF setting (see II-C) to steer the
self-organizing process in desired directions. That is, unlike
Section III-A, where we showed how MRF improved SOM
adaptation when the training data contained multiple disjoint
stimulations, here only single stimulations were used, but
MRF-SOM is exploited in order to ensure coarse topology
of the representation as well as approximate proportions of
areas devoted to individual skin parts.

The overall layout is depicted in Fig. 13, (C-D), illustrating
the desired sequence of areas and their rough proportions. This
gross layout is then translated into specific MRF settings: one
variant is shown in Fig. 15. The MRF region of the output
map dedicated to a specific skin part spans that skin part and
an adjacent region of the neighboring skin part.

An example of a learned map with these settings
is in Fig. 16. The left panel shows the RFs of the
upper-most 49 neurons of the lattice—the region devoted
to the torso—demonstrating reasonable coverage of the
area as well as appropriate topology preservation. The
whole map—in the middle panel—testifies good preserva-
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Fingers Paim
Fig. 15. Detailed MRF setting for learning tactile homunculus. The

colors and lines ascending from the individual skin parts to the neuronal sheet
schematically illustrate the MRF settings. Every skin part has its “dedicated”
area in the neuronal sheet—dark green for torso, blue for upper arm, pink for
forearm, light green for palm, and tones of orange for fingertips. In addition,
the skin areas bordering with another skin part belong to the MRF of the
adjacent area of neurons as well—as illustrated by the color code. The palm
and finger areas are an exception to this rule: tighter MRF settings were
used here to warrant that the learned map will have topology analogous to
area 3b. The particular order of digits, with little finger adjacent to the palm
representation, would otherwise not emerge from running the algorithm on
the training set.

tion of the “desired layout” (MRF setting) and the ac-
tual learned topology. An illustration of the activations in
the learned map during tactile stimulation is provided in
VideoStimulations AndM apActivations.mp4 at [39]. This
map meets the criteria of obtaining a representation that is—
on a certain level of abstraction—faithful to the biological
blueprint, but adapted to the robot, and will be used in further
work where a biologically motivated representation of the
robot’s tactile inputs is necessary.

Torso
detail

Fig. 16. Results — Learning from tactile stimulation with MRF-SOM. (A)
Top section of the output map — 7x7 neurons with miniature depictions of
the torso skin; red taxels mark RFs of the corresponding neuron (visualization
using the “biomimetic RF determination method”; see Section II-D). (B)
Visualization of the whole map using two-stage “heuristic visualization”.
Neurons with multiple colors indicate that the taxels composing their RF
belong to more than one skin part. (C) Body parts with color code corre-
sponding to the map. Inspired by the visualization in Fig. 13, the arrows
illustrate how the coarse orientation of individual skin parts is represented
in the map. For example, the top-to-bottom direction of the torso skin was
roughly translated into right-to-left in the map. Supporting material illustrating
how the visualization was arrived at is shown in S4_Fig.svg at [39].

3) Simulating Lesion of One Body Part: In light of the
apparent stringency of the underlying MRF constraints out-
lined in Fig. 15, the result presented in Fig. 16 may appear
to be somewhat unsurprising. We have decided to explicitly
test the degree of plasticity that is still present in the network
with detailed constraints. To this end, we have simulated a

11

lesion of the upper arm skin by pruning three quarters of the
corresponding training set segments where this part was stimu-
lated. The learned map in Fig. 17 demonstrates that despite the
stringent MRF constraints, the neighboring skin parts (torso
and forearm) significantly expanded their representations at
the expense of the upper arm region. Furthermore, even the
palm representation could take advantage of the situation and
seize new territory. The data and code related to this section
are available in S3_Data_and_Code at [39].

Fingers [S€°8989| 5

Fig. 17. Results — Learning from tactile stimulation with MRF-SOM
and simulated lesion of upper arm. The same settings and visualization as
in Fig. 16 were used, but 3/4 of upper arm stimulations were pruned in the
training set.

IV. CONCLUSION, DISCUSSION, FUTURE WORK

In this article, we presented work studying how a humanoid
robot with sensitive skin could learn a topographic representa-
tion of its body surface from experience—by receiving tactile
stimulations all over its artificial skin. Having stimulated the
robot’s skin on the upper body for about half an hour in
total, we studied the settings of the well-known self-organizing
feature map (SOM, or Kohonen map) algorithm that are
required to channel the learning into a target representation
resembling the one known from the primate cortex. To this
end, we proposed a modification of the standard SOM algo-
rithm (MRF-SOM) that allows to prespecify certain, partially
overlapping, receptive fields of the output layer neurons. This
guarantees that certain proportions as well as the sequence of
the represented areas can be specified a priori. This may, on
one hand and at a high level of abstraction, mimic the known
connectivity from the ascending somatosensory pathway with
divergent connections (e.g., [42]), but it mainly constitutes a
simple but practical tool to guide SOM learning in desired
directions. We also show that even if relatively specific “seed-
ing” of the map is applied, the network does retain sufficient
plasticity to suppress representation of a lesioned region of the
input space. Furthermore, the standard SOM algorithm is not
able to cope with multiple concurrent stimulations (such as
simultaneous touch on different body parts): it treats them as
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a single point in the input space, resulting in weight adaptation
in undesired directions. The proposed modification signifi-
cantly increases the performance in this case. At the same
time, the proposed MRF-SOM algorithm is easily portable to
other robots that feature some form of artificial skin array
(e.g., [47], [48]; [20], [21] for reviews) and can be deployed
to tailor the map learning process to any criteria specified by
the user (such as the availability of prior knowledge of skin
arrangement or the desired properties of the output layer).
Finally, the new TPMEDM measure quantifying the quality
of the observed maps, which relates the distance of adjacent
taxels peripherally to their separation on the generated map
(see Section II-E for details), is another contribution of this
work.

The goal was not to obtain a mathematically optimal repre-
sentation (which would inevitably have to be 3-dimensional,
e.g., [49]), but rather one motivated by the primary repre-
sentations of tactile (cutaneous) receptors in primate brains.
This is one of the well-known “somatosensory homunculi”,
concretely the one of Brodmann area 3b. If the cortical sheet
is unfolded, one can imagine a 2-dimensional grid of neurons
with a somatotopic arrangement of receptive fields, mimicking
the spatial arrangement of the cutaneous receptors on the
body surface, but with inevitable discontinuities resulting from
the dimensionality reduction (the skin forms a continuous
structure in three dimensions). There is thus no perfect solution
to this problem in terms of topological or topographical
criteria and the one adopted by biological systems is a result
of various historical, evolutionary, anatomical (nerves from
different body parts reach spinal or later thalamic nuclei at
different locations) and other constraints.

As already discussed, the level of chosen abstraction regard-
ing the putative biological processes in operation was very
high. Some of the decisions as to the model parameters were
dictated by the platform we used. For example, the artificial
skin of the iCub responds to sustained pressure only, which
may be said to grossly emulate the response of Merkel disk
receptors (slowly adapting mechanoreceptors present in human
skin). In terms of receptive field size, the situation may be
somewhat comparable: (i) Although individual Merkel disk
receptors are much smaller than the taxels in the robot, the
dorsal root ganglion cells innervating superficial skin layers
receive input from 10-25 Merkel disk receptors, giving rise
to a receptive field spanning a circular area with a diameter
of 2-10 mm ( [50], p. 435), which is comparable to the taxel
diameter of 4 mm in the robot; (ii) Cortical neurons have larger
receptive fields than sensory afferents, spanning for example
half a fingertip or areas of several centimeters in diameter on
less densely innervated body parts (see [4], for example). This
is again roughly comparable to the situation in the robot after
learning, where RF sizes also range from parts of a fingertip to
fractions of the palm surface (roughly 1-2.5 cm in diameter)
to several triangular skin modules on other body parts (1.5-4
cm in diameter, for example). However, there is a number of
important differences that limit the biological plausibility of
our setup. First, the skin mechanics and the receptor embed-
ding in the robot and in biology is most probably completely
different (see [S1] for a 3D finite element model of the finger

distal phalange and [52] for a review of prosthetic electronic
skin.) Second, with mere 1154 receptors on the half of the
robot upper body and only 24 x7 neurons on the output layer,
the numbers are significantly smaller than in the biological
realm. Third, the overlap and redundancy of the representation
are largely limited, compared to what is expected from the
biological counterpart. Fourth, we have only emulated one
receptor type (Merkel disk, isotropic response only in our
model), while it has been hypothesized recently that “touch
is a team effort”: the submodalities of touch (slowly and
rapidly adapting mechanoreceptors, Pacinian afferents) inter-
act. Thus the traditional perspective relying on submodality
segregation and receptive field mapping using artificial, sub-
modality specific stimuli is limited—the alternative being
natural, multimodal, stimuli and analysis of neuron firing
based on their function [53]. Fifth, any attentional mechanisms
were out of our scope—but see [54], for example. Finally,
regarding the artificial neural circuitry employed, it has to be
stated that the “relay stations” of the ascending pathway with
additional functionality like inhibitory surround were ignored
and a direct mapping from the “receptors” to the “cortex” was
learned instead (similarly to [10]-[12]; [55] used a 3-layer
network).

The SOM algorithm itself has been shown to give rise to
receptive field structures that resemble those of real neurons
(e.g., [56]). One decision on our part has been that we have
worked with binary inputs only. However, we have conducted
an empirical comparison with continuous data (both simulated
and real from the iCub torso), both variants leading to very
similar maps after training. A report summarizing our results
BinaryV sContinuousStimuli.pdf is available at [39]. An-
other feature that is probably at odds with putative neuronal
mechanisms is the global supervisory mechanism in SOM that
determines the winning neuron during learning. It could be
replaced by recurrent interactions between neurons though,
which was already present in von der Malsburg’s model [10]
and later in the LISSOM model (Laterally Interconnected
Synergetically Self-Organizing Map; [57]) or the recent GCAL
variant (Gain Control, Adaptation, Laterally connected; [58]).
It is possible that these algorithms may perform better when
faced with multi-touch stimulations—this needs to be tested
in the future. Another variant of the algorithm that is relevant
in this situation is the DSOM (Dynamic SOM; [59]), in
which the time-dependent learning function (learning rate and
neighborhood radius decreasing over time) was replaced by a
time-invariant function, triggering learning as soon as inputs
that lack a close representative are encountered. This would be
a way of achieving life-long learning in the robot and could be
one of the possible implementations leading to the well-known
plasticity (reorganization capability) of the cortical maps (see
e.g., [12], [13], [55] for models dealing with somatosensory
cortex). This constitutes another direction of future work.

In summary, as a model of somatosensory (tactile, more
precisely) cortex development, the work presented operates
at a high level of abstraction and has admittedly important
limitations. However, its contribution to the neurosciences
and cognitive sciences should be best viewed as a building
block, part of a larger project that aims at embodied modeling
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of primate body and peripersonal space representations. Our
effort parallels that of Kuniyoshi et al. dealing with foetal
development (e.g., [17]), but focuses on early postnatal devel-
opment and uses a real robot as opposed to simulation. The
maps representing the robot’s skin that originated in this work
will be used in ongoing work that studies the development
and operation of multimodal (tactile, proprioceptive, visual)
body representations. The development of proprioceptive rep-
resentations is studied in parallel [35] as well as learning
from visuo-proprioceptive-tactile associations about periper-
sonal space [34]. At the same time, these developments may,
first, set the ground for future refinement of the work presented
here. In particular, self-touch (as developed for the iCub
in [60]) holds great promise as an autonomous multimodal
body schema learning tool. Second, with several modules in
place, the possibilities for behavioral testing of the learned
representations—accuracy of gazing at or removal of vibrating
stimuli, for example—will be open. At the same time, this
work is relevant for robotics, in particular for physical human-
robot interaction: robots with artificial skin and representations
thereof are more aware of the full occupancy of their bodies,
leading to safer interaction with their surroundings. Finally, all
the data and code used in this work are available at [39] and
we would be happy to assist other researchers in using it.

ACKNOWLEDGMENT

MH was supported by the Swiss National Science
Foundation (www.snf.ch) Prospective Researcher Fellow-
ship PBZHP2-147259 and by a Marie Curie Intra Eu-
ropean Fellowship (iCub Body Schema 625727) within
the 7th European Community Framework Programme
(http://cordis.europa.eu). ZS was supported by the project No.
SGS13/203/0HK3/3T/13 of the Czech Technical University
in Prague (https://www.cvut.cz/en). IF was supported by the
Slovak Grant Agency for Science (VEGA) of the Ministry of
Education, Science, Research and Sport of the Slovak Republic
(https://www.minedu.sk) and of Slovak Academy of Sciences
(SAS, www.sav.sk), project 1/0898/14. GM was supported by
the 7th European Community Framework Programme project
WYSIWYD (FP7-ICT-612139).

REFERENCES

[1] A. S. Leyton and C. S. Sherrington, “Observations on the excitable
cortex of the chimpanzee, orangutan, and gorilla,” Quarterly Journal of
Experimental Physiology, vol. 11, no. 2, pp. 135-222, 1917.

W. Penfield and E. Boldrey, “Somatic motor and sensory representation
in the cerebral cortex of man as studied by electrical stimulation,” Brain,
vol. 37, pp. 389-443, 1937.

W. Penfield and T. Rasmussen, The Cerebral Cortex of Man: a Clinical
Study of Localization of Function. Macmillan, 1950.

R. Nelson, M. Sur, D. Felleman, and J. Kaas, “Representations of
the body surface in postcentral parietal cortex of macaca fascicularis,”
Journal of Comparative Neurology, vol. 192, no. 4, pp. 611-643, 1980.
“Central processing: The sensory homunculus
(fig. 5),” OpenStax College, OpenStax CNX,
June 2013. [Online]. Available: http://cnx.org/contents/
29cade27-ba23-4f4a-8cbd-128e72420f31 @5/Central-Processing

M. C. Crair, “Neuronal activity during development: permissive or
instructive?” Current Opinion in Neurobiology, vol. 9, no. 1, pp. 88-93,
1999.

[2]

[31
(4]

[5

(6]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

13

P. Vanderhaeghen, Q. Lu, N. Prakash, J. Frisén, C. A. Walsh, R. D.
Frostig, and J. G. Flanagan, “A mapping label required for normal scale
of body representation in the cortex,” Nature Neuroscience, vol. 3, no. 4,
pp. 358-365, 2000.

M. Granmo, P. Petersson, and J. Schouenborg, “Action-based body
maps in the spinal cord emerge from a transitory floating organization,”
Journal of Neuroscience, vol. 28, no. 21, pp. 5494-5503, 2008.

J. H. Kaas and K. C. Catania, “How do features of sensory representa-
tions develop?” Bioessays, vol. 24, no. 4, pp. 334-343, 2002.

C. von der Malsburg and D. Willshaw, “How to label nerve cells so
that they can interconnect in an ordered fashion,” Proceedings of the
National Academy of Sciences, vol. 74, no. 11, pp. 5176-5178, 1977.
J. C. Pearson, L. H. Finkel, and G. M. Edelman, “Plasticity in the
organization of adult cerebral cortical maps: a computer simulation based
on neuronal group selection,” Journal of Neuroscience, vol. 7, no. 12,
pp. 42094223, 1987.

G. L. Detorakis and N. P. Rougier, “A neural field model of the
somatosensory cortex: Formation, maintenance and reorganization of
ordered topographic maps,” PloS one, vol. 7, no. 7, p. e40257, 2012.
K. Obermayer, H. Ritter, and K. Schulten, “Large-scale simulation of
a self-organizing neural network: Formation of a somatotopic map,”
Parallel Processing in Neural Systems and Computers, pp. 71-74, 1990.
H. Ritter, T. Martinetz, K. Schulten, D. Barsky, M. Tesch, and R. Kates,
Neural computation and self-organizing maps: an introduction.  Ad-
dison Wesley Longman Publishing Co., Inc., 1992, ch. Modeling the
somatotopic map, pp. 101-117.

T. Stafford and S. P. Wilson, “Self-organisation can generate the discon-
tinuities in the somatosensory map,” Neurocomputing, vol. 70, no. 10,
pp. 1932-1937, 2007.

A. Pitti, Y. Kuniyoshi, M. Quoy, and P. Gaussier, “Modeling the minimal
newborn’s intersubjective mind: the visuotopic-somatotopic alignment
hypothesis in the superior colliculus,” PloS ONE, vol. 8, no. 7, p. e69474,
2013.

Y. Yamada, H. Kanazawa, S. Iwasaki, Y. Tsukahara, O. Iwata, S. Ya-
mada, and Y. Kuniyoshi, “An embodied brain model of the human
foetus,” Scientific Reports, vol. 6, 2016.

H. Mori and Y. Kuniyoshi, “A human fetus development simulation:
Self-organization of behaviors through tactile sensation,” in /EEE 9th
International Conference on Development and Learning (ICDL). 1EEE,
2010, pp. 82-87.

R. Sasaki, Y. Yamada, Y. Tsukahara, and Y. Kuniyoshi, “Tactile stimuli
from amniotic fluid guides the development of somatosensory cortex
with hierarchical structure using human fetus simulation,” in /EEE
3rd Joint International Conference on Development and Learning and
Epigenetic Robotics (ICDL), Aug 2013, pp. 1-6.

C. Bartolozzi, L. Natale, F. Nori, and G. Metta, “Robots with a sense
of touch,” Nature Materials, vol. 15, no. 9, pp. 921-925, 2016.

R. S. Dahiya and M. Valle, Robotic Tactile Sensing. Springer, 2013.
F. Mastrogiovanni, L. Natale, G. Cannata, and G. Metta, “Special
issue on advances in tactile sensing and tactile-based human—robot
interaction,” Robotics and Autonomous Systems, vol. 63, pp. 227-229,
2015.

P. Mittendorfer, E. Yoshida, and G. Cheng, “Realizing whole-body
tactile interactions with a self-organizing, multi-modal artificial skin on
a humanoid robot,” Advanced Robotics, vol. 29, no. 1, pp. 51-67, 2015.
B. C.-K. Tee, A. Chortos, A. Berndt, A. K. Nguyen, A. Tom,
A. McGuire, Z. C. Lin, K. Tien, W.-G. Bae, H. Wang, P. Mei, H.-
H. Chou, B. Cui, K. Deisseroth, T. N. Ng, and Z. Bao, “A skin-inspired
organic digital mechanoreceptor,” Science, vol. 350, no. 6258, pp. 313—
316, 2015.

B. D. Argall and A. G. Billard, “A survey of tactile human-robot
interactions,” Robotics and Autonomous Systems, vol. 58, no. 10, pp.
1159-1176, 2010.

U. Martinez-Hernandez and T. Prescott, “Expressive touch: control of
robot emotional expression by touch,” in Proc. IEEE International
Symposium on Robot and Human Interactive Communication (RO-
MAN), 2016.

S. Denei, F. Mastrogiovanni, and G. Cannata, “Towards the creation of
tactile maps for robots and their use in robot contact motion control,”
Robotics and Autonomous Systems, vol. 63, pp. 293-308, 2015.

G. Cannata, S. Denei, and F. Mastrogiovanni, “Towards automated self-
calibration of robot skin,” in International Conference on Robotics and
Automation (ICRA). 1EEE, 2010, pp. 4849-4854.

A. Del Prete, S. Denei, L. Natale, F. M., F. Nori, G. Cannata, and
G. Metta, “Skin spatial calibration using force/torque measurements,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2011, pp. 3694 —3700.



139

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[501

[51]

[52]

[53]

S. McGregor, D. Polani, and K. Dautenhahn, “Generation of tactile maps
for artificial skin,” PloS one, vol. 6, no. 11, p. €26561, 2011.

G. Pugach, A. Pitti, and P. Gaussier, “Neural learning of the topographic
tactile sensory information of an artificial skin through a self-organizing
map,” Advanced Robotics, pp. 1-17, 2015.

R. Pfeifer and J. C. Bongard, How the body shapes the way we think:
a new view of intelligence. Cambridge, MA: MIT Press, 2007.

M. Hoffmann, H. Marques, A. Hernandez Arieta, H. Sumioka, M. Lun-
garella, and R. Pfeifer, “Body schema in robotics: A review,” Au-
tonomous Mental Development, IEEE Transactions on, vol. 2, no. 4,
pp. 304-324, Dec 2010.

A. Roncone, M. Hoffmann, U. Pattacini, L. Fadiga, and G. Metta,
“Peripersonal space and margin of safety around the body: learning
tactile-visual associations in a humanoid robot with artificial skin,” PLoS
ONE, vol. 11, no. 10, p. 0163713, 2016.

M. Hoffmann and N. Bednarova, “The encoding of proprioceptive
inputs in the brain: knowns and unknowns from a robotic perspective,”
in Kognice a umely zivot XVI [Cognition and Artificial Life XVI],
M. Vavrecka, O. Becev, M. Hoffmann, and K. Stepanova, Eds., 2016,
pp. 55-66.

G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. von
Hofsten, K. Rosander, M. Lopes, J. Santos-Victor, A. Bernardino, and
L. Montesano, “The iCub humanoid robot: An open-systems platform
for research in cognitive development,” Neural Networks, vol. 23, no.
8-9, pp. 1125-1134, 2010.

A. Parmiggiani, M. Maggiali, L. Natale, F. Nori, A. Schmitz,
N. Tsagarakis, J. S. Victor, F. Becchi, G. Sandini, and G. Metta, “The
design of the iCub humanoid robot,” International Journal of Humanoid
Robotics, vol. 9, no. 04, 2012.

P. Maiolino, M. Maggiali, G. Cannata, G. Metta, and L. Natale, “A
flexible and robust large scale capacitive tactile system for robots,” IEEE
Sensors Journal, vol. 13, no. 10, pp. 3910-3917, 2013.

M. Hoffmann, Z. Straka, I. Farkas, M. Vavrecka, and G. Metta,
“Supporting materials.” [Online]. Available: https://github.com/matejhof/
robotic-homunculus-supporting- materials

T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biological Cybernetics, vol. 43, no. 1, pp. 59-69, 1982.

, “The self-organizing map,” Proceedings of the IEEE, vol. 78,
no. 9, pp. 1464-1480, 1990.

E. Jones, “Cortical and subcortical contributions to activity-dependent
plasticity in primate somatosensory cortex,” Annual Review of Neuro-
science, vol. 23, no. 1, pp. 1-37, 2000.

J. Vesanto, J. Himberg, E. Alhoniemi, and J. Parhankangas, “Self-
organizing map in Matlab: the SOM toolbox,” in Proceedings of the
Matlab DSP Conference, vol. 99, 1999, pp. 16-17.

E. Alhoniemi, J. Himberg, J. Parhankangas, and J. Vesanto,
“Som toolbox-online documentation,” 2003. [Online]. Available: http:
/Iwww.cis.hut.fi/projects/somtoolbox/package/docs2/somtoolbox.html
D. Polani, “Measures for the organization of self-organizing maps,” in
Self-Organizing Neural Networks, ser. Studies in Fuzziness and Soft
Computing, U. Seiffert and L. Jain, Eds. Springer, 2002, vol. 78, pp.
13-44.

H.-U. Bauer and K. R. Pawelzik, “Quantifying the neighborhood preser-
vation of self-organizing feature maps,” IEEE Transactions on Neural
Networks, vol. 3, no. 4, pp. 570-579, 1992.

G. H. Biischer, R. Kaiva, C. Schiirmann, R. Haschke, and H. J. Ritter,
“Flexible and stretchable fabric-based tactile sensor,” Robotics and
Autonomous Systems, vol. 63, pp. 244-252, 2015.

P. Mittendorfer and G. Cheng, “Humanoid multimodal tactile-sensing
modules,” IEEE Transactions on Robotics, vol. 27, no. 3, pp. 401-410,
2011.

——, “3d surface reconstruction for robotic body parts with artificial
skins,” in Proceedings of IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 2012.

E. Kandel, J. Schwartz, and T. Jessell, Principles of Neural Science.
McGraw-Hill, 2000, vol. 4.

G. J. Gerling, I. I. Rivest, D. R. Lesniak, J. R. Scanlon, and L. Wan,
“Validating a population model of tactile mechanotransduction of slowly
adapting type i afferents at levels of skin mechanics, single-unit response
and psychophysics,” Haptics, IEEE Transactions on, vol. 7, no. 2, pp.
216-228, 2014.

A. Chortos, J. Liu, and Z. Bao, “Pursuing prosthetic electronic skin,”
Nature Materials, vol. 15, no. 9, pp. 937-950, 2016.

H. P. Saal and S. J. Bensmaia, “Touch is a team effort: interplay of
submodalities in cutaneous sensibility,” Trends in neurosciences, vol. 37,
no. 12, pp. 689-697, 2014.

[54]

[55]

[56]

[571

[58]

[591

[60]

S. S. Hsiao and F. Vega-Bermudez, “Attention in the somatosensory
system,” in The somatosensory system: Deciphering the brain’s own
body image, R. J. Nelson, Ed. CRC Press, 2001, pp. 197-218.

J. Xing and G. Gerstein, “Networks with lateral connectivity. iii.
plasticity and reorganization of somatosensory cortex,” Journal of Neu-
rophysiology, vol. 75, no. 1, pp. 217-232, 1996.

K. Obermayer, H. Ritter, and K. Schulten, “A principle for the formation
of the spatial structure of cortical feature maps,” Proceedings of the
National Academy of Sciences, USA, vol. 87, pp. 8345-8349, 1990.

J. Sirosh and R. Miikkulainen, “Cooperative self-organization of affer-
ent and lateral connections in cortical maps,” Biological Cybernetics,
vol. 71, pp. 66-78, 1994.

J.-L. R. Stevens, J. Law, J. Antolik, and J. Bednar, “Mechanisms for
stable, robust, and adaptive development of orientation maps in the
primary visual cortex,” Journal of Neuroscience, vol. 33, pp. 15747—
15766, 2013.

N. P. Rougier and Y. Boniface, “Dynamic self-organising map,” Neuro-
computing, vol. 74, pp. 1840-1847, 2011.

A. Roncone, M. Hoffmann, U. Pattacini, and G. Metta, “Automatic
kinematic chain calibration using artificial skin: self-touch in the icub
humanoid robot,” in Robotics and Automation (ICRA), 2014 IEEE
International Conference on, 2014, pp. 2305-2312.

Matéj Hoffmann received his Mgr. (M.Sc.) degree
in Computer Science, Artificial Intelligence at Fac-
ulty of Mathematics and Physics, Charles University
in Prague, Czech Republic, in 2006. Between 2006
and 2013 he completed his PhD degree and then
served as senior research associate at the Artifi-
cial Intelligence Laboratory, University of Zurich,
Switzerland (Prof. Rolf Pfeifer). From May 2013 he
worked at the iCub Facility of the Italian Institute
of Technology with Prof. Giorgio Metta, between
2014 and 2016 as a Marie Curie Experienced Re-

searcher Fellow. In 2017 he joined Dept. Cybernetics, Faculty of Electrical
Engineering, Czech Technical University in Prague. His main research interest
is embodied cognition, in particular the mechanisms underlying body repre-
sentations and sensorimotor contingencies in humans and their implications
for increasing the autonomy, resilience and robustness of robots.

Zdenék Straka received his Bc. degree (with Hon-
ors) in Robotics and masters (Ing.; with Honors)
degree in Artificial Intelligence from the Faculty
of Electrical Engineering, Czech Technical Univer-
sity in Prague in 2014 and 2016 respectively. His
Be. thesis on the development of tactile maps in
a humanoid robot was awarded the Dean’s prize.
From September 2016 he is a PhD student at the
Center for Machine Perception, CTU in Prague.
His research interests include neurorobotics, neural
networks, and machine learning. He is particularly

interested in applying machine learning methods to body and peripersonal
space representations of humanoid robots.



140 Appendix F. Robotic homunculus: Learning of artificial skin representation

15

Igor Farka$ received the masters degree “Ing.”
(with Honors) in technical cybernetics in 1991, and
the Ph.D. degree in applied informatics in 1995,
both from the Slovak University in Technology in
Bratislava, Slovakia. In 1998 he was a Fulbright
fellow at the Department of Computer Science, Uni-
versity of Texas at Austin, USA. From 2000 to 2003
he was a postdoctoral fellow at the Department of
Psychology, University of Richmond, VA, USA. In
2005 he was Humboldt fellow at the Department of
Computational Linguistics and Phonetics, Saarland

University in Saarbriicken, Germany. In 2014 he became full professor of
informatics at the Faculty of Mathematics, Physics and Informatics, Comenius
University in Bratislava, Slovak Republic. His research interests include mod-
els of artificial neural networks and their applications in cognitive modeling,
mainly natural language and robotics. Since 2013, he has been a member
of the IEEE Computational Intelligence Society Neural Network Technical
Committee.

Michal Vavrecka works at CTU in Prague. He
focuses on knowledge representation, namely the
development of multimodal representations. Michal
developed multimodal architectures for grounding
symbols in the area of spatial navigation to represent
static (up, down etc.) and dynamic (around, through
etc.) spatial prepositions. The main goal is to test the
methods of unsupervised learning in the process of
knowledge acquisition in terms of multimodal inte-
gration. The second branch of his research is focused
on cognitive neuroscience. He is interested in neural
correlates of spatial navigation especially the localization of brain structures
involved in egocentric and allocentric frames of reference processing.

Giorgio Metta is Vice Scientific Director at the
Istituto Italiano di Tecnologia (IIT) and Director of
the iCub Facility Department at the same institute.
He coordinates the development of the iCub robotic
project. He holds an MSc cum laude (1994) and
PhD (2000) in electronic engineering both from
the University of Genoa. From 2001 to 2002, he
was postdoctoral associate at the MIT Al-Lab. He
was previously with the University of Genoa and
since 2012 Professor of Cognitive Robotics at the
University of Plymouth (UK). He is also deputy
director of 1IT delegate to the training of young researchers. He is member of
the board of directors of euRobotics aisbl, the European reference organization
for robotics research. Giorgio Metta research activities are in the fields of
biologically motivated and humanoid robotics and, in particular, in developing
humanoid robots that can adapt and learn from experience. He has been
working as principal investigator and research scientist in about a dozen
international as well as national funded projects.




Appendix G

Peripersonal space and margin of
safety around the body: learning

tactile-visual associations in a
humanoid robot with artificial skin

Roncone, A., Hoffmann, M., Pattacini, U., Fadiga, L. and Metta, G. (2016). Peripersonal space and
margin of safety around the body: learning tactile-visual associations in a humanoid robot with
artificial skin. PLoS ONE 11 (10): e0163713.

Open Access. DOL: http://dx.doi.org/10.1371/journal.pone.0163713

Author contributions: The contribution of M. Hoffmann was 35%.


http://dx.doi.org/10.1371/journal.pone.0163713

142

Appendix G. Peripersonal space and margin of safety around the body

@ PLOS |one

CrossMark

click for updates

ﬁ OPENACCESS

Citation: Roncone A, Hoffmann M, Pattacini U,
Fadiga L, Metta G (2016) Peripersonal Space and
Margin of Safety around the Body: Learning Visuo-
Tactile Associations in a Humanoid Robot with
Artificial Skin. PLoS ONE 11(10): e0163713.
doi:10.1371/journal.pone.0163713

Editor: Mikhail A. Lebedev, Duke University,
UNITED STATES

Received: February 16, 2016
Accepted: August 17,2016
Published: October 6, 2016

Copyright: © 2016 Roncone et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data and
scripts to generate figures are in this public
repository: https://github.com/alecive/peripersonal-
space-margin-of-safety-data.

Funding: AR was supported by 7th European
Community Framework Programme (http:/cordis.
europa.eu) Xperience (FP7-ICT-270273). MH was
supported by the Swiss National Science
Foundation (www.snf.ch) Prospective Researcher
Fellowship PBZHP2-147259 and by a Marie Curie
Intra European Fellowship (iCub Body Schema
625727) within the 7th European Community

Peripersonal Space and Margin of Safety
around the Body: Learning Visuo-Tactile
Associationsin a Humanoid Robot with
Artificial Skin

Alessandro Roncone'-?, Matej Hoffmann'*, Ugo Pattacini’, Luciano Fadiga®*,
Giorgio Metta'

1iCub Facility, Istituto Italiano di Tecnologia, Genova, Italy, 2 Social Robotics Lab, Computer Science
Department, Yale University, New Haven, CT, United States of America, 3 Robotics, Brain, and Cognitive
Sciences Department, Istituto Italiano di Tecnologia, Genova, ltaly, 4 Section of Human Physiology, Ferrara
University, Ferrara, Italy

* matej.hoffmann @iit.it

Abstract

This paper investigates a biologically motivated model of peripersonal space through its
implementation on a humanoid robot. Guided by the present understanding of the neuro-
physiology of the fronto-parietal system, we developed a computational model inspired by
the receptive fields of polymodal neurons identified, for example, in brain areas F4 and VIP.
The experiments on the iCub humanoid robot show that the peripersonal space representa-
tion i) can be learned efficiently and in real-time via a simple interaction with the robot, ii)
can lead to the generation of behaviors like avoidance and reaching, and iii) can contribute
to the understanding the biological principle of motor equivalence. More specifically, with
respect to i) the present model contributes to hypothesizing a learning mechanisms for peri-
personal space. In relation to point ii) we show how a relatively simple controller can exploit
the learned receptive fields to generate either avoidance or reaching of an incoming stimu-
lus and for iii) we show how the robot can select arbitrary body parts as the controlled end-
point of an avoidance or reaching movement.

Introduction

The peripersonal space (PPS) is of special relevance for the life of any complex animal. When
objects enter the peripersonal space, they can be reached for, grasped, or be a threat, evoking
for example an avoidance response. Peripersonal space thus deserves special attention and
probably justifies the specific neural circuitry devoted to its representation. The brain has to
dynamically integrate information coming from several modalities: motoric, visual, auditory or
somatosensory. In primates, the evidence derived primarily from recordings in the macaque
identifies a specific fronto-parietal network of neurons as the circuitry responsible for the
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representation of peripersonal space, as well as the connection to extant behavior (e.g., [1-3]).
In the frontal lobe, the principal convergence locus has been discovered to be area F4 of the
ventral premotor cortex [4-6] including the region of the spur of the arcuate sulcus [7]. In the
parietal lobe, the area most strongly connected to area F4 is area VIP (Ventral Intraparietal
[8]). In spite of the fact that observations report the presence of auditory responses [9], in this
work we leave audition aside and focus instead on the integration of visual and tactile inputs.

A large part of peripersonal space coding can presumably be attributed to populations of
polymodal neurons that, in addition to motor discharge, have tactile and visual receptive fields
(RFs). Visual RFs usually extend from the tactile ones in the space around the respective body
segment (see e.g. [4, 5]; for a review, see [1-3]). Furthermore, the visual RFs are often coded in
the same frame of reference (FoR) of the corresponding body part and, therefore, during active
or passive mobilization, they move with the body part in 3D space. This suggests that motor and
proprioceptive information is integrated in a body-part-centered encoding. A good part of the
evidence coming from the monkey is presumably informative in the case of humans as well [10].

Timely and appropriate object-directed actions in the peripersonal space are crucial for the
survival of the animal. Depending on the context, actions may constitute either an approaching
or an avoidance behavior. In the case of avoidance behavior, this creates a “margin of safety”
around the body, such as the flight zone of grazing animals or the multimodal attentional space
that surrounds the skin in humans [2]. An analogous behavior is desirable in general-purpose
robots as well, when significant interaction is expected to happen in unconstrained environ-
ments. However, to date, robot controllers largely concentrate on the end-point as the only part
that enters in physical contact with the environment. The rest of the body is typically repre-
sented as a kinematic chain, the volume and surface of the body itself rarely taken into account.
Sensing is dominated by “distal” sensors, like cameras, whereas the body surface is “numb”. As
a consequence, reaching in cluttered, unstructured environments poses severe problems, as the
robot is largely unaware of the full occupancy of its body, limiting the safety of the robot and
the surrounding environment. This is one of the bottlenecks that prevent robots from working
alongside human partners.

While individual components that presumably constitute the representations of space
around the body can be studied in isolation using computational models in simplified (for
example 2-dimensional) scenarios, their interactions are difficult to model without an articu-
lated body with corresponding sensorimotor capacities and actual interaction with the environ-
ment. Indeed, in animals and humans, these representations are gradually formed through
physical interaction with the environment and in a complex interplay of body growth and neu-
ral maturation processes. Self-touch (also called double-touch) is presumably one of the behav-
iors that impact the formation of multimodal body representations. For example, “by 2-3
months, infants engage in exploration of their own body as it moves and acts in the environment.
They babble and touch their own body, attracted and actively involved in investigating the rich
intermodal redundancies, temporal contingencies, and spatial congruence of self-perception”
[11]. Such behaviors may initially be reflexive and controlled by spinal circuitry—the wiping/
scratch reflex has been demonstrated in frogs [12, 13], though its existence is debated in
humans [14]—but progressively become more complex and voluntary. These contingencies
and congruences that arise occur across different motor and sensory modalities, with the
motor/proprioceptive and tactile starting already in prenatal stage. Vision is presumably incor-
porated later, during the first months after birth hand in hand with the maturation of the visual
system (see e.g., [15]). Perhaps even later, contingencies will encompass external objects (this
loosely resembles the sensorimotor stage of development put forth by Piaget, e.g. [16]).

This simplified developmental timeline constitutes the skeleton of our work in the human-
oid robot. The humanoid in question is the iCub, a child robot designed to support studies on
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artificial cognitive systems [25]. The iCub has a human-like morphology and a subset of the
sensory capacities of the human body. Lately, it has been equipped with a set of tactile sensors
[26], which provide information about local pressure upon contact with an object or, generi-
cally, any part of the environment. We are concretely in the position of studying how motor-
proprioceptive-tactile and visuo-tactile associations are developed via an artificial learning pro-
cess. The robot can and will therefore establish a margin of safety by interacting with its own
body and the environment, extending its cutaneous tactile surface into the 3D space surround-
ing it. An overview of the developmental timeline is provided in Tables 1-4, with putative
developmental milestones in the left column and their robotic counterparts on the right.

The robotics implementation departs in many respects from the mechanisms that presum-
ably operate in the primate brain. The correspondence between biology and robotics is often
established at a behavioral level rather than in the details of the implementation. In particular,
for mostly practical reasons, we assume that the robot’s kinematics and mapping of tactile
information into reference frames is given. The implementation of the double-touch behavior
itself (from [18]) is taken as a primitive. Conversely, learning/calibration of the spatial receptive
fields around individual taxels (tactile elements) is primarily addressed here and relates to
biology.

Building on the developmental pathway outlined above, we model peripersonal space on a
humanoid robot equipped with full-body tactile sensors. Our model keeps in register each
“spatial” visual RF to a taxel of the robot’s skin. Starting from an initial “blank slate”, the dis-
tance and velocity of a stimulus entering any given RF is recorded, together with information
on whether the object had eventually contacted the selected tactile element. Distance and veloc-
ity of the stimulus are measured with respect to each taxel, in real time and in parallel. In this
model, RFs are proxies for the neural responses, each of them represented by a probability den-
sity function. Probabilities are updated incrementally and carry information about the likeli-
hood of a particular stimulus (e.g. an object approaching the body) eventually contacting the
specific taxel at hand. We use the distance to the taxel and its time to contact (distance/veloc-
ity) to compactly identify the stimulus in a bi-dimensional parameter space.

Table 1. Developmental milestone 1: “Bare” or “blind” double-touch.

1a.

1b.

Developmental Milestone

Double-touch from body babbling or mediated
by reflexes. Fetuses as well as infants
spontaneously contact their bodies, giving rise to
self-touch events. Correspondence between
motor (how to command a limb to touch a specific
body part) and tactile (cutaneous stimulation on
touching and touched body part) information are
established [11, 17].

Invariance with respect to the configuration of
the “touched” limb. If movement is directed to a
body part that can assume different configurations
with respect to the body frame (e.g. arm), the
information about the current position of this body
part needs to be taken into account—presumably
using proprioceptive information. Some form of
remapping of tactile information into external (to
the skin) reference frames seems necessary (see
Heed et al. [19] for a review). Outcome: Prediction
of double-touch from motor/proprioceptive
information.

doi:10.1371/journal.pone.0163713.t001

Robotics Implementation

Double-touch using inverse kinematics. In the
iCub robot, we used a solution for double-touch
developed in Roncone et al. [18]. This capitalizes
on an existing kinematic model of the robot as
well as calibration of the artificial skin with respect
to a common FoR and employs a modified
inverse kinematics solver. This solution
automatically encompasses different arm
configurations, since current joint positions
automatically enter the kinematic representation.
Subject to learning: As one arm approaches and
eventually contacts another body part (the
contralateral arm in our case), the position and
velocity of the approaching arm are acquired from
current joint angle values and kinematic model of
the robot and then remapped into the FoR of the
taxels on the touched limb. These taxels then, in
parallel and in their individual FoRs, learn a
probabilistic representation of the likelihood of a
stimulus—the approaching limb in this case—
contacting them.

PLOS ONE | DOI:10.1371/journal.pone.0163713 October 6, 2016
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Table 2. Developmental milestone 2: Double-touch with vision.

Developmental Milestone

2a. | The motor/proprioceptive information about
the position of the approaching arm is
augmented by vision. Here we assume that its
3D position with respect to a certain reference
frame can be retrieved (using stereopsis). This
can then be used to develop visuo-tactile
associations able to predict incoming contact
based on visual information.

Invariance with respect to the configuration of
the “touched” limb. Similarly to 1b, if the
“touched” body part can assume different
configurations, this needs to be taken into account
in order to register the visuo-tactile association
correctly—presumably in a reference frame
centered on the body part. Again, proprioceptive
signals about limb configuration can provide this
information.

Invariance with respect to the head and eye
configuration. The touching limb needs to be
followed in space by gaze. For correct registration
of the active limb’s position and subsequent
coordinate transformations, proprioceptive
information about the current neck and eyes
configurations is needed (see [21, 22] regarding
the role of gaze in reaching to somatosensory
targets). Outcome: Prediction of double-touch
while extracting the position and velocity of the
approaching arm from visual information.

doi:10.1371/journal.pone.0163713.t002

2b.

2c.

Robotics Implementation

Visual tracking with extraction of 3D
coordinates; head and eye kinematics. A
visual tracker (specified in the following sections)
is used to detect and extract coordinates of
approaching limb into a body-centered reference
frame. A model of eye and head kinematics
together with current joint values are used to
perform the necessary kinematic transformations.
Further, a gaze controller [20] is employed to
track the approaching stimulus (fingertip in this
case). Different limb as well as head and eye
configurations are automatically taken into
account. Subject to learning: Probabilistic
representation of stimuli eventually resulting in
double-touch, but this time utilizing visual
information about the approaching limb.

For learning probabilities, we explore two stimulation modalities: i) self-touch and, more
generically, ii) objects moving toward the body surface. In the first case, the stimulus is gener-
ated autonomously by the robot—for example, a finger touching the contralateral arm. The
robot executes self-touching behaviors and uses proprioceptive signals to measure the
approach kinematics, which in turn constitute the training set to estimate probability densities.
In the second modality, stimuli are generated by any object in the vicinity of the body surface
and perceived visually and through its contact with the skin.

Table 3. Developmental milestone 3: Visuo-tactile associations pertaining to external objects.

Developmental Milestone

3a.  Tactile-visual-proprioceptive learning from
any approaching stimulus. The tactile-visual-
proprioceptive association learned in previous
stage is generalized and applied to any objects
nearing the skin. Visual perception of own
approaching body parts is substituted by
detection and tracking of moving objects in the
body surroundings. We did not consider further
stimuli approaching the face (e.g., [23]), where
expanding optic flow fields may in fact be at use
(e.g., [24]), but objects nearing the limbs.
Outcome: Prediction of contact of skin parts—with
own body or with generic objects—using visual
information.

doi:10.1371/journal.pone.0163713.t003

Robotics Implementation

Same as Milestone 2 above, but using a different
visual perception pipeline able to accommodate
arbitrary objects (detailed in the paper). Subject to
learning: Probabilistic representation of stimuli
eventually resulting in contact with the skin,
utilizing visual information about approaching
objects.

PLOS ONE | DOI:10.1371/journal.pone.0163713 October 6, 2016
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Table 4. Developmental milestone 4: Exploitation of learned associations.

Developmental Milestone Robotics Implementation

4a. | Avoidance behaviors. Prediction of contact is Distributed avoidance / catching controller.
exploited to trigger coordinated avoidance Taxels with activation above a certain threshold
behaviors w.r.t. either the own body (i.e. avoiding | contribute to a resulting movement vector that is
self-collisions) or the external world (i.e. avoiding | executed by a Cartesian controller. The avoidance

incoming potentially harmful objects) (e.g., [2]). / reaching differs only in the direction of the final
Outcome: Effective “safety margin around the movement vector.
body”.

4b.  “Reaching” with arbitrary body parts
behaviors. The peripersonal space
representation facilitates actions toward nearby
objects, allowing to reach for them with any body
part. Outcome: reaching actions with arbitrary
body parts.

doi:10.1371/journal.pone.0163713.t004

There are a number of computational models addressing phenomena related to peripersonal
space representations. A major component of many of them is coordinate transformations,
which seem inevitable in order to code visual information in body-part centered FoRs; this has
been investigated extensively and several connectionist models have been proposed (e.g., [23,
27, 28]). On the other hand, Magosso et al. [29] took FoR transformations for granted and
focused on the mechanisms of tactile and visual interaction. They proposed a neural network
that models unimodal (visual and tactile) and bimodal representations of an imaginary left and
right body part and demonstrated a number of phenomena reported in humans (e.g. tactile
extinction). Some of the studies targeting body schema and peripersonal space representation
models were reviewed in Hoffmann et al. [30]. Since platforms with tactile sensing are rare,
most of the work has focused on the interaction of visual and proprioceptive information (in
robotics typically equated with joint angles from encoders). For example, Antonelli et al. [31,
32] developed models in different humanoid robots, focusing mainly on peripersonal space in
the sense of space within reach and the visual aspects thereof. A number of embodied models
were also developed by Asada and colleagues. Hikita et al. [33] used a humanoid robot and
employed a bio-inspired architecture (self-organizing maps, Hebbian learning, and attention
module) to learn the visual receptive field around the robot’s hand and its extension when
using a tool—inspired by the behavior of the “distal” type neurons reported by Iriki et al. [34].
Touch was only emulated and used to trigger the visuo-proprioceptive association. Finally,
most related to our approach, Fuke et al. [35] used a simulated robot touching itself on the face
to model the putative mechanism leading to the visual and tactile response properties of neu-
rons in the ventral intraparietal area (VIP). A hierarchical architecture with visual, propriocep-
tive and tactile modality was used. After learning, as the robot’s hand approached its face,
contact with the skin could be predicted.

In robotics, safe interaction, especially when involving humans, is a crucial need of future
assistive machines. There is necessity for technologies that allow robots to acquire some form
of “whole-body” and “nearby-space” awareness. Traditionally, a significant body of work has
been produced in the context of obstacle-avoidance planners, able to compute safe end-effector
trajectories off-line if provided with complete knowledge of a static environment and a precise
kinematic model. These approaches fall short in presence of modeling errors or when environ-
ments change dynamically. To this end, the classic planning techniques had to be comple-
mented by reactive strategies such as the potential field approach [36]. More recently,
frameworks taking the whole occupancy of a robot body into account have appeared: Flacco
etal. [37] proposed a motion controller with online collision avoidance for both end-effector
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and the manipulator body; Frank et al. [38] proposed a modular framework (MoBeE) where a
planner can be overridden by a reactive controller. Still, the performance of systems relying on
distal sensing (such as from cameras or depth sensors) degrades if the perception of the envi-
ronment is not reliable or the model of the robot kinematics inaccurate. A feedback loop that is
as close as possible to the interaction itself is needed.

In recent years, tactile systems have been proposed as a way to close the loop precisely
where the interaction occurs. However, the lack of suitable platforms limits research in this
direction: although diverse tactile sensing technologies have been developed (see [39] for a
review), robots with whole-body tactile sensing have been mostly unavailable. Alternative solu-
tions relied on force/torque sensing and impedance control schemes that ensure compliant
behavior of the platform on contact (e.g., [40]). Shimizu et al. [41] used force/torque feedback
together with encoder information to develop self-protective reflexes and global reactions for
the iCub robot. Distributed sensing over the whole surface of a robotic manipulator was used
by Mittendorfer and Cheng [42]. Utilizing information from accelerometers from their multi-
modal “skin” during a motor exploration phase, the direction of movement of every sensory
unit in response to every motor could be learned. Activations of infra-red distance sensors on
the same sensory unit could then be used to trigger local avoidance reflexes to approaching
objects. Finally, Jain et al. [43] devised a controller that allows for reaching in clutter while tak-
ing into account multiple contacts and keeping the forces within set limits. The solution was
verified on a robot featuring a tactile-sensitive forearm. However, solutions combining interac-
tion-based and contact-less (distal sensing) approaches are rare ([44] being a notable excep-
tion). This is where our work exploiting visual and whole-body tactile information ties in.

In this work, we set forth to implement a model of peripersonal space that includes self-tun-
ing abilities in the form of learning from examples. Specifically, we do not model the acquisi-
tion of the FoR transformations but rather we focus only on the construction of the responses
of the RFs. We build on our previous work [45], where we presented a simplified version of the
model dealing solely with approaching external objects and registering their distance. Here we
extend this work by presenting a complete developmental timeline, in which examples are first
collected through self-exploration or self-touch, resulting in concurrent motor-tactile and
visuo-tactile stimulation of different areas of the body. This is then complemented by external
approaching objects. Furthermore, the RFs’ representations take into account the time to con-
tact of the incoming stimulus. Finally, the acquired RFs are used in a controller to implement
avoidance and reaching behaviors thus implicitly testing their performance.

This article is structured as follows. In the Results section, the properties of the proposed
model are first verified in simulation (Section Learning in a single taxel model) and then on the
iCub (Section Learning in the real robot). Finally, the peripersonal space representation is used
to generate avoidance as well as “reaching” behavior using arbitrary body parts of the robot
(Section Exploitation of the learned associations). This is followed by Discussion and Conclu-
sion, which contains a summary, limitations of the model and future work. A detailed descrip-
tion of the experimental setup and the proposed computational model is presented in Section
Materials and Methods.

Results

Results from four different experimental scenarios are reported (we refer the reader to Tables
1-4 above for an overview of the developmental timeline). First, the behavior of the proposed
representation is studied in a simulated single taxel model (Section Learning in a single taxel
model). Second, we demonstrate how the robot can learn tactile-motor and tactile-visual repre-
sentations via a double-touch scenario and by tracking arbitrary objects as they near the skin.

PLOS ONE | DOI:10.1371/journal.pone.0163713 October 6, 2016 6/32
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Finally, the utility of the learned representations is demonstrated in the avoidance and reaching
scenario that exploits the tactile-visual representations learned previously. The source code has
been released online with an open source license and it is readily available for any iCub robot
[46]. All the relevant data and scripts needed to reproduce the results shown are accessible at
the public repository [47].

Representation of “Space Around the Body”

We have chosen a distributed representation whereby each taxel learns a collection of probabil-
ities regarding the likelihood of being touched by a moving object. The physiology of the
observed neural RFs suggests that their extension in space is modulated by the speed of the
incoming stimulus. In addition, the relative position of the stimulus with respect to the recep-
tive field (RF) clearly determines the activation strength of a given neuron. Inspired by these
considerations we define a parameter space of two variables: (i) distance from the taxel D; (ii)
time to contact TTC. TTC s calculated from the distance D and velocity of the incoming stimu-
lus. Fig 1 illustrates the receptive field around one taxel of the forearm and the two main sce-
nario types: self-touch and an external object approaching toward the body. D and TTC can be
calculated in the reference frame of each taxel. Practically, this is possible because of the exist-
ing calibration procedure of the robot skin due to del Prete et al. [48] and a full model of the
robot’s kinematics derived from CAD data, including the head and eyes [49]—as detailed in
the Experimental Setup Section. For stimuli perceived visually, additional processing involving
stereo vision is required. In fact, any observation is mapped into the iCub Root FoR (located
around its waist) and subsequently transformed to the reference frames of individual taxels. It
is important to note that measurements are affected by parametric errors in addition to their
intrinsic measurement noise (the modeling errors are discussed in detail in Section Kinematic
model and coordinate transformations). The effect of modeling errors can be, for example, that
stimuli that are in physical contact with the skin can be perceived as seemingly penetrating the
robot surface when employing a sequence of coordinate transformations using the kinematic
model and current joint angle measurements. Subsequently, this results in a negative measure
of distance D with respect to the taxel surface normal. Conversely, if the errors bring about an
offset in the opposite direction, an actual contact on the robot’s skin may correspond to a per-
ceived positive distance. Our training data will be affected systematically by these errors which
reflect onh the estimated probability densities.

Fig 1. lllustration of the setup of different scenarios. (left) Receptive field above one of the left forearm taxels. (middle) iCub
double-touch behavior with a simplified schematic of the kinematics and joint angles. (right) An object approaching the left forearm.

doi:10.1371/journal.pone.0163713.9001
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Fig 2. Representation learned in single taxel model. D and TTC estimated from distance and velocity of the object. (Left) Full 3D
graph of the representation. The z-axis is given by the activation—estimate of the probability of object eventually landing on the taxel.
(Right) 2D projection; third dimension preserved in the color map.

doi:10.1371/journal.pone.0163713.9002

Learning in a single taxel model

The properties of the learning procedure as well as the proposed representation are investigated
in a single taxel model (as specified in Section Monte Carlo simulation of a single taxel). The
results from 500 iterations of the simulation—500 objects being “thrown” toward the taxel—
are illustrated in Fig 2. They show the representation of the “probability density” (it is not a
real probability density—see Section Internal representation) after learning and smoothing
using the adapted Parzen window method: the full landscape on the left and its projection in
2D with color coding (the probability of contact) on the right. A clear “ridge” can be seen in
both plots, which corresponds to the trajectories of objects as they approach the taxel and both
D and TTCare decreasing. The contact with the taxel occurs at both D and TTC equal to 0.

In a second simulation, in order to better approximate the experimental conditions encoun-
tered by the real robot, two additional features are added to the model. First, Gaussian noise is
added to the measurement of position and velocity (and hence D and TTC). Second, we
account for the fact that the object position and velocity measurements in the real robot are
subject not only to random, but also to systematic errors. In particular, in both tactile-motor
(double-touch) and tactile-visual scenarios, the coordinate transformations needed to map the
approaching object to the FoR of individual taxels rely on the model of the robot kinematic
structure and its visual system, which are subject to errors (see Section Kinematic model and
coordinate transformations). To clearly demonstrate the effect of this on the representation, we
introduce a significant systematic offset (~10cm) to the simulation. The results for this configu-
ration—noise and systematic error—can be seen in Fig 3. The Gaussian noise results in an
overall broader profile of the activation landscape. The offset can be clearly seen in the distance
axis, with the “ridge” of high activations cutting the x—axis in the negative domain.

PLOS ONE | DOI:10.1371/journal.pone.0163713 October 6, 2016 8/32
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Fig 3. Representation learned in single taxel model with noise and sy ic error (-10cm offset). See text for details.

doi:10.1371/journal.pone.0163713.9003

Learning in the real robot

The proposed method is then tested in a real-world setup where real, physical stimuli approach
the iCub’s skin. We investigate the learning of peripersonal space representations in three sce-
narios corresponding to the putative developmental milestones as discussed in the Introduc-
tion. Initially, learning involves exclusively tactile and motor signals (cf. Table 1) as induced by
self-touching behaviors (Section Tactile-motor learning: double-touch). In the second phase—
Section Tactile-visual learning from double-touch, visual information replaces motor informa-
tion about the “touching” arm (corresponding to Table 2). Finally, this approach is generalized
to any incoming external stimulus that contacts the skin (Table 3) in Section Tactile-visual
learning using external objects. An overall comparison of the representations learned in the dif-
ferent scenarios as well as an analysis of the learning process for two adjacent taxels is shown in
Section Interim discussion on learning in the real robot.

Table 5 provides a quantitative overview of the data sets collected in the three scenarios. In
every case, the skin parts involved are listed, along with the experimental time elapsed, number

Table 5. Learning in the real robot. Comparison between three experimental sessions performed on the iCub robot. For each session and each body part
under consideration, the elapsed time in minutes (ET), the number of trials (#T), and the total number of input samples (#S) are shown. See text for details.

Experiment Body Part
Left Forearm (internal) Left Forearm (external) Right Hand
ET[min] #T #S ET[min] #T #S ET[min] #T #S
Tactile-motor 31 82 3512 - — - - - -
Tactile-visual (double-touch) 30 45 1166 - - - - - -
Tactile-visual (ext. objects) 23 53 1886 17 34 1348 44 77 2833

doi:10.1371/journal.pone.0163713.t005
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of trials (i.e. the number of independent stimuli nearing the robot’s skin), and total number of
samples (an average of 37 samples per trial were recorded). The movements were directed
toward the internal part of the left forearm in all the scenarios—this skin region facilitates the
self-touch behavior in the robot—with the same 8 taxels subject to learning. In addition, to
demonstrate the generality of the approach, the outer part of the left forearm (4 taxels) as well
as the right hand (skin on the palm, 4 taxels) were targeted in the tactile-visual scenario with
external objects.

It is worth noting that the data collection and learning process was fast (summing up to 142
minutes for all the experiments reported together). In fact, even a single positive (i.e. touch of
the skin) trial gives rise to a usable representation (cf. Section Interim discussion on learning in
the real robot below). This is considered a significant merit of the proposed approach, since the
algorithm can be used on-line and in real-time without an a priori batch learning session: the
peripersonal space representations immediately provide prior-to-contact activations and are
then refined over time. The smoothing approach used (Parzen window applied to the discrete
domain) is specifically responsible for this in the context of undersampled spaces.

Tactile-motor learning: double-touch

The first experiment on the real robot deals with the developmental milestone described in
Table 1—“bare” or “blind” double-touch. In this experiment, we used the controller developed
in Roncone et al. [18]. The robot is stimulated by touching it on the forearm; see Fig 1 (middle)
for a schematic illustration. A modified inverse kinematics solver and controller finds a solu-
tion whereby the contralateral fingertip touches the stimulated taxel, and commands both
arms to the respective pose (note that the taxel eventually touched by the robot may differ from
the one that was initially stimulated because of the systematic errors). Importantly, the robot
configuration may differ at each trial, depending on the inverse kinematics solution found by
the solver. After the double-touch event, a buffer is used for data collection and learning as
explained in Section Data collection for learning. That is, the kinematic model and the joints
configuration at every time step are used to convert the position of the tip of the index finger
(the approaching body part) to the FoRs of the taxels on the approached and eventually
touched part. Unfortunately, only a subset of the skin is physically reachable by the robot—
some configurations are kinematically not feasible or unsafe. Therefore, for our experiments,
we selected eight taxels (as explained in Section Artificial skin) on the inner part of the forearm
for which the double-touch behavior was triggered. These eight taxels updated their represen-
tations in parallel using the distance and expected time to contact as the contralateral finger
was approaching. As detailed in Table 5, there were 82 successful double-touch trials, with a
total of 3512 training samples. That is, there were 82 trajectories sampled at T' = 50ms that
resulted in a contact with the selected area of the skin. From the eight taxels considered, only
six were actually touched at least once by the contralateral index finger. In all of them, the
results after learning were qualitatively similar and matched the predictions of our model. The
results for one of the taxels with the largest number of training samples (taxel nr. 2; 1625 sam-
ples) are shown in Fig 4 and, in fact, they demonstrate learning of a tactile-motor margin of
safety: i.e. prediction of self-collisions in the absence of visual input. No offset in the position is
reflected in the learned representation, indicating that the model of the kinematic loop con-
necting the two arms was reasonably accurate.

Tactile-visual learning

With respect to visual learning, two experiments were performed: (i) the double-touch scenario
was repeated, but in this case, utilizing visual input rather than the “motor” information of the
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Fig 4. Tactile-motor representation learned in the double-touch scenario. Results for taxel nr. 2 on the inner part of the left
forearm. See text for details.

doi:10.1371/journal.pone.0163713.9004

moving arm (corresponding to the milestone in Table 2); and (ii) independently moving
objects nearing the robot’s body were used (Table 3). In both cases, the stimulus (robot finger-
tip or the moving object) was detected, tracked and its trajectory prior to contact recorded. The
position and velocity of the stimulus was extracted and remapped first into the iCub Root FoR
and eventually into the FoR of individual taxels, yielding the [D, TTC] pairs used for learning
the representation of nearby space in the corresponding taxels.

Tactile-visual learning from double-touch. For this variant of the scenario—double-
touch with the moving finger perceived visually—we added a small colored marker to the fin-
gertip that was commanded to execute the double-touch movement. The method to extract the
finger’s coordinates is described in Section Visual processing and gaze control—“Tracking of
fingertip with colored marker”. The learning procedure was exactly the same as in the double-
touch scenario described earlier. We performed 45 trials. The results show a similar pattern to
the previous case; the same taxel (nr. 2; 376 samples) on the inner forearm is selected for illus-
tration in Fig 5.

Tactile-visual learning using external objects. This case is a generalization of the double-
touch experiments whereby the stimuli are generated by visually perceiving an approaching
object that eventually touches the body surface. In this session, tactile-visual trials are carried
out by a human experimenter that manually approaches the robot’s skin with a series of
objects. The visual processing pipeline is explained in Section Visual processing and gaze con-
trol—“Tracking of generic objects”. This setup was validated using two objects, a cube and a
small ball (see Fig 6), approaching the taxels on the robot’s body. Importantly, we were no lon-
ger limited to parts of the skin that can be activated in the self-touch configurations. We have
extended learning to the outer part of the left forearm as well as palm of the right hand.

On the inner part of the left forearm, the same eight taxels of the previous scenarios were
considered. Additionally, four taxels on the outer part of the forearm and four taxels of the
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Fig 5. Tactile-visual representation learned in double-touch scenario. Results for taxel nr. 2 on the inner part of the left forearm.
See text for details.

doi:10.1371/journal.pone.0163713.9005

right palm were also stimulated. We conducted a total of 53 trials for the inner part of the left
forearm (events from both objects together), 34 trials for the outer part of the forearm, and 77
trials for the right hand. The results are shown in Fig 7 with the inner part of the left forearm
on the left (627 samples, taxel nr. 2), the outer part in the center (451 samples; taxel nr. 8), and
right hand on the right (944 samples; taxel nr. 2).

Fig 6. Objects approaching right palm. (Left) Cube. (Right) Small ball.

doi:10.1371/journal.pone.0163713.9006
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Fig 7. Tactile-visual representation learned from oncoming objects. (Left) Inner part of left forearm (taxel nr. 2). (Middle) Outer part
of left forearm (taxel nr. 8). (Right) Right hand (taxel nr. 2). See text for details.

doi:10.1371/journal.pone.0163713.9007

Interim discussion on learning in the real robot

Comparison of representations learned in different scenarios. The experimental results
detailed in the previous sections show comparatively similar outcomes for the representations
learned on the same taxel (taxel nr. 2 of the internal part of the left forearm) subject to the dif-
ferent experimental conditions (tactile-motor, tactile-visual with double-touch and tactile-
visual with external objects). However, there are some differences that are worth mentioning.
Specifically, the representation learned in the tactile-motor scenario (Fig 4) shows a “crisper”
landscape, which becomes progressively less defined in the subsequent sessions (Figs 5 and 7).
This result is expected: as we demonstrated in Section Learning in a single taxel model, an
increase of the noise in the input signal as well as in the variability of the stimulation results in
a broader profile of the activation landscape (see Figs 2 vs. 3). The double-touch (tactile-
motor) scenario is a highly controlled setup in which the robot performs a number of similar
trials with similar velocity profiles, using an inverse kinematics solver and controller. By reduc-
ing reliance on the kinematics, and progressively depending on an intrinsically noisy sensory
system (i.e. the visual system), the contribution of noise becomes more prominent. Further,
training trials for the tactile-visual learning with external objects are performed by a human
experimenter, with little control on the type of trajectories that are presented to the robot,
resulting in a broader landscape of the probability function.

Comparison of representations learned by different body parts. In the Tactile-visual
learning using external objects scenario, three different skin parts were subject to training:
internal and external part of the left forearm, and the right hand (palm). Representations
learned around selected taxels were shown in Fig 7. Here we look at aggregate statistics of all
the taxels for each of the skin parts. We postulate that a significant component of the system-
atic error pertaining to a taxel is skin part specific and can be mainly attributed to the position
on the kinematic chain (e.g. forearm vs. hand) and the mounting of individual skin patches
(see Experimental Setup). In order to validate this hypothesis, we extrapolate the systematic
offset of the ten virtual taxels that were stimulated during the experimental session and analyze
the overall trend between different body parts. To this end, we performed a weighted orthogo-
nal 2D least-squares regression, with [x, y] coordinates given by [D, TTC], and weights equal to
the learned representation at each of the pairs (i.e. the contact probability, AD;, TTC)), see Eq 3
under Internal representation). A weighted 2D regression applied to the 3D landscape reduces
the dimensionality of the input space, and lets us evaluate at which distance D the regression
line crosses the x—axis (i.e. TTC = 0)—giving the offset pertaining to the position of the particu-
lar taxel. Results are depicted in Fig 8: most of the taxels show an overall error between 1cm
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Fig 8. Systematic offsets computed during tactile-visual learning using external objects. The distance offset in the learned
representation of ten taxels (three on the inner part of the left forearm, FAL; three on the outer part, FAL,; four in the right palm, PR) is
depicted in red. For each of the three body parts under consideration, average offset and standard deviation are depicted in blue.

doi:10.1371/journal.pone.0163713.9008

and 3cm, with an average error of 2.11cm and 1.73cm for the inner and outer part of the left
forearm respectively, and 1.16cm for the right palm. The results suggest that the systematic
errors depend on the specific skin part the taxels belongs to, even though additional “intra-
skin-part” variance is present. Importantly, the learned representations automatically compen-
sate for these errors as will be demonstrated later.

Analysis of the learning progress. As mentioned in Section Learning in the real robot,
one of the features of the model is the ability of each taxel to learn a usable representation very
quickly, from a few training samples. This is a direct consequence of the smoothing approach
(Parzen windows applied to the discrete representation) for undersampled spaces. To illustrate
this, in Fig 9 we show the evolution of the representations belonging to two neighboring taxels
in the internal part of the left forearm during tactile-visual learning with external objects. Start-
ing from a blank state for both taxels, we depict the representation after the same “positive”
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Fig 9. Evolution of the learning process. The progress of the learned representations belonging to two

adjacent taxels of the internal part of the left forearm is shown. For each of the two taxels (taxel nr. 3 on the

left column and taxel nr. 4 on the right column), snapshots of their respective representations after 1, 4 and 53
trials are depicted. See text for details.

doi:10.1371/journal.pone.0163713.9009

example (i.e. the nearing object contacted both taxels), after 4 examples (combination of posi-
tive and negative trials), and after the full training of 53 examples.

The results show how the same input trial (approaching stimulus) affects each taxel differ-
ently, because it gets projected on each taxel’s FoR in a slightly different manner. After the first
trial, there is a clear bias toward the only experience the taxels had (the lack of negative
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examples practically translates into maximal certainty of collision prediction for some parts of
the input space). Nonetheless, although the representations are far from being comparable to
their respective final versions, even with a single (positive) example they can be already used
for a coarse estimation of the probability of being touched by future incoming objects. Finally,
after the full training session, the respective landscapes of the two adjacent taxels show similari-
ties in both their shapes and offsets. Yet, taxel nr. 4 exhibits stronger responses over its land-
scape, which is a consequence of the fact that taxel nr. 3 is positioned closer to the robot’s wrist
and it is thus less likely to be contacted and to experience positive trials. This illustrates the
effect of the individual taxel’s training on the learned representation, which is further shaped
by the embodiment—the taxel’s physical placement in this case.

Exploitation of the learned associations

The learned representation is validated during an avoidance/reaching experimental session,
corresponding to the last milestone: exploitation of learned associations (Table 4). The robot
uses the acquired model in order to either avoid or come into contact with an incoming stimu-
lus with any of the skin parts that have a peripersonal RE Similarly to the learning stage, exper-
iments are conducted by presenting the robot with a series of stimuli. An approaching object
thus triggers the activation of each taxel given by the taxel’s previous “experience” with similar
stimuli (in terms of [D, TTC]). Consequently, this gives rise to a distribution of activations per-
taining to the skin surface. It is important to note the following: i) the iCub built up a PPS
representation based on stimuli that are directed toward the skin; ii) in order to test these rep-
resentations, we exploit a similar scenario, in which the robot has to either move away from or
reach for approaching objects. Static objects (or objects that are moving away from the robot)
do not trigger a response from the PPS representation and hence do not generate any move-
ment, which is desirable and in accordance with neurophysiological data on approaching vs.
receding stimuli (see e.g., Graziano and Cooke [2]).

The iCub is presented with an unknown object that was not used in the learning stage (a
pink octopus). It is used by the experimenter to perform a series of approaching behaviors
toward the robot’s body parts that had previously learned their representations (left forearm
and right hand). The visual processing pipeline used was identical to the learning stage (see
Section Visual processing and gaze control). However, here, the taxels’ activations are exploited
by the robot to either avoid or “reach for” the approaching object with any of the body parts
used during learning. Only taxels with activation above a certain threshold contributed to the
resulting movement vector that was eventually executed by the controller. The threshold was
empirically set to 0.4, corresponding to a 40% chance of that taxel being contacted by the near-
ing object (according to the learned model). In order to achieve the desired behavior, we imple-
mented a velocity controller that can move any point of either the left or right kinematic chain
of the arms in a desired direction. During an avoidance task, the movement is directed away
from the point of maximum activation, along the normal to the local surface in that point. For
“reaching’, the desired movement vector has the opposite direction. The setup of the control-
lers is described in Section Avoidance and reaching controller.

Margin of safety: Avoidance behavior demonstration. To demonstrate the performance
of the avoidance behavior, we conducted an experimental session of roughly 20 min. in dura-
tion where we performed a series of approaching movements with a previously unseen object,
the octopus toy, alternating between the body parts and varying the approaching direction.
Avoidance behavior was successfully triggered in all cases. A snapshot illustrating typical
behavior in a 15s window for the left forearm (Fig 10 left) and a 20s window for the right palm
(Fig 10 right) is shown—with two approaching events in each plot. In total, nine taxels of the
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Fig 10. Avoidance demonstration. (Left) Object approaching the inner part of left forearm. Nine taxels of the left forearm (six on the
inner part, FAL;1: 6; FAL;stands for forearm left internal; three on the outer part, FAL, 1: 3) were considered in the experiment. Top plot
shows the distance of the object from the taxels in their individual FoRs. The shaded purple area marks the velocity of the body part
(common to all taxels; maximum activation corresponding to 10cm/s). Bottom plot depicts the activations of the forearm taxels’ PPS
representations. (Right) Object approaching the right palm. There were three taxels considered (PR 1: 3, where PR stands for “palm

right”).

doi:10.1371/journal.pone.0163713.9010

left forearm (six on the inner part; three on the outer part) and three taxels of the right palm
were considered. The top plots show the distance of the approaching object from the individual
taxels (in their respective FoRs). The bottom plots show the activations of the learned represen-
tations for each taxel (note that this representation uses a two-dimensional domain of [D,
TTC]; however, to demonstrate the behavioral performance, we restrict ourselves to showing
distance only in the upper plot). As the object comes closer, there is an onset of activation in
the “most threatened” taxels. Once the activation level exceeds a predefined threshold (0.4 in
this case—horizontal line in the bottom panels), the avoidance behavior is triggered. This is
illustrated in the top plots with the shaded purple area that marks the velocity of the body part
as a result of the avoidance controller command. The first taxel responding is highlighted in
the corresponding upper and lower plots. The upper plots clearly demonstrate that the avoid-
ance behavior was effective: a safety margin has always been preserved. Qualitatively similar
behavior was observed during the whole experimental session. The controller takes advantage
of the distributed representation pertaining to individual taxels, averaging the expected contact
locus as well as its likelihood. This loosely resembles the way noisy information is averaged in
neural population coding schemes (e.g., [50]).

“Reaching” with arbitrary body parts. In a similar fashion, we tested the “reaching” con-
troller in a session of approximately 10 min. in duration. Note that this is “reaching” not in a
traditional sense of reaching with the end-effector—the hand. Instead, the particular skin area
most likely to collide with the stimulus will be recruited to “reach” or “catch” it. A snapshot
illustrating the performance while approaching the inner part of left forearm is shown in Fig
11. The graphical illustration is the same as in the avoidance case. The spatial representations
pertaining to the taxels get activated (bottom plot) and trigger the movement, which in this
case is approaching the object. In addition, the bottom plot illustrates the physical skin
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Fig 11. Reaching with arbitrary body parts demonstration. Object approaching the inner part of left forearm. Nine taxels of the left
forearm (six on the inner part; three on the outer part) were considered in this experiment. Top plot shows the distance of the object from
the taxels in their FoRs. The shaded purple area marks the velocity of the body part due to the activation of the controller. The bottom
plot depicts the activations of the forearm taxels’ representations. The green shaded area marks physical contact with the robot’s skin—
aggregated activation of all tactile sensors contacted on the body part.

doi:10.1371/journal.pone.0163713.9011

activation (green shaded area). Importantly, contact is generated in both cases as the skin acti-
vation testifies. The fact that the distance is greater than zero in the first event can be attributed
either to errors in the visual perception or to an offset in the kinematic transformations.

Joint space and operational space range. During tactile-motor and tactile-visual training
using “double-touch”, the robot controls both arms to satisfy the self-touch constraint, thus
automatically attaining different—even if somewhat stereotypical—arm configurations. Con-
versely, the tactile-visual learning using external objects was performed in a static configura-
tion—the robot is passively waiting for external objects to contact the skin. Nonetheless,
exactly the same software is used in all cases, since it automatically handles any configuration.
The robustness of our approach to different arm configurations is even more evident in the
subsequent exploitation of the learned associations, which involved the richest repertoire of
configurations. The movement response is always different, depending on where the object is
coming from and which portion of the peripersonal space representation is activated the most.
To illustrate the range of different configurations, we have extracted in Table 6 the extremes
reached by individual degrees of freedom (DoFs). It is evident how most of the joints actively
involved in the movements (the shoulder joints and the elbow) have spanned a large portion of
their range, with some of them even covering all of their operational range. In addition, we
quantified the range of the end-effectors in the operational space (see Table 7, with further
details provided in S1 Fig). For safety reasons, the range of the end-effectors during the experi-
ment was artificially restricted to be confined to a sphere of radius 0.2 m around the home posi-
tion. Also, note that the data was recorded only while the peripersonal space representation
was active—i.e. while activations were exceeding a threshold. In summary, this demonstrates
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Table 6. Range of arm DoFs during avoidance and reaching. Each of the 7 DoFs that belong to the left and right arms are depicted: 3 DoFs for the shoul-
der (so, S1, S2), one elbow joint (eo) and three joints pertaining to the wrist (wo, w4, W,). For each joint, its minimum and maximum angles are shown, along
with its range. Joints s, and e of the left arm, as well as joint s, of the right arm, reached their full physical limits during the experiments. Wrist joints did not
contribute to either the avoidance or the reaching behaviors.

Left Arm [deg]
So Sq A € Wo Wy Wy
Min -65.0 19.5 -39.2 16.3 -0.88 -0.015 -0.025
Max 71 64.2 80.1 106.0 1.38 0.064 0.063
Range 721 447 119.9 89.7 2.26 0.079 0.088
Right Arm [deg]
So Sq So €o Wo W1 A
Min -61.7 18.6 -37.8 15.5 -1.57 -0.079 -0.085
Max 7.9 45.5 80.7 80.5 0.86 0.111 0.159
Range 69.5 26.8 118.5 65.0 2.43 0.190 0.244

doi:10.1371/journal.pone.0163713.t006

that the representations learned were robustly activated in a wide range of joint configurations
and end-effector positions.

Comparison with model without TTC information. In this section, we compare the pro-
posed approach with our previous work [45]. In particular, in this work we benefit from a
richer representation because of the introduction of the time-to-contact (TTC) dimension.
Although this results in a more complex model and the need to increase the number of training
samples in order to converge to a stable representation, we believe that the information carried
out by the TTC is crucial in the construction of a model of nearby space that is meaningful and
effective in a real world scenario. Specifically, by including dynamic information about the
speed of the approaching object, the proposed model can easily distinguish which objects pose
an immediate threat to the body. To make a practical example, the TTC of a close but static
object would be infinite, whereas it would be negative for an object that is moving away from
the skin; in both cases, such objects would be easily discarded because they would not fall
within the boundaries of our representation, which considers objects with a TTC included in
the range [0; 3s]. The exploitation of this feature can be demonstrated by comparing the avoid-
ance and “reaching” controllers in this work and [45]. Without loss of generality, in the follow-
ing we compare only the avoidance behaviors, although similar conclusions can be drawn by
analyzing the “reaching” with arbitrary body parts controllers. Fig 10 shows how the taxel of
interest is activated only when the object is approaching it, i.e. when its distance decreases over
time. When the object is moved away by the experimenter (approximately at t = 64s and
t=71s in Fig 10 left), the taxels become silent and the avoidance behavior stops. A comparison
with previous work—see S2 Fig—, instead, shows how this is not the case if only the distance is

Table 7. End-effector extremes in operational space during avoidance and reaching. For both the left and right end-effectors, the minimum and maxi-
mum values reached in the x-, y— and z- axis are shown, along with its range of operation. For safety reasons, the operational space of the robot was con-
strained within a sphere centered in the resting position (set to [-0.30, —0.20, +0.05] m for the left arm and [-0.30, +0.20, +0.05] m for the right arm—in iCub
Root FoR) and with radius equal to 0.2 m. Please refer to S1 Fig for a depiction of the robot’s kinematics during the avoidance and reaching scenario.

Left End-Effector [m] Right End-Effector [m]
X y z X y z
Min -0.34 -0.39 -0.06 Min -0.34 0.06 -0.03
Max -0.18 0.00 0.15 Max -0.19 0.36 0.10
Range 0.15 0.40 0.22 Range 0.15 0.29 0.13

doi:10.1371/journal.pone.0163713.t007
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taken into account: the taxels’ activation fades completely only if the object moves away enough
to fall out of the receptive field, i.e. farther than 20cm from the skin.

Discussion and Conclusion

In this paper, to the best of our knowledge, we presented the first robot that learns a distributed
representation of the space around its body by exploiting a whole-body artificial skin and either
self or environment physical contact. More specifically, each tactile element has been associated
to a spatial receptive field extending in the 3D space around the skin surface. Stimuli in the
form of motor or visual events are detected and recorded. If they eventually result in physical
contact with the skin, the taxels update their representation tracing back in time the approach-
ing stimulus and increasing the quality of the internal probability estimate—in terms of dis-
tance and time to contact—that is, an estimation of the likelihood that the stimulus eventually
touches any given body part. The spatial RF around each taxel is constructed and updated as
the limbs move in space by combining the joint angles and knowledge of the robot’s kinemat-
ics; however, its representation is adapted from experience, thus automatically compensating
for errors in the model as well as incorporating the statistical properties of the approaching sti-
muli. This representation naturally serves the purpose of predicting contacts with any part of
the body of the robot, which is of clear behavioral relevance. Furthermore, we implemented an
avoidance controller whose activation is triggered by this representation, thus endowing the
iCub with a “margin of safety”. Finally, simply reversing the sign of the controller results in a
“reaching” behavior toward approaching objects, using the closest body part.

One important feature of the proposed method is its invariance with respect to the robot
configuration (posture) and the input modality used. Capitalizing on the robot’s kinematic
model, current stimulus positions are automatically remapped into every taxel’s FoR, taking
also every taxel’s current pose (position and orientation) into account. In the double-touch sce-
nario, both the “receiving” arm with the taxel array and the “touching” arm with the extended
finger (the nearing stimulus) move, which, however, does not pose any difficulty for our
method. Furthermore, our model is agnostic as to whether the stimulus was perceived motori-
cally or visually. In the last scenario with external approaching objects, the arm configuration
was static during learning, but the head and eyes were moving. Nevertheless, a moving arm
would again be automatically considered using exactly the same computation. This is also dem-
onstrated in the avoidance / “reaching” scenarios, where the arm moves, but the stimulus’ effect
on the taxels is constantly evaluated, resulting in online adaptation of the robot response.

Another important asset of the proposed model is that learning is fast, proceeds in parallel
for the whole body, and is incremental. That is, minutes of experience with objects moving
toward a body part produce a reasonable representation in the corresponding taxels that is
manifested in the predictive prior to contact activations as well as in the avoidance behavior.
Smoothing using Parzen windows applied to the discrete representation specifically contributes
to this effect in the case of undersampled input spaces.

The investigated scenarios parallel those experienced by humans and animals—also because
of the anthropomimetic nature of the iCub—and should thus inform us directly about the
mechanisms of peripersonal space representations in primates as they have been subject of
intensive investigations in cognitive psychology as well as the neurosciences over decades.
First, the developmental trajectoryleading to the acquisition of these representations is largely
unknown. The development of reaching (e.g., [51, 52]) may constitute one key factor in this
mechanism; the exploration of own body may be another (e.g., [11, 17]). In this paper, we
mimicked a similar developmental trajectory by considering first the self-touch behaviors and
adding encounters with objects later on.
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The architecture presented is, at this stage, not a model of a particular brain network. Cast-
ing it into the vocabulary common in the neurosciences, one could say that the representation
associated with every taxel may correspond to a spatial receptive field of a neuron that is cen-
tered on that particular taxel (hence body-part centered coordinates). The RF has a fundamen-
tally spatial nature; further, it is modality-independent—as we demonstrated by entering it and
eliciting its “neural” response with motor/proprioceptive as well as visual targets. However,
note that this “neuron” does not have a tactile RF—tactile sensations were used in the learning/
adaptation of this RF only. However, it would be easy to extend our representation by con-
structing a bimodal visuo-tactile or, more precisely, tactile-spatial neuron whose activation
would be the sum of the “spatial” and tactile inputs. The reference frame transformations are
in our case mediated by the kinematic model of the robot and use the iCub Root FoR as com-
mon ground connecting all kinematic and visual chains. This is unlikely to correspond to the
exact mechanism used by the brain; however, bimodal neurons with tactile RFs on a body part
and visually RFs around it and anchored to it—following it in space independently of eye posi-
tion—have been identified both in premotor areas (F4) (e.g., [53] for a survey) and parietal
areas (VIP and other—e.g., [23]). Our position is similar to [29], for example, assuming that
the necessary coordinate transformations (from visual or proprioceptive input to body-part
centered coordinates) are performed by an upstream process. Our model then receives this as
input. Several common reference frames (e.g., eye-centered [54]) have been proposed to act in
the posterior parietal cortex. In summary, the architecture presented is a first implementation
that supports the relevant behaviors. However, since the scenarios as well as the sensory modal-
ities available to the robot parallel the conditions in biology (at a certain level of abstraction),
the road is open to further grounding of the architecture to the corresponding putative brain
mechanisms.

One possible practical limitation of the presented architecture is its computational and
memory requirements. The distributed and parallel nature of the representation has many
advantages. At the same time, the complexity grows linearly with the number of taxels—each
of them monitoring its spatial receptive field and, possibly, updating its probabilistic represen-
tation. However, this is clearly in line with the nature of brain computation. Furthermore, the
spatial resolution we have selected (with taxels of around 2cm in diameter on the skin surface)
is likely unnecessarily high—the body-part-centered receptive fields of parietal cortex neurons
are typically much larger (e.g. spanning a whole upper arm [5]). Also, lower resolution may
still suffice to support the margin of safety behavior. Such a modification would be straightfor-
ward in our setup, requiring only a redefinition of the virtual taxels.

The “demonstrators”—avoid ance and “reaching”—are also only first steps in this direction.
They are simply exploiting fairly standard controllers to generate movements of a virtual point
that is a result of voting of taxels activated by a moving object. Avoidance differs from reaching
in the direction of this movement vector only. This could be further differentiated and devel-
oped, leading to simple reflexive as well as complex whole-body avoidance mechanisms such
as those reported in monkeys [2]; an implementation in the iCub relying on force/torque feed-
back has been presented in [41]. Finally, “reaching” here is a simple mechanism that results in
approaching to a nearing object with the skin part that was most likely to be contacted by the
object. Yet, this resembles the principle of motor equivalence, where the controller in fact can
generate reaching movements using arbitrary body parts as end-point.

Future work can proceed along several directions. First, the architecture can be refined and
better grounded in concrete mechanisms that are assumed to operate in the primate brain,
leading to a better explanation of why certain connectivity patterns including polymodal neu-
rons are a necessity and not only the result of the quirks of evolution. This would provide an
invaluable tool to test biological theories and crucially advance the computational modeling
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efforts. Second, the full kinematic model of the robot that was taken for granted here could be
dropped and the learning problem expanded to full complexity dealing with the emergence of
spatial representations from motor, proprioceptive, tactile and visual inputs. The double-touch
scenario could in fact serve this very purpose of body schema learning; the self-calibration
framework of [18] could be adapted and the Denavit-Hartenberg representation of kinematics
and the inverse kinematics solver replaced by more biologically motivated analogs. Third, the
margin of safety in primates does not have uniform extension and resolution; instead, body
parts, in particular face and hands, receive more attention than others. This could be emulated
in the robot as well. Fourth, the model proposed in this work could be further developed to
address the expansion of the RFs after tool use as first documented by [34] and modeled by
[33] in a humanoid robot. Fifth, the architecture proposed is prone to impact on practical
applications. Whole-body tactile sensing together with a virtual margin of safety around the
robots body dramatically increases the robot’s own safety as well as safety of humans that
share the environment with the robot. The proposed implementation will have to be tested in
such scenarios and possibly enhanced also by force/torque sensing that is already available on
the iCub to guarantee robustness in all situations. Finally, with the advent of robotic skin tech-
nologies (see [39] for a review), frameworks similar to this one can find applications in diverse
robotic platforms and are by no means restricted to the iCub humanoid robot (or to human-
oids altogether).

Materials and Methods
Experimental Setup

The iCub is a full humanoid robot platform originally developed to support research in artifi-
cial cognitive systems. In this section we describe the key components relevant for this work:
the artificial skin, the robot’s sensing modalities, the eye and camera setup, the model of the
robot’s kinematics, visual processing and gaze control, and finally the avoidance and reaching
controller used in the experiments. For details on the basic structure of the iCub we refer the
reader to [55].

Artificial skin. Recently the iCub has been equipped with an artificial pressure-sensitive
skin covering most body parts [26]. The latest iCub version contains approximately 4000 tactile
elements (taxels)—in the fingers, palms, forearms and upper arms, torso, legs and feet. In the
experiments performed in this work, we restrict ourselves to the forearms and palms. The iCub
forearm and hand with exposed skin is shown in Fig 12 left. With the exception of the palm
and fingertips, the skin covering all body parts consists of patches with triangular modules of
10 taxels each (Fig 12 middle). There are in total 23 modules on the forearm in two patches
and hence 230 taxels. However, for the purposes of this study this resolution would be an
unnecessary burden. Therefore, we generate RFs grouping all responses in a triangular module
in a single “virtual” taxel whose position in the body surface corresponds to the central physical
taxel.

The palm has a slightly different structure corresponding approximately to four triangles
(see Fig 12 right). It is made out of a single printed circuit board composed of an array of 43
taxels. We artificially split the array into four regions of 8 to 10 taxels, forming virtual taxels as
before. These are shown in Fig 12 (right), with the central taxels marked with full circles. The
region enclosed between the thumb and the fingers is not considered as it is unlikely that it is
touched by a moving object. In the main article, we use “taxel” to refer to this virtual taxel.

A spatial calibration of the skin of the forearm with respect to the iCub kinematic model has
been performed in del Prete et al. [48]. The palm was calibrated using data from the CAD
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Fig 12. Pressure-sensitive skin of the iCub. (left) iCub forearm with exposed skin patches. (middle) Four triangular modules of the
iCub skin PCB (10 taxels each). The central taxel corresponds to the virtual taxel which in turn is made by joining the responses of a full
triangle. (right) Exposed skin of the palm with virtual taxels highlighted.

doi:10.1371/journal.pone.0163713.9012

model. The position of all taxels as well as the orientation of their surface normal in the iCub
Root FoR can thus be extracted if the current joint configuration is known.

Joint angle sensing. Proprioceptive inputs in the iCub simply consist in angular position
measurements at every joint. For most joints, they are provided by absolute 12bit angular
encoders (see [55] for details); small motors (head and hands) employ incremental encoders
whose zeros are calibrated at startup.

Head and eyes. Vision of the iCub is provided by two cameras mounted in the robot’s
eyes. The neck of the robot has three degrees of freedom (DoFs) and there are three additional
DoFs in the eyes allowing vergence and version behaviors. The tilt DoF is mechanically coupled
(both eyes move up and down); the version and vergence movements are coupled in software
following an anthropomimetic arrangement. With appropriate calibration [56], depth infor-
mation can be extracted from binocular disparity.

Kinematic model and coordinate transformations. The iCub sensors provide raw data in
different FoRs. These need to be transformed in order to compare similar quantities. In pri-
mates, the role of establishing a common ground between these rich but diverse sources of
information is attributed to the body and peripersonal space representations. As we described
in Section Introduction, coordinate transformations (such as between eye-centered and body-
part-centered FoRs) are necessary. In our case, we specifically need two types of
transformations:

o Purely kinematic transformations. For the first scenario where the robot learns about the
space around its body through double-touch (cf. Table 1), the “touching” body part (like the
index finger of the right hand—Fig 1 middle) need to be brought to the FoR of the taxels that
are “touched” (like the skin on the left forearm).

o Visual-kinematic transformations. In the second scenario, vision is considered. There are two
variants of the experiment: i) double-touch with visual tracking of the finger approaching the
contralateral arm (see Table 2); ii) an independently moving object approaching and touch-
ing the robot’s skin (cf. Table 3). In both cases, transformations from the image (retina) FoR
are necessary. This involves exploiting binocular disparity to obtain a 3D position of the
object (or finger) in the head FoR and then following a sequence of coordinate transforma-
tions to eventually reach the FoR of individual taxels.
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Optical Particle Filter Stereo Kalman

Flow (2D) Tracker (2D) Vision (3D) Filter (3D)

Fig 13. Tracking of generic objects. See text for details.
doi:10.1371/journal.pone.0163713.9013

Learning these transformations was not the goal of this work; therefore, we have employed
the existing kinematic model of the iCub that is based on the Denavit-Hartenberg convention
and available in the form of a software library (iKin, [57]). The library allows traversing any
kinematic chain of the iCub by employing an appropriate sequence of transformations. In
fact, kinematic representations of individual chains in iKin start/end in the Root FoR of
the robot (around the robot’s waist) and this is employed as an intermediary to connect indi-
vidual sub-chains. The transformation to individual taxels’ FoRs is provided by the skin
calibration.

These composite transformations are subject to errors that include (i) mismatch between
the robot model based on the mechanical design specifications (CAD model) and the actual
physical robot; (ii) inaccuracies in joint sensor calibration and measurements; (iii) unob-
served variables as for example backlash or mechanical elasticity; (iv) inaccuracies in taxel
pose calibration; (v) errors in visual perception due to inaccurate camera calibration. The
combination of these sources of error can amount to a total of several centimeters. However,
in the proposed approach, the representation that every taxel learns with regard to its sur-
rounding environment will automatically compensate for the systematic component of these
modeling errors.

Visual processing and gaze control. For the scenarios involving tactile-visual learning
(described in Tables 2 and 3), additional processing steps are needed to compute the approach-
ing stimuli’s position and velocity: moving objects need to be detected, segmented out of the
background and their position tracked. We implemented two variants of the tracking
mechanism:

1. Tracking of fingertip with colored marker. In this case, we implemented an HSV-based
color segmentation module that can track a green marker placed on the iCub’s index finger-
tip on both the right and left image. A simple triangulation procedure yields the 3D coordi-
nates of the fingertip in the robot’s Root FoR.

2. Tracking of generic objects. In this second case, we used a tracker for generic objects under
certain moderate assumptions on the availability of visual features and limits on their veloc-
ity and size, as developed in Roncone et al. [45]. The tracking software consists of a number
of interconnected modules, schematically depicted in Fig 13. The first module uses a 2D
Optical Flow [58] to detect motion in the image. If this is the case, it triggers a 2D particle
filter module [59] to track the object in the image plane based on its color distribution. At
this stage, the 2D planar information related to the approaching object (namely, the cen-
troid of the object and an estimation of its size) is converted into 3D (world) coordinates via
a stereo disparity module [60]. A Kalman filter then completes the position estimation pro-
cess. It uses 3D points as determined by the stereo vision module and it employs a fourth
order dynamical model of the object motion. Finally, a gaze controller was employed in
order for the eyes and head to smoothly follow the tracked object in space. The details of the
gaze controller can be found in [20].
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Data collection for learning

As outlined above, two distinct scenarios were considered where a given skin patch was stimu-
lated by the robot’s own body (double-touch) or by independently moving objects. However,
the basic principle is the same, that is, in both cases it is implemented in a local, distributed,
event-driven manner. An illustration of the two cases is depicted in Fig 1 (middle and right). A
volume was chosen to demarcate a spatial “receptive field” (RF) around each taxel (we will use
this notion of receptive field for the scenario in the robot from now on). Similarly to what hap-
pens in humans and monkeys, these receptive fields distributed around the body are anchored
to the body part they belong to and encode local information. However, unlike in biology
where receptive fields of individual neurons are tied to a particular sensory modality and
response properties of the neuron, our receptive field is a theoretical construct—a volume of
space around the taxel. In what follows, any stimulus moving toward the robot’s body—note
that this can be either another part of the body of the robot or an external visual stimulus—will
be remapped into the taxel’s reference frame and thus potentially enter its receptive field. The
RFs are limited to a conical volume oriented along the normal to the local skin surface and
extend to a maximum of 20cm from the surface (green region in Fig 14). This is consistent

Z

Taxel

Fig 14. Receptive field of a taxel and approaching stimulus. See text for details.
doi:10.1371/journal.pone.0163713.9014
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with neurophysiological observations [2]. When a stimulus enters the conical volume of a RE,
we mark the onset of a potentially interesting event. Subsequently, the position and velocity of
the object w.r.t the taxel is recorded and the distance D and time to contact TTC computed.
The scalar distance, D, is calculated as follows:

D= sgn(d -2)|d]| , (1)

where d is the displacement vector pointing from the taxel to the stimulus (geometric center of
the incoming object), Z is the z-axis of the reference frame centered on the taxel and pointing
outward (coincident with the normal to the skin surface at the taxel position). The sign of the
dot product is positive if the object lies in the hemisphere extending from the taxel. The scalar
distance, D, preserves information about the relationship of the event w.r.t. taxel normal. D can
be negative because of modeling or measurement errors or simply because a stimulus is behind
a particular body segment. The time to contact, TTC, is defined as follows:

By

[1d]|
[I¥- cos ()]

TTC = —sgn(d - ¥) = —sgn(d-¥V) , (2)

al

where d is again the displacement vector pointing from the taxel to the stimulus, v} is the pro-
jection of the stimulus’s velocity ¥ onto d,and aris the angle between v and d, as shown in

Fig 14. The sign term takes into account the direction of motion of the stimulus. That is, for sti-
muli in the “positive hemisphere” moving toward the taxel, the dot product will be negative (d
and V have opposite directions) and the time to contact will be positive. The opposite holds for
objects moving away from the taxel or the case when modeling errors return a negative dis-
tance. The magnitude of TTC s simply distance over speed (norms of the respective vectors, d
and vy).

This definition of D and TTC s clearly an approximation that simplifies the estimation of
probability densities by bringing down the full description of a stimulus motion into a bi-
dimensional space. This is useful to keep the learning procedure feasible with a small number
of data points and it has the additional advantage of allowing one-shot learning: a single stimu-
lus and contact with the skin enables a rough but useful estimation of the corresponding RF
density. Note that this procedure—the recording of D and TTC of approaching stimuli—is car-
ried out in parallel for all taxels whose RFs overlap with the stimulus location. These data are
buffered for three seconds and used for learning only if the stimulus eventually touches the
skin and at least one taxel measures the contact event. In this case, a learning iteration is trig-
gered as follows:

1. For all the taxels that measured a contact event, the buffer of object positions in their local
FoR is traversed back in time in time steps of 50 ms. As long as the stimulus is in a given RF,
D and TTCat every time step are recorded as positive examples on each taxel’s data set.

2. For all other taxels of the same body part, the procedure is analogous, but negative examples
are appended to their respective data sets.

Stimuli that move close to but never touch the body surface do not contribute to the periper-
sonal space representation. However, taking into account all events that come sufficiently close
to the body surface would be an equally valid approach.
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Internal representation

Each taxel stores and continuously updates a record of the count of positive and negative exam-
ples that it has encountered for every combination of distance and time to contact. We defined
the range of D as [-10, 20] cm and TTC as [0, 3] s. The variables were discretized into eight
equally-sized bins for the distance and four bins for the time to contact respectively; the TTC
requires a velocity estimation of the approaching object and gives rise to noisier estimates.
There are 32 combinations and hence 32 items, [#,ositives Mnegarivel> in every taxel's memory. As
mentioned earlier, the main advantage of this representation is its simplicity and the possibility
of incremental updates—for each new positive or negative example, the respective count in
memory is incremented. However, most relevant for the robot is an estimation of the probabil-
ity (density) of an object hitting a particular part of the skin, which can be used to trigger avoid-
ance responses, for example. The stimuluss “coordinates” w.r.t. each taxel (i.e. distance, time
to contact) can be discretized as described above and a frequentist probability estimate
obtained simply as:

Mposiie (D5 TTC)
P(D, TTC) ~ f(D, TTC) =

npnswive(D-, TTC) +n (D, TTC) ®)

negative

Such an approach—discretized representation and querying—constitutes the simplest solu-
tion. However, it may give rise to unstable performance, in particular in the case when the state
space is undersampled. Therefore, it is desirable to obtain a continuous function f which can be
sampled at any real values of [D, TTC]. This can be achieved by using the Parzen-Window den-
sity estimation algorithm [61]—in fact, to interpolate the data. In a 1-dimensional case, the
interpolated value p(x) for any x is given by:

p(x) :%gém("'; S (4)

where x; are the data points in the discrete input space, ® is the window function or kernel and

h its bandwidth parameter, which is responsible for weighting the contributions of the neigh-
bors of the point x. We used a Gaussian function, hence we have:

px) = %Z \/21_7” exp <f %) (5)

In our case, which is bi-dimensional (with x = [D, TTC] as the input variables), we specified
the standard deviation o equal to the width of the single bin in each dimension of the input
space. For any value of D = d and TTC = ttc, the final interpolated value, p(d, ttc), represents
the probability of an object at distance d and time to contact tfc hitting the specific taxel under
consideration. It is worth noting that only the original discretized [D, TTC] combinations have
estimates of a probability function associated with them, each pair [D;, TTC] independently
from others. However, the whole “landscape” arising from f(D, TTC) cannot be interpreted as a
probability mass function (in discrete case) or probability density function (in continuous
case), because the overall probability for the whole space of D and TTC combinations can take
any values and does not sum to 1.

Monte Carlo simulation of a single taxel

In order to investigate the quality of the representation proposed in Section Internal represen-
tation, a Monte Carlo simulation was implemented. In particular, we wanted to study the prop-
erties of the acquired representation in noiseless and noisy conditions—with sufficient samples
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Fig 15. 2D schematics of single taxel model. (Left) Side view of the simulated taxel with examples of approaching stimuli: the
purple slab at the bottom represents a taxel; the green sector is a projection of the taxel’s cone-shaped receptive field; blue
sector marks the region where stimuli are generated. The two examples show a positive event (blue line) and a negative one
(red line). (Right) Top view of the simulated taxel with its nearby skin structure: the purple circle represents grouping of several
sensors (physical taxels) in a modeled taxel (virtual).

doi:10.1371/journal.pone.0163713.9015

available and with control over noise—and investigate the effect of the hyper-parameters (such
as number of bins for discretization, definition of the RF cone, range of stimuli’s speed, etc.).
To this end, a 3D model of a single taxel with simulated stimuli was prepared—see Fig 15 for
an illustration of the simulation environment. The code with the complete model is available at
the public repository [47].

The model parameters were chosen to mimic the real robot setup as closely as possible. The
simulated taxel itself has a radius of 0.235¢m, which mimics the radius of the real iCub taxels.
However, objects landing within 2c¢m from the taxel’s center (purple areas in Fig 15) are still
considered positive, resembling the size of a triangular module of the iCub skin which is itself
composed of 10 taxels (see Fig 12 above). These “virtual taxels” will be used in the real setup by
joining the responses of a number of adjacent physical taxels. The taxel’s cone-shaped receptive
field is depicted in green. Approaching stimuli are simulated by generating trajectories possibly
corrupted by measurement noise. Since the nature of our data collection and learning method
requires positive examples (objects contacting the virtual taxel) as well as negative examples
(objects contacting neighboring taxels), we simulated three neighboring virtual taxels (Fig 15
right). We implemented a stochastic “shower” of objects with their starting points uniformly
distributed in the blue region (“starting zone” in Fig 15 left) and their landing points following
a Gaussian distribution centered on the simulated taxel (¢ = 0; 0 = 5cm). The velocity of the
object is a vector directed from the starting point to the landing point, whose speed is uni-
formly distributed between 5¢m/s and 15cm/s (but constant over time for any given trajectory).
Position and velocity are sampled with T = 50ms. Measurement noise is Gaussian both for
position and velocity. The Monte Carlo simulation is implemented in Matlab.

Avoidance and reaching controller

As an exploitation of the learned representations, we implemented a velocity controller that
can move any point of either the left or right kinematic chain of the arms in a desired direction.
During an avoidance task, the movement is directed away from the point of maximum activa-
tion, along the normal to the local surface in that point. For reaching, the desired movement
vector has the opposite direction. We compute a weighted average for both the position of the

PLOS ONE | DOI:10.1371/journal.pone.0163713  October 6, 2016 28/32



170

Appendix G. Peripersonal space and margin of safety around the body

@PLOS | ONE

Peripersonal Space and Margin of Safety around the Body in a Humanoid Robot with Artificial Skin

avoidance/reaching behavior and its direction of motion as follows:

P =2 la () p(1)]
) ©)
NO) =D la() n0)

where P(t) and N(t) are the desired position and direction of motion in the robot’s Root FoR
respectively, p;(¢) and n,(t) are the individual taxels’ positions and normals. These are weighted
by the activations, a;(t), of the corresponding taxels” representations. The weighted average is
computed by cycling through all the taxels whose activation is bigger than a predefined thresh-
old at any given instant of time. Therefore, the resultant position and the direction of motion
of the avoidance/reaching behavior are proportional to the activation of the taxels’ representa-
tions and change dynamically as the activation levels of different taxels varies. The velocity
control loop employs a Cartesian controller [57] whose reference speed was fixed to 10cm/s.

Supporting Information

S1 Fig. End-effector trajectories in operational space during avoidance (red) and reaching
(blue). A schematic illustration of the robot’s upper body kinematics during resting configura-
tion is depicted. For each link—torso (gray), left arm (pink), right arm (light blue), right and
left eye (yellow)—the end-effectors’ reference frames are also shown.

(EPS)

S2 Fig. Avoidance demonstration using distance only information. (Left) Object approach-
ing the inner part of left forearm. Top plot shows the distance of the object from the taxels in
their individual FoRs. The shaded purple area marks the velocity of the body part (common to
all taxels; maximum activation corresponding to 10cm/s). Bottom plot depicts the activations
of the forearm taxels’ PPS representations. First approaching behavior was directed to the
external part of the forearm (taxels in tones of green); second approach toward the internal
part (taxels in tones of red) (Right) Object approaching the right palm. From [45].

(EPS)
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Robot self-calibration using multiple kinematic
chains — a simulation study on the 1Cub humanoid
robot

Karla Stepanoval-2, Tomas Pajdla?, and Matej Hoffmann

Abstract—Mechanism calibration is an important and non-
trivial task in robotics. Advances in sensor technology make
affordable but increasingly accurate devices such as cameras and
tactile sensors available, making it possible to perform automated
self-contained calibration relying on redundant information in
these sensory streams. In this work, we use a simulated iCub
humanoid robot with a stereo camera system and end-effector
contact emulation to quantitatively compare the performance
of kinematic calibration by employing different combinations
of intersecting kinematic chains—either through self-observation
or self-touch. The parameters varied were: (i) type and num-
ber of intersecting kinematic chains used for calibration, (ii)
parameters and chains subject to optimization, (iii) amount
of initial perturbation of kinematic parameters, (iv) number
of poses/configurations used for optimization, (v) amount of
measurement noise in end-effector positions / cameras. The main
findings are: (1) calibrating parameters of a single chain (e.g. one
arm) by employing multiple kinematic chains (“self-observation”
and “self-touch”) is superior in terms of optimization results
as well as observability; (2) when using multi-chain calibration,
fewer poses suffice to get similar performance compared to when
for example only observation from a single camera is used;
(3) parameters of all chains (here 86 DH parameters) can be
subject to calibration simultaneously and with 50 (100) poses,
end-effector error of around 2 (1) mm can be achieved; (4)
adding noise to a sensory modality degrades performance of all
calibrations employing the chains relying on this information.

Index Terms—Humanoid robots, calibration and identification,
force and tactile sensing, kinematics, optimization and optimal
control.

I. INTRODUCTION

OBOTS performing manipulation tasks rely on models
of their bodies and their success is largely determined by
their accuracy. However, inaccuracies creep in many ways as
for example in the assembly process, in mechanical elasticity,
or simply because of cheap design of components. Therefore,
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the actual model parameters of every robot exemplar have to
be found by means of a calibration procedure, usually relying
on external metrology systems. For kinematic calibration, such
apparatuses can measure one or more of the components of
the end-effector pose employing mechanical, visual, or laser
systems (see [1] for a survey). Different arrangements have
different accuracy, requirements on the environment, and cost.
These conditions have to be present for recalibration to be
performed.

Current trends in the robotics industry make classical cal-
ibration procedures less practical: with the advent of the so-
called “collaborative robots”, for example, the machines are
becoming cheaper, lightweight, compliant, and they are being
deployed in more versatile ways according to the needs of
customized production of smaller batches rather than being
fixed in a single production line for their entire lifetime. All
these factors increase the need for calibration to be performed
more frequently. At the same time, the machines, including
home and service robots, often come with richer sets of
powerful sensory devices that are affordable and not difficult
to operate. Both these trends speak for alternative solutions
to the self-calibration problem that are more “self-contained”
and can be performed autonomously by the robot.

Hollerbach et al. [1] classify different calibration methods
into open-loop—where one or more of the components of
the end-effector pose is measured employing mechanical,
visual, or laser systems—and closed-loop where physical
constraints on the end-effector position or orientation can
substitute for measurements. Observing the end-effector—or
in general any other points on the kinematic chain—using a
camera falls into the open-loop calibration family, although
components of the end-effector pose can be observed only
indirectly through projection into the camera frame. Self-
touch configurations employing two arms of the humanoid
robot could be framed as a constraint if contact measurement
only (e.g. from force/torque sensors) was available and hence
treated as closed-loop. In this work, we follow up on [2]
and emulate sensitive skin measurements, which provide the
position of contact (and hence fit more naturally with open-
loop calibration).

Our work is a simulation study that draws on calibration in
the real world—Ilike different approaches to kinematic calibra-
tion of the iCub humanoid robot relying on self-observation
[3], [4] and self-touch [2]. Using the model of the robot
with identical parameters, but exploiting the fact that we have
complete knowledge of the system and capacity to emulate
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different levels of model perturbation and measurement noise,
our goal is to get insights into the pros and cons of different
optimization problem formulations. In particular, we study
how the calibration performance is dependent on the type
and number of intersecting kinematic chains, the number of
parameters calibrated, number of robot configurations, and
the measurement noise. Accompanying video is available here
https://youtu.be/zP3c7Eq8yVk and dataset at [5].

This article is structured as follows. Related work is re-
viewed in the next section, followed by Materials and Meth-
ods, Data Acquisition and Description, and Simulation Results.
We close with a Discussion and Conclusion.

II. RELATED WORK

We focus on humanoid robots or humanoid-like setups
with many Degrees of Freedom (DoF) of two arms that
can possibly self-touch, equipped with cameras and tactile or
inertial sensors. These are challenging setups for calibration
but they create new opportunities for automated self-contained
calibration based on closing kinematic loops by touch (self-
contact) and vision.

Most often, the loops are closed through self-observation
of the end-effector using cameras located in the robot head
(open-loop calibration method per [1]). Hersch et al. [6] and
Martinez-Cantin et al. [7] present online methods to calibrate
humanoid torso kinematics relying on gradient descent and
recursive least squares estimation, respectively. The iCub
humanoid was employed in [3], [4]. Vicente et al. [4] used
a model of the hand’s appearance to estimate its 6D pose and
used that information to calibrate the joint offsets. Fanello
et al. [3] had the robot observe its fingertip and learned
essentially a single transformation only to account for the
discrepancy between forward kinematics of the arm and the
projection of the finger into the cameras.

Next to cameras, inertial sensors also contain information
that can be exploited for calibration. Kinematic calibration
was shown exploiting 3-axis accelerometers embedded in the
artificial skin modules distributed on robot body [8], [9] or in
the control boards on the iCub [10] or CMU/Sarcos [11].

The advent of robotic skin technologies [12], [13] opens up
the possibility of a new family of approaches, whereby the
chain is closed through contact like in closed-loop calibration,
but the contact position can be extracted from the tactile array.
Roncone et al. [2] showed this on the iCub robot that performs
autonomous self-touch using a finger with sensitive fingertip
to touch the skin-equipped forearm of the contralateral arm; Li
et al. [14] employed a dual KUKA arm setup with a sensorized
“finger” and a tactile array on the other manipulator. Forward
kinematics together with skin calibration provide contact po-
sition that can then be used for robot kinematic calibration.
In this sense, the skin provides a pose measurement rather
than constraint and as such, this may fall under open-loop
calibration. In this way, one arm of a humanoid can be used to
calibrate the other. Khusainov et al. [15] exploit this principle
using an industrial manipulator to calibrate the legs of a
humanoid robot. Another variant is exploiting the sensitive
fingertips to touch a known external surface [16].

Birbach et al. [17] were to our knowledge the only ones
to employ truly “multisensorial” or “multimodal” calibration.
Using the humanoid robot Justin observing its wrist, the
error functions comparing the wrist’s position from forward
kinematics with its projection into the left and right camera
images, Kinect image, and Kinect disparity, together with an
inertial term, were aggregated into a single cost function to
be minimized. It is claimed that while pair-wise calibration
can lead to inconsistencies, calibrating everything together in
a “mutually supportive way” is most efficient.

In this work, we compare calibration through self-
observation (with projection into cameras) and calibration
through self-touch and the effect of their synergy. Our work
makes a unique contribution, also compared to [17] who,
first, employ essentially only ‘“hand-eye” kinematic chains
terminating in different vision-like sensors in the robot head,
and, second, consider only the case where all chains are
combined together using a single cost function.

III. MATERIALS AND METHODS

A. iCub robot kinematic model and camera parameters

In this work, we use the upper body of the iCub humanoid
robot (see Fig. 1) and its kinematic model expressed in
the Denavit-Hartenberg convention, where every link i is
described by 4 parameters: {a;,d;, a;,0;}. In this platform,
all joints are revolute. We will consider several kinematic
chains: all start in a single inertial or base frame—denoted
iCub Root Reference Frame here. For every chain, the DH
parameters uniquely define a chain of transformation matrices
from the inertial frame to the end-effector. The position and
orientation of the end-effector in the Root frame is thus
given by T2 = A,(q1)...A,(¢n) where the homogeneous
transformation matrices A; can be constructed from the DH
representation and ¢; are current joint angles of the robot
actuators.

The links are schematically illustrated in Fig. 1. iCub
kinematics version 1 was used [18] with the following modi-
fication: the Roor was moved from the waist area to the third
torso joint, which is the new inertial frame for our purposes.

The four chains under consideration are:

1) Left Arm (LA). DH parameters in Table I. Short
names to denote the links/joints: Root-to-LAshoulder,
LA Shoulder Pitch, LA Shoulder Roll, LA Shoulder
Yaw, LA Elbow, LA Wrist Prosup (for pronosupination),
LA Wrist Pitch, LA Wrist Yaw.

2) Right Arm (RA). DH parameters analogous to LA
(see [18]). Link/joint names: Root-to-RAshoulder, RA
Shoulder Pitch, RA Shoulder Roll, RA Shoulder Yaw,
RA Elbow, RA Wrist Prosup, RA Wrist Pitch, RA Wrist
Yaw.

3) Left Eye (LEye). DH parameters in Table II. Link/joint
names: Root-to-neck, Neck Pitch, Neck Roll, Neck Yaw,
Eyes Tilt, Left Eye Pan.

4) Right Eye (REye). DH parameters different than LEye
in Table III. Link/joint names: Root-to-neck, Neck Pitch,
Neck Roll, Neck Yaw, Eyes Tilt, Right Eye Pan.
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Fig. 1. iCub upper body and schematic illustration of kinematic chains
considered. All chains originate in a common Root which is located at the
third torso joint. The left and right arm chains are drawn in green and blue
respectively. The eye chains have a common Root-to-head chain part marked
in red. The right panel illustrates the self-calibration by connecting different
chains—self-touch and self-observation. White lines denote projection into
the eyes/cameras.

Links or parameters not subject to calibration are showed
shaded in grey in the corresponding tables. The first link
always originates in the Root frame and is fixed in all chains
(the torso joint is not moving) and is also excluded from
calibration. The alpha parameter of the last link in the arm
chains is also not being calibrated as it is not observable
because we observe only position and not the orientation of
the end-effectors. The right arm chain is further extended with
a fixed transform from the end-effector in the palm to the tip
of the index finger—not subject to calibration. The eye chains
differ in the last link only.

Link(i) | a(i) [mm] d(i) [mm] « [rad] o [rad]
1 23.36 143.3 /2 105 * /180
2 0 107.74 —7/2 w/2
3 0 0 /2 —7/2
4 15 152.28 —7/2 75 % /180
5 -15 0 /2 0
6 0 137.3 /2 —m/2
7 0 0 /2 w/2
8 62.5 -16 0 0
TABLE 1

DH PARAMETERS (a, d, & AND OFFSETS 0) DESCRIBING ALL LINKS IN

LEFT ARM KINEMATIC CHAIN.

Link(i) | a(i) [mm] d(i) [mm] « [rad] o [rad]
1 231 - 1933 —7/2 /4
2 33 0 /2 w/4
3 0 1 —7/2 w/4
4 -54 825 —7/2 w/4
5 0 -34 —7/2 0
6 0 0 /2 —7/4

TABLE 11

DH PARAMETERS — LEFT EYE KINEMATIC CHAIN.

The camera intrinsic parameters were taken from the real
robot cameras and were not subject to calibration: resolution
320 x 240, focal length f, = 257.34, f, = 257.34.c, = 120.

LinkG) | aG) [mm]  dG) (mm] o [rad] o [rad]
5 0 34 /2 —x/d
6 0 —/2 0
TABLE IIT

DH PARAMETERS — RIGHT EYE KINEMATIC CHAIN. LINKS 1-4 SHARED
WITH LEFT EYE KINEMATIC CHAIN.

B. Optimization problem formulation

By calibration we mean estimation of the parameter vector
¢ = {lar, .., anl,[d1, .. dn], [0a, ooy ], [01, ..y 0]} With
i € N, where N = {1,..,n} is a set of indices identifying
individual links; a, d and « are the first three parameters
of the DH formulation and o the offset that specifies the
positioning of the encoders on the joints with respect to the DH
representation. We often estimate a subset of these parameters
only, assuming that the others are known. This subset can
for example consist of a subset of links N’ C N (e.g., only
parameters of one arm are to be calibrated) or a subset of
the parameters (e.g., only offsets o are to be calibrated—
sometimes dubbed “daily calibration” [19]).

The estimation of the parameter vector ¢ is done by
optimizing a given objective function:

M
¢* = argmin Y _ [|p}, — P, (6, ©)|1%, )

¢ m=1
where M is the number of robot configurations and corre-
sponding end-effector positions used for calibration (hereafter,
often referred to as “poses” for short), p;, is a real (observed)
end-effector position, p{, is an estimated end-effector position
computed using forward kinematic function for a given pa-
rameter estimate ¢ and joint angles from joint encoders ©,,,.
For chains involving cameras, the reprojection error is used

instead, as described in the next section.

C. Kinematic chain calibration

We study different combinations of intersecting chains and
their performance in calibrating one another.

1) Two arms chain (LA-RA): This corresponds to the self-
touch scenario, with touch occurring directly at the end-
effectors (the right arm end-effector being shifted from palm
to tip of index finger using a fixed transform). The newly
established kinematic chain for upper body includes both arms
while head and eyes are excluded. To optimize parameters
describing this chain, we minimize the distance between
estimated positions in 3D space of left and right arm end-
effectors. In this case, the parameter vector ¢ consists of
the following parameters: ¢ = {¢", ¢'}, where ¢" and ¢’
are parameters corresponding to the robot right and left arm,
respectively. The objective function to be optimized is:

M
¢" =argmin 3 _ [|X77(¢7,07,) - X37(4,0,,)[° @
¢ m=1

where M is the number of poses used for calibration, X 7:F
and X%F are the m™ estimated end-effector positions in the
Root frame for the right and left arm respectively, computed
using a given parameter estimate ¢ and joint angles from joint
encoders ©,,,.
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2) Hand to eye chains (LA-LEye, LA-REye, RA-LEye, RA-
REye): To predict position of the end-effector in each of the
robot cameras (similar to [17]), the estimated end-effector
position, X Root g given by a current hypothetical robot
calibration of the parameter vector ¢ and is computed via
forward kinematics. X °° is then mapped to left camera
coordinates (XTP¥) using a transformation matrix Tf{fj’:.
Then we use a pinhole camera model to transform the 3D
point (XXF¥¢) into image coordinates (X*™9):

img LEye LEye
<§frng> = (;I;(iEyeji((zLEye> ) (3)
Yy Yy z
where f,, f, are focal lengths of the camera. Radial distortion
of cameras was not considered.

This approach doesn’t require information from both eyes
and enables us to estimate only one side of the robot body
(e.g. parameters of the left arm and left eye). For example,
the estimated parameter vector ¢ in the case of the kinematic
chain connecting left arm and left eye consists of the following
parameters: ¢ = {¢, ¢'°}, where ¢' and ¢'® are parameters

corresponding to the robot left arm and to the left eye,
respectively. The objective function is then defined as:

M
¢* =argmin »_ [ X5 (!, 0) —ull®, @
(4 m=1

where X1™9 is the m®™ 2D position of the estimated left
arm end-effector projected to left eye image coordinates and
ul is the mth 2D position of the observed left arm end-
effector in the left camera. For two arms and two eyes we get
four possible combined chains: left/right arm to right/left eye.
Since the results are similar due to symmetry, we present in
the experimental section results only for the Left arm - Left
eye (LA-LEye) chain.

3) Combining multiple chains (LA-RA-LEye, LA-RA-LEye-
REye): In order to estimate all kinematic parameters of the
robot, we can take advantage of combining some or all of
the above mentioned kinematic chains. For example, in the
case that we combine LA-RA, LA-LEye and LA-REye chains
together into LA-RA-LReye, the estimated parameter vector ¢
consists of the following parameters: ¢ = {¢", @', 9", ¢’€},
where ¢!, ¢, ¢"°, and ¢'° are parameters corresponding to
the left arm, right arm, right eye, and left eye, respectively.
The objective function is in this case defined as:

M
¢" =argmin Y _{u-||X7" (", ©},) - X}, (' ©1,)]1+

m=1
|1 X551 (¢!, ¢'¢) —
|Ximt (¢! ™) —

ult ||+ || X2 (97, ') — upk ||+
wr || + | X0 (@7, ¢7) —
5)

where M is the number of poses (configurations) used for
calibration, X”:® and X? are the m™ estimated end-effector
positions in the Root frame for the right and left arm, respec-
tively. These are computed using a given parameter estimate ¢
and joint angles from joint encoders ©,,. Values X'ZT and
X"=T are the m™ positions of the estimated left arm end-

effector projected to left eye and right eye image coordinates,

w1},

respectively, and u't and ut are the m™ 2D position (pixel
coordinates) of the left arm end-effector observed in the left
and right eye/camera, respectively (variables X'mf X7ml,
ul and u’® correspond to the right arm). Since the cost
function contains both 3D and reprojection errors, the dis-
tances in space were multiplied by a coefficient ;1 determined
from the intrinsic parameters of cameras and distance d of the

end-effector from the eye: u = 320pz/(d * (7/3)).

D. Non-linear least squares optimization

The objective functions (Eqgs. [1]- [S]) defined for the opti-
mization problem described in Section III-B are of the least-
squares form and therefore can be minimized by Levenberg-
Marquardt algorithm for non-linear least squares optimization
(we used MATLAB implementation of the algorithm, same as
in [17]). This iterative local algorithm performs minimization
of a non-linear objective function by linearizing it at the cur-
rent estimate every iteration. It interpolates between the Gauss-
Newton and gradient descent method, combining advantages
of both.

E. Error metrics

For comparing the results achieved for individual settings,
we make use of the following error metrics:

1) Cartesian error between poses (position): Cartesian
position error F. between two generic poses, A and B, where
Pa = [x4,ya,24] and Pg = [zp,yp, 2] are 3D Cartesian
positions of the end-effector, is defined as:

Ee=\/(xa—25)2+ (ya —yp)2 + (2a — 25)2.  (6)

We evaluate the Cartesian error over the set of N testing poses,
which are selected as described in the section IV-B.

2) Quality of estimated parameters: For each estimated
parameter ¢; we compute the mean difference (e;) of the
estimated parameter ¢$ from the target parameter value ¢!
(averaged over R repetitions of the experiment):

R ] t
D1 |05, — &
R k)
as well as standard deviation of the parameter.

)

€; =

IV. DATA ACQUISITION AND DESCRIPTION
A. Pose set generation

With the goal of comparing different calibration methods
on a humanoid robot, we chose a dataset where the two arms
of the robot are in contact—thereby physically closing the
kinematic chain through self-touch. At the same time, the
robot gazes at the contact point (self-observation). The points
were chosen from a cubic volume in front of the robot. For
each target, using the Cartesian solver and controller [20], the
iCub moves the left hand with end-effector in the palm to
the specified point. Then it moves the right hand, with end-
effector in the tip of the index finger, to the same point, with
the additional constraint that the finger can be at most 50°
away from the perpendicular direction of the palm. 5055 points
and corresponding joint configurations were thus generated,
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with a difference on left and right effector position in every
configuration of maximum 0.01mm—see Fig. 2, right. The
gaze controller [21] was used to command the neck and eyes
of the robot to gaze at the same target (code and video can be
accessed at [22]). The full dataset thus consists of 5055 data
vectors X; = [X 199t x4 X L4 @] composed of target
point coordinates (X ‘"9 € R3), corresponding right arm
and left arm end-effector positions (X RA R3, X LA ¢ R3),
and joint angles ®; for every joint of the torso, arms, neck,
and eyes (©; € R?%). Note that the solvers work with a given
tolerance and hence X/*"9% # XJA £ XIA,

This way of dataset generation draws on previous work [2]
and is hence feasible on the real robot provided sufficient
quality of the initial model. Li et al. [14] provide an alternative
control method: “tactile servoing”. The robot could be also
manipulated into the desired configurations while in gravity
compensation mode.

B. Training and testing dataset

We had 5055 configurations with | X4 — X4 < 0.01
mm. The 0.01 mm error will at the same time constitute the
lower bound on the maximum achievable calibration accuracy
using the closure of the kinematic chain through self-touch.
For the case of loop closure through the cameras, we employ
the neck and eye joint values obtained from the solver in
the simulator but reproject the end-effector positions directly
and accurately into the cameras simulated in Matlab. The
5055 data points were further divided into training and testing
datasets in the following way: N out of 4755 poses are
used as a training set on which the optimization process is
performed (with a subset of 10, 20, 50, or 1000 poses chosen
at random in different experiments) and 300 poses are used
for testing purposes. Fig. 2, left, shows the distribution of joint
values for individual joints in the dataset—this may impact the
identifiability of individual parameters.
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Fig. 2. Dataset visualization — 5055 configurations. (left) Distribution of joint
values. (right) End-effector positions. Red — left arm; Green — right arm.

C. Measurement error

Measurement noise with a Gaussian distribution was added
motivated by the sensory accuracy in the real robot. Since
distance between individual taxels on the real iCub sensitive
skin is around 5 mm, we decided to use Gaussian noise with
zero mean and o2 = 5 for touch as a baseline. For cameras,

we introduce a Spx error (Gaussian noise with zero mean and
0% = 5 px), inspired by the setup in [3] where the iCub is
detecting its fingertip in the camera frame. These errors are
used in all experiments in the Simulation results section if not
stated otherwise. In Section V-C we evaluate how changing the
size of these measurement errors affects the resulting accuracy
of end-effector position detection for individual chains.

D. Perturbation of the initial parameters estimate

To evaluate the dependence of the optimization performance
on the quality of the initial estimates of the parameters, we
perturbed all estimated parameters by a perturbation factor
p ={2,5,10,20}. We perturbed all initial offset values o; as
follows:

0" =1/100 * p x uni form[—1;1] + o; [rad],  (8)

It is reasonable to expect that the remaining DH parameters
(o, a, and d) will be in general more accurate as they can be
extracted from CAD models and there is no moving part and
no encoder involved. Therefore, their perturbation was chosen

as follows:
a:a® =1/1000  p * uni form[—1;1] + «; [rad), ©
a,d : @Y = 0.1 % px uniform[—1;1] + ®; [mm).

V. SIMULATION RESULTS

In this section we show the calibration results. We evaluated
our approach using both error of the end-effector position—
the cost function optimized (or distance in camera frame for
projections into eyes)—as well as error in individual parame-
ters (vs. their correct values). We compared kinematic chains
used for calibration, number of free parameters which were
estimated by the optimization process, different perturbation
factor on individual parameters, number of training poses (data
points), as well as measurement noise levels. Performance is
always is evaluated on the testing dataset.

A. Results for different chain combinations and number of
training poses

Fig. 3 (top) shows the performance in terms of end-effector
position estimation when DH parameters of the left arm
(LA) chain are calibrated, utilizing different kinematic chain
combinations: The “self-observation” from a single camera
(LALEye) and “self-touch” only (LARA) are outperformed
by “stereo self-observation” (LALREye) and all the chains
together provide the best results (LARALREye). Clearly, more
training poses (50 vs. 20) improve calibration results; 1000
poses should be sufficient to reach an optimal value and serve
as a lower bound on the error. The effect of initial parameter
perturbation factor is also shown; for all perturbation levels,
the performance is stable (low error variance).

In Fig. 3 (bottom) only the largest “multi-chain” LARALR-
Eye is employed for training but the chains whose parameters
are subject to calibration are varied. The error of end-effector
position estimation is increasing with higher number of pa-
rameters estimated; however, even if parameters of all chains
(86 DH parameters) are perturbed and subject to calibration
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Fig. 3. End-effector position error after optimization—averaged over 10
repetitions. (Top) Left Arm chain calibration (full DH) using different chain
combinations, different initial perturbation factors (2, 5, 10, 20) and training
on 20 (left), 50 (middle), and 1000 poses (right — pert. factor 5 only).
(Bottom) Performance of different parameter sets subject to calibration —
LARALREye chain was used for calibration of parameters. Free parameters
(being calibrated) in a given chain are denoted. E.g., LALEye denotes that
all 51 DH parameters of left arm and left eye (including head) are calibrated,
and the rest of the DH parameters (e.g. right arm) is considered to be known.

simultaneously, end-effector error of around 2 (1) mm can be
achieved with 50 (100) poses.

To investigate the distribution of errors for individual chains,
we examined error residuals for every testing pose. For a
higher number of training poses, error residuals have a zero
mean and Gaussian distribution. For lower number of poses
(especially for higher perturbation), the residuals are bigger
and skewed and the resulting calibration also strongly depends
on initialization. In Fig. 4, the end-effector error residuals
for perturbation factor p = 10 are shown for their z and z
coordinates (other 2D projections were qualitatively similar)—
for different chains and different number of training poses.

* LARALREye

2 [mm)
"
2 (mm)

xmm) x{mm) x{mm)

Fig. 4. Error residuals — Left Arm (LA) chain calibration using LARA,
LALREye and LARALREYye chains. Results visualized on 300 testing poses
for each of 10 repetitions of the optimization, with random parameter
initialization (3000 points in total per chain shown). (Left) 10 training poses;
(Middle) 20 training poses; (Right) 50 training poses. Perturbation factor 10
and measurement errors 5 mm for skin and 5 px for cameras were considered.

B. Observability analysis of individual chains

We conducted an observability analysis using Singular
Value Decomposition (SVD) of the identification Jacobian ma-
trix J = [Ji, ..., J,], where n is the number of configurations
in the training pose set and J,(¢,7) = [)W], ¢; is
the parameter j to be estimated, (X! — X¢) denotes the error
between the real/observed (X") and estimated (X¢) value of
the i coordinate in the given chain.! The Jacobian matrix

lE.g., for LALEye, X corresponds to 2 errors: error on the coordinate v and
v as a reprojection of the end-effector position into the cameras; for LARA
chain, X will correspond to 3 numbers: distance in x, y and z coordinate
between right (X">1) and left arm (X% %) end-effector 3D positions.

represents the sensitivity of end-effector positions or their
camera reprojections to the change of individual parameters.
Using SVD, we can obtain a vector of singular numbers o;.
Comparison of the obtained singular numbers for individual
chains for the task of estimating all DH parameters of the
left arm (using same training pose set) can be seen in Fig. 5.
We also evaluated observability indices O; [23] and Oy [24]
(performance of observability indices for industrial robot cali-
bration was evaluated by Joubair [25]). O; index is defined as:
01 _ (0'1024..0',”)1/"”

RGN
parameters to be identified, o; is the 4t singular number, and
n is the nun21ber of calibration configurations. Index Oy is
defined as: ‘ZTT See Fig. 5 (bottom panels). Te chain LALEye
for 10 poses has very low observability caused by not full
rank Jacobian (we have 24 parameters to estimate but only 20
equations). The highest observability is achieved in all cases
for the largest chain LARALREYye, where the information from
touch and both cameras was used.

, where m is the number of independent
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Fig. 5. Observability — Left Arm (LA) chain calibration (full DH) using
different chain combinations. (Top) singular numbers of identification Jaco-
bian for different chains used for calibration. Evaluation is performed over
the same pose set for every chain. Red, green, turquoise, and blue color of
the lines denote 10, 20, 50, and 1000 poses in the training set respectively.
(Bottom left) Observability index O1 [23]. (Bottom right) Observability index
O4 [24].

C. Evaluation of error based on measurement noise

We evaluated the effect of measurement noise in individual
sensors (touch, cameras) on the accuracy of end-effector
position error on the testing data set—see Fig. 6. With same
error in pixels on cameras and in mm on “touch sensors”
(first two columns — 2px/2mm, 5px/5mm), LALREye chain
(both eyes, no touch) and LARALREye (both eyes and
touch) have smallest final end-effector errors, for the “multi-
chain” even smaller. When error on cameras increases (527,
10E2T, 10E5T), the camera chains (LALEye, LALREye)
are affected whereas the performance of the chain with touch
(LARALREYye) is not degraded. Conversely, more error on
“touch” (2E5T, 2E107T, 5E107) impacts the “touch only”
chain (LARA), but the LARALREye remains robust.

D. Quality of DH parameter estimates

To get further insight and take advantage of the simulation
study where we have access to ground truth values of all
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parameters, we also studied whether the optimization based
on end-effector error also leads to correct estimates of all DH
parameters—focusing on the left arm (LA) chain.

Fig. 7 shows the results for all estimated parameters when
the LA-RA (“self-touch”) chain was used for calibration, using
different number of training poses. The errors on the length
parameters (top panel) are on average distributed between
approx. 1 and 10 mm. For the angular quantities, it is in the
0.1 to 1° range for the proximal joints.
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Fig. 7. Quality of DH parameter estimation for LA chain using LA-RA
chain. Errors on individual parameters after optimization for different number
of poses: (Top) a and d parameters; (Bottom) « and offsets. Averaged over
10 repetitions, perturbation factor 5, measurement noise 5px on cameras and
5mm on touch.

Finally, having showed above that the “self-touch and self-
observation” (LARALREye) chain slightly outperforms the
“stereo self-observation” only chain (LALREye) (Fig. 3 top,
Fig. 6), also in observability (Fig. 5), here in Fig. 8 we can
observe a similar trend in the estimated parameters of the
LA chain against their ground truth values. The parameter
estimates obtained from LARALREye are significantly better
for d for all joints except for wristPr and elbow and for a
for all shoulder joints. The other parameters estimates are
comparable. The wrist joint calibration seems to be sensitive
on the selection of training poses and will need further study.

VI. DI1SCUSSION AND CONCLUSION

We quantitatively and systematically investigated the po-
tential of automatic self-contained kinematic calibration (DH

optimization (50 training poses, perturbation factor 5, measurement noise 5
px on cameras and 5 mm on touch). (Top) a and d parameters. (Bottom) «
and offsets.

parameters including camera extrinsic parameters) of a hu-
manoid robot employing different kinematic chains—in partic-
ular relying on self-observation and self-touch. The parameters
varied were: (i) type and number of intersecting kinematic
chains used for calibration, (ii) parameters and chains subject
to optimization, (iii) amount of initial perturbation of kine-
matic parameters, (iv) number of poses/configurations used
for optimization, (v) amount of measurement noise in end-
effector positions / cameras. We also tracked the computation
time and while the details differ depending on the settings
(chain calibrated, number of poses, etc.), a typical optimization
run would not take more than tens of seconds on an older
laptop PC. Next to results w.rt. the cost function itself
(error on end-effector or camera reprojection) a number of
additional analyses were performed including error residuals,
errors on estimated parameters compared to ground truth, and
observability analysis.

While some results were expected (such as improvement
when more configurations are added or poor performance
when using self-observation from a single camera), the most
notable findings are: (1) calibrating parameters of a single
chain (e.g. one arm) by employing multiple kinematic chains
(“self-observation” and “‘self-touch”) is superior in terms of
optimization results (Fig. 3 top) as well as observability
(Fig. 5); (2) when using multi-chain calibration, fewer poses
suffice to get similar performance compared to when e.g. only
observation from a single camera is used (Fig. 3 top); (3)
parameters of all chains (here 86 DH parameters) can be
subject to calibration simultaneously and with 50 (100) poses,
end-effector error of around 2 (1) mm can be achieved (Fig. 3
bottom); (4) adding noise to a sensory modality degrades
performance of all calibrations employing the chains relying
on this information (Fig. 6). The last point is interesting to
discuss in relation to Birbach et al. [17] who put forth the
hypothesis that calibrating multiple chains simultaneously is
superior to pairwise sequential calibration. Our results support
this provided that measurement noise is small. Instead, if a
certain modality is noisy, it may be beneficial to preferentially
employ chains that rely on more accurate measurements first
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and then calibrate a “noisy chain” in a second step.

We have only reported results from simulation, however, we
claim that this was the right tool for this type of investigation.
At the same time, our setup and choice of parameters was
drawing on experiments performed in the real robot—self-
touch [2] and self-observation [3], [4] in particular—which
makes the results grounded in a real setting and should inform
future experimentation on the iCub. The method to combine
chains and analyze the results presented here can be transferred
to other platforms as well.

There are several aspects that we want to further investigate
in the future. First, we note that while we did control for the
angle between the palm and the contralateral finger for self-
touch in the dataset generation, we did not monitor whether
the contact point would be also visible. Additional analyses
revealed that the contact point would not be occluded and
hence be visible by both cameras in 35% of the poses and by
one of the cameras in 53%. We recomputed the observability
with this subset of the dataset only and found no decrease. In
the future, configurations with occlusions should be excluded
from dataset generation. Second, we found that around 50
configurations (data points) suffice for reasonable calibration.
Finding the optimal subset of not more than 10 configurations
would be desirable, such that recalibration can be performed
rapidly. Here, clever pose selection will be necessary to war-
rant adequate and stable performance. Third, the information
from the two cameras can be used to reproject observed
position of the end-effector in image coordinates of both eyes
(pixel (u,v)) to 3D space (X®¥¢) (similar to [3], [26])—
leading onto yet another formulation of the optimization
problem. Fourth, our investigation can be extended considering
also the contribution of inertial sensors—in the robot head [17]
or distributed on the robot body [10], [8]. Fifth, the present
method can be compared with filtering approaches [4], [16]
or with methods that pose fewer assumptions on the initial
model available (e.g., [27]). Finally, the self-touch scenario can
be also turned around from using a tactile array to calibrate
kinematics [2], [14] to calibrating the skin itself [28].
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Multisensorial robot calibration framework and toolbox

Jakub Rozlivek!*, Lukas Rustler!*, Karla Stepanova'?, and Matej Hoffmann!

Abstract— The accuracy of robot models critically impacts
their performance. With the advent of collaborative, social,
or soft robots, the stiffness of the materials and the precision
of the manufactured parts drops and CAD models provide a
less accurate basis for the models. On the other hand, the
machines often come with a rich set of powerful yet inexpensive
sensors, which opens up the possibility for self-contained
calibration approaches that can be performed autonomously
and repeatedly by the robot. In this work, we extend the theory
dealing with robot kinematic calibration by incorporating new
sensory modalities (e.g., cameras on the robot, whole-body
tactile sensors), calibration types, and their combinations. We
provide a unified formulation that makes it possible to combine
traditional approaches (external laser tracker, constraints from
contact with the external environment) with self-contained
calibration available to humanoid robots (self-observation, self-
contact) in a single framework and single cost function. Second,
we present an open source toolbox for Matlab that provides
this functionality, along with additional tools for preprocessing
(e.g., dataset visualization) and evaluation (e.g., observabil-
ity/identifiability). We illustrate some of the possibilities of this
tool through calibration of two humanoid robots (iCub, Nao)
and one industrial manipulator (dual-arm setup with Yaskawa-
Motoman MA1400).

I. INTRODUCTION

Traditional industrial robots are composed of stiff ma-
terials, manufactured and assembled with high accuracy.
With CAD drawings as a basis for their models, fine-
tuning of parameters may be necessary for individual robot
exemplars. Model identification [1] is a mature discipline.
In this work, we focus on kinematic calibration. There are
two main approaches [1]: (i) open-loop calibration, where
the manipulator is not in mechanical (physical) contact
with the environment and an external metrology system is
used to measure robot pose components, and (ii) closed-
loop calibration, where physical constraints on robot pose
components replace external measurements. However, in
their standard formulations, both approaches require a setup
that is external to the robot itself. Also, typically, only one
calibration method is applied at a time.

As robots are leaving controlled factory environments and
starting to share workspaces with humans, the situation is

This work was supported by the Czech Science Foundation (GA
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ally supported by the Czech Technical University in Prague, grant No.
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changing. There is a fast growing market with collabo-
rative, personal care, and social robots. These robots are
cheaper, more lightweight, and less stiff. The precision of
manufacturing and assembly drops and CAD models provide
a less accurate basis for the robot models. On the other
hand, the robots often come with a rich set of powerful yet
inexpensive sensors like cameras, RGB-D cameras, inertial,
tactile or force sensors. This opens up the possibility for
calibration approaches that are more “self-contained”, can
be performed autonomously and repeatedly by the robot, and
that simultaneously estimate the position of the sensors with
respect to the robot.

Overall, there is a shift from highly accurate setups
that span the whole lifetime of a robot to more adaptive
settings: robots, including industrial robots, are re-deployed
for different tasks, retrofitted with new sensors, and need to
be repeatedly calibrated. The additional sensory equipment
provides an opportunity for such calibration to be performed
in situ and when needed. In this work, we provide a
solution to these needs: a unified framework that brings
together traditional robot kinematic calibration with the self-
contained approaches exploiting sensors on the robot as well
as possibilities available to humanoids or multi-arm setups
like self-contact. We address also arbitrary combinations of
these methods and provide an open-source toolbox [2] with
this functionality and additional useful tools.

This article is structured as follows. After review of related
work, Section III presents the theoretical formulation that
unifies the different approaches to robot kinematic calibra-
tion, followed by the description of the toolbox (Section I1V)
with illustrative examples. We wrap up with Conclusion and
future work.

An accompanying video illustrating some of the robot
setups and functionality of the toolbox is available at
https://youtu.be/ZZHztHF6eNs.

II. RELATED WORK

Recently, automatic “self-contained” calibration ap-
proaches that can be performed autonomously by the robot
have started to appear, typically relying on self-observation
using the robot’s own camera(s) (e.g., [3], [4], [5]) or addi-
tional sensors in the robot head [6]. Next to these open-loop
approaches with camera(s) on the robot body, closed-loop ap-
proaches exploiting contact constraints can be also adapted to
humanoid and similar platforms. With the advent of robotic
skin technologies, self-touch can be exploited for calibration
of robot kinematics [7], [8]. Another variant is exploiting
sensitive fingertips to touch a known external surface [9].
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Birbach et al. [6] employed automated self-contained multi-
sensorial calibration, although they only utilized sensors in
the robot’s head. Stepanova et al. [10] systematically studied
on the simulated iCub humanoid robot how self-observation,
self-contact, and their combination can be used for self-
calibration. They found that employing multiple kinematic
chains (“self-observation” and “self-touch”) is superior in
terms of optimization results as well as observability. In
[11], a dual-arm industrial manipulator is calibrated using
self-observation, self-contact, contact with external planar
surfaces, and a laser tracker and the individual methods and
their combinations are compared. Inertial sensing in the robot
head [6] or distributed on the robot body [12], [13] can be
also employed.

Traditionally, robot kinematics, tools / custom end effec-
tors, or camera parameters are calibrated. With more sensors
(cameras, RGB-D cameras, force/tactile sensors, or inertial
measurement units) being added, their pose w.r.t. the robot
model needs to be established as well. The robot is often
retrofitted with such sensors and they thus do not feature
in the CAD models. Artificial sensitive skins covering large
areas of robot bodies constitute a specific case, as there may
be hundreds or thousands of sensors, whose positions are not
known. For the multimodal skin modules of Mittendorfer and
Cheng, communication between modules and gravity projec-
tion in 3-axis accelerometers were employed to reconstruct
every sensors’ pose [14].

While toolboxes for camera calibration are abundant,
there are few tools to support robot calibration. The Robot
Toolbox [15] provides functions for the study and simulation
of classical robotics focused on manipulators, but it does not
address calibration. The python toolbox pybotics [16], [17] is
specifically designed for calibration of robots’ modified DH
parameters by an external device. The C++ based “Robot
Calibration” package for ROS [18] enables calibration of
joint angle and robot frame offsets, and 3D Camera intrinsics
and extrinsics by an external device (3D sensors) or by
planar constraints. However, the unique capability of our
toolbox is its versatility in terms of what is being calibrated
(robot kinematics, camera parameters, whole-body skin) and
with which method (external device, self-observation, contact
constraints, self-contact—and their combinations).

III. MULTISENSORIAL ROBOT CALIBRATION

This section describes the theory necessary for multisenso-
rial robot calibration. We build on top of our previous work
[10], [11], but for the first time present a formulation that
is agnostic to the robot used and that encompasses all the
different calibration approaches.

A. Robot representation

For calibration purposes, we expect a parametric model
of the whole robot including any additional components like
tools or artificial skin and sensory equipment (e.g., cameras,
external measurement devices). Currently, we assume that all
joints are revolute. The model is composed of £ € N links,
N = {1,..,n}, where every link is described by either:

1) Denavit-Hartenberg (DH) notation [19]:

o = {lar, d, ax, or]}, (1

where ay, d, and ay are the first three parameters of
the DH formulation of link k; o is the offset that
specifies the positioning of the encoders on the joints
with respect to the DH representation.

2) Translation and rotation vector:

¢, = {[tkv rk}}v 2

where link % is described with a translation vector
ty = [tei1,tre,tr3]” and a rotation vector vy =
[7k.1,7k2, k3] T, with a unit vector for the axis of
rotation wy, = ;% and a rotation angle O = [[rg||.

B. Datasets

Every calibration approach requires different data: a self-
touch dataset contains two contact points; self-observation
dataset contains 2D projection points from cameras; external
device dataset contains 3D coordinates of the observed point.
To simplify data manipulation, we created a dataset format
common for all the individual datasets. Each dataset point
D, from dataset D is defined as:

D; = [pn;, 05, cp;, Tp;, Cil

where i € {1,.., M} is an index identifying one particular
dataset point, M is the number of dataset points, pn; is
pose number, which is used to unite dataset points with
some shared property (e.g., photos from two cameras on
the robot taken simultaneously), 6; is the current robot
joint configuration (joint angles from joint encoders for the
given robot configuration), cp; are the contact (or observed)
points (or point) defined by the specific robot frame and
the translation in the frame, rp, are the reference point
coordinates in 3D or 2D (projection), ¢; are the indexes of
used cameras. A single robot configuration may be unfolded
into multiple datapoints (with the same pose number).

The whole dataset D*“"°! is a set of individual datasets
for different calibration approaches:

thole _ {DSt7DPl7DSO,D€d},

where D', D', D*°, and D°® are datasets for self-
touch (st), contact with planes (pl), self-observation (so), and
external device measurements (ed), respectively.

C. Multi-chain robot calibration

In multi-chain robot calibration, we estimate the parameter
vector ¢ = {¢;, }rek, where the parameters ¢, defining
each link k& might be expressed as in Eq. 1 or Eq. 2. K C N
is a subset of all robot links (e.g., links belonging to one
robot arm). All parameters ¢, of all links k& (then K = N)
or their subset may be estimated. Calibration of only offsets
o in joints is sometimes dubbed “daily calibration” [20].
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Base . .
woﬁset chain B } ,, /-m:’ cooramate 24 and B (e.g., tactile sensor, tip of finger or tool, etc.),
system
L7y
__5_@_)__ B x E.g)ntact offset q(&) "g.“.&\

XA X

Plane coordinate system

(A) (8)

chain A | eftion p(®,Ds,E) xed

ervition z(Dy)
Camera image

chain B xA

Base coord.system
(c) (D)

Fig. 1: Schematics of calibration using self-contact (A),
contact with a plane (B), self-observation (C), and external
device (D).

Estimation of the parameter vector ¢ is done by optimiz-
ing a given objective function f(¢, D, ¢):

o :arginin f(¢, D, (), 3)

M
£(¢.D,¢) =llg(¢, D, )| = g(¢. Di,¢)°,
i=1

where M is the number of robot configurations used for
calibration (hereafter often referred to as “poses” for short),
¢ is a given parameter estimate, dataset point D); includes
joint angles 6; from joint encoders for the given robot con-
figuration, and constant vector ¢ defines all other necessary
parameters such as camera calibration, fixed transformations,
fixed kinematics parameters, or other properties of the robot.

In the following, we will often refer to individual kine-
matic chains. By a kinematic chain A we mean a set of
consecutive links &k (k € A) starting with the robot base link.
The position of the end of the chain in the robot workspace
is determined by Cartesian coordinates 2 in the robot base
frame. X notes a set of all = for the given dataset D. Let
each of the links be described by parameters ¢,;,. Then we
denote the set of parameters describing the whole kinematic
chain as ¢*, ¢ = {1} kea-

During calibration, we typically calibrate one or multiple
kinematic chains. This can be achieved through contact
with the environment (e.g., touching a plane), by physically
intersecting multiple chains (e.g., self-contact of two robot
body parts) or by intersecting them virtually (e.g., using
cameras — open-loop calibration).

Specific form of the function g(¢, D;,¢) for individual
considered chains and their combinations is discussed in the
following subsections. In [10], [11], different combinations
of intersecting chains were described in detail.

1) Self-contact: This corresponds to physical contact be-
tween individual parts of the robot itself. It can be contact
between one arm and the skin on another arm [21], [8], [7],
[10], contact between two end effectors on individual arms
[11], or in general any contact between two robot parts (see
Fig. 1, A).

In this case, the parameter vector ¢ consists of the
following parameters: ¢ = {¢”, "}, where ¢* and ¢”
are kinematics parameters being calibrated corresponding
to the first and second kinematic chain of the robot body,
respectively. Let kinematic chains A and B end at the point

ideal case) means that 4 = x®. The objective function to
be optimized is:

gSt(¢7 DStvC) :[C(¢,D17C) - Q(C)’ cey
C(¢a DMvC) _q(C)]

where the function c(¢p, D;,¢) = || XA(¢*,D;,¢) —
XB(¢®,D;,¢)|| computes the distance of the points in
contact of the two kinematic chains in the configuration
given by the dataset point D;, where D; € D*f, where
D*t ¢ D™ is a set of dataset points with self-contact
robot configurations. Parameter ¢(¢) is the contact offset
(e.g., thickness of the skin cover).

2) Planar constraints — one arm chain in contact with
a plane: This corresponds to the scenario where the given
robot body part (A) (e.g., robot arm) is getting into contact
with a plane (see Fig. 1, B). In this type of optimization
problem, we can distinguish formulations including single-
plane or multiple-plane constraints [22], [23]. The classical
formulations of the problem use either a general equation
of the constraint plane or plane normals [24]. The general
equation of a plane is az+by+cz+d = 0, where n = (a, b, ¢)
is a plane normal vector. The parameters of the plane can be
known in advance (as in [24], [9] or [25] where calibration
cube is used), or unknown [22].

When the plane parameters are unknown, the parame-
ter vector ¢ consists of the following parameters: ¢ =
{(]5‘4,117 d}, where ¢? are the parameters of the robot
kinematic chain in contact with the plane, n is a plane
normal, and d is the distance of the plane from the origin. We
formulated the objective function as the distances between
contacts and one or multiple fitted planes:

gp(d)pv Dp7 C) :[C(¢p17Dp‘ ’ C) - q(C)v ey
c((an’D[’n’C) - Q(C)]

where DP C DY, DP = {DP' .., DPr} is a set
of datasets where contacts between the points in X and
planes pj.,..., p, were performed. Parameter ¢(¢) defines the
contact offset (fixed distance between the contact point &
on the robot and the plane). In direct contact, ¢({) = 0;
if the transformation directly to the contact point is not
available, ¢(¢) # 0. The set ¢” = {¢"*, ..., p""} is a set of
parameters for planes py, ..., pn. The vector c(¢’4, D7, ¢)
is a vector of distances between individual end effector
positions and the given plane j for each datapoint D? from
the given dataset D?. The distance is computed using plane
normals and corresponding plane coordinates as follows:
c(¢?*, DI, ¢) = ||n?pl (") +d||. Point p! is the position
of the end effector computed by forward kinematics from
dataset point D?; ¢/ = {d)j’A,nj ,d7} is the estimated
parameter vector. Finally, ¢ wraps up all other necessary
parameters.

3) Self-observation by cameras: This corresponds to the
scenario when we observe a point on the robot body with
cameras which are part of the robot kinematic chain. The

®

(6)
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observed point might be an AruCo marker [11], finger tip
[3], light dot, taxel, etc. We can calibrate: (i) extrinsic pa-
rameters of the cameras (represented as standard robot links
using DH (Eq. 1) or rototranslation representation (Eq. 2))
assuming the robot kinematic parameters to be known, (ii)
the whole kinematic chain of the robot assuming camera
extrinsic parameters are known, or (iii) the whole kinematic
chain of the robot arm simultaneously with camera extrinsic
parameters. Optimization is performed by minimizing the
reprojection error between the observed point (e.g., AruCo
markers’ positions in the camera) and the estimated position
using the current kinematic model (see Fig. 1, C).

The parameter vector ¢ consists of the following param-
eters: ¢ = {¢A, d)B}, where ¢* are calibrated kinematics
parameters of the kinematic chain ending in the observed
point &“ on the given robot part and ¢° are kinematic pa-
rameters of the kinematic chain ending in the robot camera.
The objective function is formulated as the distance between
projected points and their pixel coordinates in the images:

gso(¢)7 DSO7C) :[p(¢7D17<) - Z(D1)7 ()
p(¢aDM’7C) _Z(DJ\I’)]

where p(¢, D;,¢) is the reprojection of the observed
point X# from dataset point D; where i € {1,...M'},
M’ is the number of individual observations over all robot
configurations in the dataset D®*°. The z(D;) is the actual
observed point position in the camera image. This approach
does not require information from both cameras/eyes and
enables us to estimate only one side of the robot body (e.g.,
parameters of the left arm and left camera). For example, the
estimated parameter vector ¢ in the case of the kinematic
chain connecting the left arm and the left camera consists
of the following parameters: ¢ = {¢”, 7}, where ¢ and
¢ are parameters corresponding to the robot left arm and
to the left camera, respectively.

To obtain the reprojection of the point X ,L-A into the camera
coordinates, the observed point coordinates are transformed
to the given camera frame using forward kinematics. Af-
terwards, a standard pinhole camera model extended with
radial and tangential distortion coefficients [26] is applied to
transform the 3D point in camera frame ([z., Y., zc]T) into
image coordinates [u/w,v/w]T (2D plane of the camera):

r=/z2+y?

2 9 4 6 '
y;} :(1+k17 +k‘2’f’ +l€3'f’) y; +

c c

Q)

7j/c = .I'C/ZC, yé = Z!(:/Zc,

2pragy, + pa(r? + 2272)

p1(r? +2y2) + 2p2iy;
[u v w}T =K [z y! 1]T (3)
where K is camera matrix, k; are radial distortion coeffi-
cients, and p; are tangential distortion coefficients.

4) Calibration via  external  devices —  laser
tracker/cameras:  Typically, a marker/retroreflector is
attached to the robot and the robot is moved in its
workspace while being observed by the external device. The
distance between the 3D position of the marker acquired

by the measurement device (laser tracker/cameras) and the
3D position computed from current robot arm kinematics
parameters (plus current joint angle values using forward
kinematics) is minimized (see Fig. 1, D).

The parameter vector ¢ consists of the following parame-
ters: ¢ = {d)A, R, t}, where ¢>A are kinematics parameters
corresponding to the calibrated body part with the attached
marker/retroreflector (can be robot arm as well as leg or
head), R and t are the rotation matrix and the translation
vector defining the external device position w.r.t. the robot
base frame. The objective function is formulated as the error
of distances:

QEd((z)v DEd’C) = {p(d) D17<)7"'7 p(¢7 DM7 C)] ) (9)

where the function p(¢, D;,¢) = || X4 — X2|| computes
the distance of the transformed point X$¢ from external
device (in its coordinate system) and the point X computed
from forward kinematics and current estimate of robot kine-
matics parameters in the configuration given by the dataset
point D;.

To calibrate the robot kinematics parameters, we minimize
the distance between these 2 sets of 3D points using an
iterative approach.

In each iteration of the optimization process we:

1) recompute the estimate of robot kinematic parameters

2) recompute rotation and translation matrix defining the
external device position w.r.t. base frame. The relation
between corresponding points in sets is generally:

X! = RX¢ +t+ N, (10)

where N; is noise for the i-th datapoint. An algorithm
introduced by Arun et al. [27] can be used for finding
least-squares solution of R and £. It is a non-iterative
algorithm using singular value decomposition of a 3x3
matrix.

5) Combining multiple chains: In order to estimate all
kinematic parameters of the robot, we can take advantage
of combining some or all of the above-mentioned kinematic
chains and correspondingly extend the parameter vector to
be estimated.

The overall objective function can be generally defined as
(depending on which datasets and criteria we want to use for
calibration):

g(¢,D.¢) = [k* © g*'(¢, D*" ),k ® gP(¢p, D”, C),
k*° © g*° (¢, D*°,¢), k“ © g°d(¢, D )], (11)

where D, DP, D*°, and D°? are datasets for self-touch,
planar constraints optimization, self-observation, and opti-
mization via external devices, respectively. Symbol ® marks
Hadamard product: (k*! ® g*t); = k5t - g¢*. Scale factor vec-
tors k7 (j € {st, p, 50, ed}) allow combination of calibration
approaches. It can be written as k] = ¢/ - p - p;, where
¢ reflects the reliability of the approach j (e.g., ¢/ = o7z,
where o is the uncertainty of the approach). The parameter p
is inversely proportional to the number of measurements for a
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given configuration to compensate for the number of added
equations to calibration (e.g., multiple markers on the end
effector detected by self-observation during one self-contact).
The parameter f; transforms different units (e.g., pixels)
to meters (is equal to one for all approaches except self-
observation). The conversion is determined from intrinsic
parameters of cameras as p; = d;/ f, where f is focal length
and d; is the distance from camera to the i-th observed point.

D. Non-linear least squares optimization

To solve the calibration task and find optimal parameters
(a*,d*,a*,0*) or (t*,r*), an appropriate optimization tech-
nique has to be used. Robot kinematic calibration is generally
cast as non-linear least squares parameter estimation [1]
and solved using the Gauss-Newton or Levenberg-Marquardt
algorithm. The latter—an improved version of the former—
is used here, in line with state of the art in the literature.
A reasonable initial estimate ¢* of these parameters impor-
tantly contributes to the ability of the system to calibrate all
the components and find a realistic robot model.

E. Observability and identifiability of parameters

To evaluate the ability to calibrate a given robot model
using the provided dataset, observability and identifiability
of the parameters are used. According to [28], the observ-
ability index measures the quality of the dataset based on
the identification Jacobian matrix J, which represents the
sensitivity of minimized values to the change of individual
parameters. Borm and Menq [29] proposed a measure Oy;
Driels and Pathre [30] proposed O2; Nahvi and Hollerbach
proposed measures O3 [31] and Oy [32]. All these measures
can be computed from the singular value decomposition of
J. They are defined as:

1 2
0y = (@22s0m) ™ 0, — Guin | 0y = 0,5, 04 = S, (12)

n ! Omaaz’ Omax

where o is the j-th singular number, m is the number of
independent parameters to be identified and n is the number
of calibration configurations.

The identification Jacobian matrix itself shows us the
identifiability of individual optimized parameters: J(i,7) =
g;fji, where X; is a distance (Eq. 5, Eq. 6, and Eq. 9) or
a reprojection error (Eq. 7) and ¢; is the parameter to be
estimated. If a matrix column related to a parameter consists
only of zeros, the parameter is unidentifiable which leads to
an unobservable problem (the minimal singular number is
zero). According to [1], an unidentifiable parameter means
that the experimental setup does not allow it to be identified,
not that it is intrinsically unidentifiable.

F. Perturbation of the initial parameters estimate

To evaluate the dependence of the optimization perfor-
mance on the quality of initial parameter estimates, pertur-
bation of individual parameters can be used. The perturbation
factor p is applied to individual parameters (DH parameters
or rotation vectors):

DT = p-uniform[—1;1] + @; [rad, m, —]. (13)

For example, in [11] and [10], we used p = {0.1,0.3,1} for
perturbation of offsets and p = {0.01,0.03,0.1} for «,a,d
as it is reasonable to expect that the DH parameters (a,
a, and d) will be in general more accurate as they can be
extracted from CAD models and there is no moving part and
no encoder involved.

G. Evaluation

To evaluate the calibration quality, the dataset may be split
into training and testing sets in a selected ratio (e.g., 70 to
30), each containing different robot poses. Optimization is
based on the training data; testing data are used to evaluate
the result.

The root-mean-square (RMS) error is used to compare
results from multiple optimization runs. It is computed as:

RMS. = /1 L (kig°(9. D5, Q)2 = \/1Ik¢ © ¢°(6, D7, O)I, (14)

where L is the number of observations/measurements, k;
is a scale factor for the given calibration approach ¢, and
9°(¢p, D, ¢) is the corresponding objective function (see
Sec. III-C for specific form of individual objective functions).

To compare different executions when multiple chains are
combined (see Sec. III-C.5), individual errors have to be
summed:

RMS;0; = \/RMSSZO + RMS? + RMS2 + RMS2,. (15)

IV. SOFTWARE DESCRIPTION

The theory described above was embedded in an open-
source Multisensorial robot calibration toolbox [2]. Here we
describe the main components of the toolbox. For details,
see the README at [2].

A. Software Architecture

Fig. 2: GUI application screenshot.

The toolbox is a Matlab Add-On which provides functions
and classes for robot calibration and a GUI application (see
Fig. 2), which encapsulates the code into a working unit.
The toolbox can be installed from Github [2] and used under
GNU GPL license. Matlab (version R2016b and later) and
the corresponding version of Matlab Optimization Toolbox
is required. The pipeline and data flow are illustrated in Fig.
3. Fig. 4 provides a schematic overview.
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Fig. 3: Toolbox pipeline and data flow.

B. Inputs

Calibration problems are defined by Robot description
(Robot), Configuration settings (Configuration) and Dataset
used for calibration (Dataset). Robot description might also
optionally include Whitelist (which parameters should be
calibrated) and Bounds (restrictions on the parameter values).
The individual files are in a Matlab function format and
return struct objects (more details below). Templates and
examples of these input files are provided with the toolbox.

To simplify the definition of robot kinematic structure
and the selection of parameters to calibrate, the possibility
of grouping links is useful. For that reason, we prepared
two data types. A data type Group determines to which
body part a link belongs (e.g., head), and T'ype represents
user-defined grouping across body parts, e.g., robot links
and different skin parts (taxel, patch, triangle). The toolbox
contains predefined values for both data types, but users can
freely modify them or add new ones.

1) Robot object: Robot is considered as an object with a
tree-like kinematic structure. The object is constructed based
on three parameters defined in the Robot file: robot name,
links structure, and robot structure. The links structure is an
array of all robot links with their names, groups, link types,
parents, and row indexes in the group-specific kinematic
parameters matrices.

The robot structure consists of: 1) Kinematics parameters:
Description of the robot kinematics (in metres and radians;
more details in Sec. III-A); 2) Eyes (cameras): Description of
robot eyes (mounted cameras) by their camera matrix, radial
and tangential distortion coefficients (see Eq. 8); 3) Whitelist:
Boolean matrices determining which kinematics parameters
should be calibrated. 4) Bounds: Bounds for parameters in
case of calibration with bounded fitting parameters.

The robot can be visualized with cylinders for every robot
link (derived from [33]).

2) Configuration: Calibration properties and settings are
determined by the Configuration containing: 1) Optimiza-
tion solver settings (Matlab optimization toolbox - e.g.,
algorithm, maximum number of iterations, termination toler-
ance); 2) Calibrated chain: which body parts (Group) will be
calibrated; 3) Calibration approach (more details in Sec. III-
C); 4) Calibrated link type: which T'ype will be calibrated; 5)
Perturbations: perturbation ranges for each type of parameter
(la,d, o, 0] or [t1,t2,t3,71,72,73]) as defined in Sec. II-F;
6) Calibration settings (e.g., number of repetitions, units of
length, train/test dataset part split ratio).

3) Dataset: The toolbox expects calibration datasets in
the format described in Sec. II1I-B. All datasets contain pose-

number and robot joint configuration. Depending on the
calibration type, the dataset also includes other information
(e.g., self-contact calibration contains also contact frame,
second contact frame, translation in contact frames (points),
reference coordinates of the contact point (optional), and
reference distance from the contact point (optional)).

Multiple datasets can be merged into one dataset struc-
ture containing datasets for different calibration types (self-
observation, self-contact, etc.) in the corresponding structure
field. As the dataset file is a Matlab function, calibration
settings, calibrated chains, and additional function arguments
can be used for faster dataset structure preparation.

C. Preprocessing

Before calibration, input files have to be preprocessed —
see Fig. 3. First, individual input files are loaded (robot
parameters, configuration, and kinematics; see Sec. IV-B).
Second, the robot object is constructed. Third, based on the
calibration properties and settings (information of selected
calibration approaches, joint types and chains to be cali-
brated, whitelist of calibrated parameters, etc.), calibration
data are prepared. This is complemented by optional appli-
cation of perturbation and bound parameters. If perturbation
is chosen, only the calibrated parameters are perturbed
(Sec. III-F for details). Then the original and perturbed
parameters are extended with their upper and lower bounds.
If a perturbed parameter is out of bounds, then it is set
to the bound value. Finally, when the robot and calibration
properties are prepared, the dataset is loaded. As mentioned
in Sec. III-G, the datasets are divided into a training part and
a testing part. The split is done based on the pose number,
which means that all data points of the same pose (with the
same pose number) are in the same part.

There are several dataset visualizations available: 1) his-
togram of distribution of robot joint angle values; 2) inter-
active visualization of individual joint configurations from
the dataset; 3) robot in its default joint configuration and the
data points coordinates computed from the robot kinematic
parameters. See the corresponding panel in Fig. 4.

Plane parameters (planar calibration) or the transformation
matrix from the external device to the robot base frame
(external calibration) may be unknown and can be added to
calibration (more details in Sec. III-C). In that case, the initial
parameters are calculated for the training dataset and added
to the vector of calibrated parameters before calibration.

Results of previous calibrations can be loaded from .mat or
text file as the starting parameters for the current calibration.

D. Calibration

Calibration is provided by the nonlinear least-squares
solver Isqnonlin from Matlab Optimization Toolbox. The
minimized function returns a vector of function values com-
puted for a chosen subset of functions from Sec. III-C.
Calibration runs for a specific number of repetitions with
differently divided datasets into training and testing part. All
repetitions are done for parameters without perturbation, and
eventually, for perturbed parameters based on the perturba-
tion levels prepared and chosen in Configuration.
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Appendix I. Multisensorial robot calibration framework and toolbox
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Fig. 4: Schematic overview and examples of the toolbox pipeline and functionality.

E. Postprocessing and results

The ability to calibrate the selected kinematic parameters
is evaluated by identifiability and observability of calibrated
parameters (more details in Sec. III-E). The Jacobian matri-
ces are returned directly from the optimization solver, and
the observability indexes are computed for each iteration.

The results of calibration are evaluated by: 1) computing
corrections of the calibrated parameters over multiple rep-
etitions; and 2) RMSE errors for training and testing data
before and after calibration (more details in Sec. III-G).

Most of the variables and function arguments (e.g., cali-
brated kinematics results, corrections, RMSE) are saved in
.mat files. Additionally, the calibrated kinematics results and
calibration properties and settings are saved in text files.
Large files like Jacobian matrices are saved only on request.

Prepared visualizations can show the saved results (e.g.,
Fig. 4). The boxplots (implementation by [34]) are used
to visualize Jacobians, observability indexes (Eq. 12), cor-
rections, and RMSE (Eq. 14). Moreover, the errors can be
shown in a bar chart (RMSE), error-joint dependence plot,
and histogram of errors before and after calibration.

F. Illustrative examples

A schematic overview is in Fig. 4. To demonstrate how the
toolbox works, we show calibration of three different robots
(first column in Fig. 4): iCub humanoid robot (see [10] for
details), Nao humanoid robot with whole-body artificial skin
[35], and dual-arm setup with Yaskawa-Motoman MA1400
[11]. The repository [2] includes also other examples that
can be used as templates. In the preprocessing step, one
can visualize mainly dataset related plots. Examples of iCub
tree-like structure, iCub and Motoman dataset points, and
iCub joint distribution visualizations are shown in the second
column of Fig. 4.

Different robots can be calibrated by different approaches
and their combinations as shown in the third column. The last
column presents results of successful calibration for some
of the approaches mentioned above. The following cases
are shown: spatial calibration of the artificial skin, robot
kinematic calibration (iCub right arm), histogram of errors
before and after calibration of skin on the Nao using self-
touch and corrections of rightArm skin parameters, and RMS
errors comparison of Motoman calibration by planes and by
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external device.

V. CONCLUSION AND FUTURE WORK

We presented a framework for robot kinematic calibration
which extends state-of-the-art methods of open-loop and
closed-loop calibration [1] by providing a unifying formu-
lation that encompasses approaches typical for industrial
robots (laser tracker, physical contact with environment)
as well as “self-contained” calibration approaches available
to humanoids (self-observation, self-contact). We present a
formulation that covers all these types and allows for their
combinations. Second, the framework is embedded in an
open-source toolbox for Matlab and we demonstrate its
functionality on several robots and calibration approaches.
Unique to our framework and software, we also support
calibration of/using whole-body tactile sensors.

In the future, we plan to extend our framework and toolbox
to include also the use of inertial sensors as shown in [6],
[12], [13]. Next to revolute, prismatic joints could be also
added. Planar constraints are only one example of closed-
loop calibration approaches—other variants that constrain a
different number of degrees of freedom are possible and
can be added. From a practical point of view, it would be
beneficial to enable importing robot kinematics in the Unified
Robot Description Format (URDF) and reflect measurement
uncertainty of each measured pose in scale factors.

REFERENCES

[1] J. Hollerbach, W. Khalil, and M. Gautier, “Model identification,” in
Springer Handbook of Robotics, 2nd ed., B. Siciliano and O. Khatib,
Eds. Springer, 2016, pp. 113-138.

[2] J. Rozlivek, L. Rustler, K. Stepanova, and M. Hoffmann, 2020.
[Online]. Available: https://github.com/ctu-vras/multirobot-calibration

[3] S. R. Fanello, U. Pattacini, 1. Gori, V. Tikhanoff, M. Randazzo,
A. Roncone, F. Odone, and G. Metta, “3D stereo estimation and fully
automated learning of eye-hand coordination in humanoid robots,” in
Humanoid Robots (Humanoids), IEEE-RAS Int. Conference on, 2014.

[4] R. Martinez-Cantin, M. Lopes, and L. Montesano, “Body schema

acquisition through active learning,” in Robotics and Automation

(ICRA), IEEE International Conference on, 2010.

P. Vicente, L. Jamone, and A. Bernardino, “Online body schema

adaptation based on internal mental simulation and multisensory

feedback,” Frontiers in Robotics and Al, vol. 3, p. 7, 2016.

O. Birbach, U. Frese, and B. Biuml, “Rapid calibration of a multi-

sensorial humanoid’s upper body: An automatic and self-contained

approach,” The International Journal of Robotics Research, vol. 34,

no. 4-5, pp. 420436, 2015.

[7]1 A. Roncone, M. Hoffmann, U. Pattacini, and G. Metta, “Automatic
kinematic chain calibration using artificial skin: self-touch in the
iCub humanoid robot,” in Robotics and Automation (ICRA), IEEE
International Conference on, 2014, pp. 2305-2312.

[8] Q.Li,R. Haschke, and H. Ritter, “Towards body schema learning using
training data acquired by continuous self-touch,” in Humanoid Robots
(Humanoids), IEEE-RAS Int. Conf. on. IEEE, 2015, pp. 1109-1114.

[9] R. Zenha, P. Vicente, L. Jamone, and A. Bernardino, “Incremental

adaptation of a robot body schema based on touch events,” in

Joint IEEE Int. Conf. on Development and Learning and Epigenetic

Robotics (ICDL-EpiRob), 2018.

K. Stepanova, T. Pajdla, and M. Hoffmann, “Robot self-calibration

using multiple kinematic chains — a simulation study on the iCub

humanoid robot,” IEEE Robotics and Automation Letters, vol. 4, no. 2,

pp. 1900-1907, 2019.

K. Stepanova, J. Rozlivek, F. Puciow, P. Krsek, T. Pajdla, and

M. Hoffmann, “Automatic self-contained calibration of an industrial

dual-arm robot with cameras using self-contact, planar constraints, and

self-observation,” Robotics and Computer-Integrated Manufacturing,

2021. [Online]. Available: http://arxiv.org/abs/2012.07548

[5

[6

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

N. Guedelha, N. Kuppuswamy, S. Traversaro, and F. Nori, “Self-
calibration of joint offsets for humanoid robots using accelerometer
measurements,” in Humanoid Robots (Humanoids), IEEE-RAS Inter-
national Conference on. 1EEE, 2016, pp. 1233-1238.

P. Mittendorfer and G. Cheng, “Open-loop self-calibration of articu-
lated robots with artificial skins,” in Robotics and Automation (ICRA),
IEEE International Conference on. 1EEE, 2012, pp. 4539-4545.

P. Mittendorfer and G. Cheng, “3D surface reconstruction for robotic
body parts with artificial skins,” in Intelligent Robots and Systems
(IROS), IEEE/RSJ Int. Conference on, Oct 2012, pp. 4505-4510.

P. 1. Corke, Robotics, Vision & Control: Fundamental Algorithms in
MATLAB, 2nd ed. Springer, 2017, iSBN 978-3-319-54413-7.

N. Nadeau, “Pybotics: Python toolbox for robotics.” [Online].
Available: https://github.com/nnadeau/pybotics

, “Pybotics: Python toolbox for robotics,” Journal of Open Source
Software, vol. 4, no. 41, p. 1738, Sept. 2019.

M. Ferguson, “Robot calibration.” [Online].
//github.com/mikeferguson/robot_calibration

J. Denavit and R. S. Hartenberg, “A kinematic notation for lower
pair mechanisms based on matrices,” Journal of Applied Mechanics,
vol. 77, no. 2, pp. 215-221, 1955.

K. Nickels, “Hand-Eye calibration for Robonaut,” NASA Summer
Faculty Fellowship Program Final Report, Tech. Rep., 2003.

A. Albini, S. Denei, and G. Cannata, “Towards autonomous robotic
skin spatial calibration: A framework based on vision and self-touch,”
in Intelligent Robots and Systems (IROS), IEEE/RSJ International
Conference on. 1EEE, 2017, pp. 153-159.

H. Zhuang, S. H. Motaghedi, and Z. S. Roth, “Robot calibration
with planar constraints,” in Robotics and Automation (ICRA), IEEE
International Conference on, vol. 1. IEEE, 1999, pp. 805-810.

A. Joubair and 1. A. Boneyv, “Non-kinematic calibration of a six-axis
serial robot using planar constraints,” Precision Engineering, vol. 40,
pp. 325-333, 2015.

M. Ikits and J. M. Hollerbach, “Kinematic calibration using a plane
constraint,” in Robotics and Automation (ICRA), IEEE International
Conference on, vol. 4. 1EEE, 1997, pp. 3191-3196.

A. Joubair and I. A. Bonev, “Kinematic calibration of a six-axis serial
robot using distance and sphere constraints,” The Int. Journal of Adv.
Manufacturing Technology, vol. 77, no. 1-4, pp. 515-523, 2015.

J. Heikkila and O. Silven, “A four-step camera calibration procedure
with implicit image correction,” in Proc. of IEEE Comp. Soc. Conf.
on Computer Vision and Pattern Recognition, 1997, pp. 1106-1112.

K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting
of two 3-d point sets,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, no. 5, pp. 698-700, 1987.

Y. Sun and J. M. Hollerbach, “Observability index selection for robot
calibration,” in Robotics and Automation (ICRA), IEEE International
Conference on. IEEE, 2008, pp. 831-836.

J.-H. Borm and C.-H. Menq, “Experimental study of observability
of parameter errors in robot calibration,” in Robotics and Automation
(ICRA), IEEE International Conference on. 1EEE, 1989, pp. 587-592.
M. R. Driels and U. S. Pathre, “Significance of observation strategy
on the design of robot calibration experiments,” Journal of Robotic
Systems, vol. 7, no. 2, pp. 197-223, 1990.

A. Nahvi, J. M. Hollerbach, and V. Hayward, “Calibration of a
parallel robot using multiple kinematic closed loops,” in Robotics and
Automation (ICRA), Int. Conference on. 1EEE, 1994, pp. 407-412.

A. Nahvi and J. M. Hollerbach, “The noise amplification index
for optimal pose selection in robot calibration,” in Robotics and
Automation (ICRA), IEEE International Conference on, vol. 1. 1EEE,
1996, pp. 647-654.

“Wiki for iCub and friends — forward kinematics,” 2017. [Online].
Available: http://wiki.icub.org/wiki/ICubForwardKinematics

Available: https:

J. C. Lansey, “Box and whiskers plot (without statistics
toolbox),” 2020, retrieved December 4, 2020. [Online].
Available:  https://www.mathworks.com/matlabcentral/fileexchange/

42470-box-and-whiskers-plot- without- statistics-toolbox

L. Rustler, B. Potocna, M. Polic, K. Stepanova, and M. Hoffmann,
“Spatial calibration of whole-body artificial skin on a humanoid robot:
comparing self-contact, 3D reconstruction, and CAD-based calibra-
tion,” in Humanoid Robots (Humanoids), IEEE-RAS International
Conference on, 2021.






Appendix J

Spatial calibration of whole-body

artificial skin on a humanoid robot:
comparing self-contact, 3D

reconstruction, and CAD-based
calibration

Authors’ version of:

Rustler, L., Potocna, B., Polic, M., Stepanova, K., and Hoffmann, M. (2021). Spatial calibration of
whole-body artificial skin on a humanoid robot: comparing self-contact, 3D reconstruction, and
CAD-based calibration. In Humanoid Robots (Humanoids), IEEE-RAS International Conference on,
pages 445-452.

DOL https://doi.org/10.1109/HUMANOIDS47582.2021.9555806
Youtube video: https://youtu.be/CCa20PDg-BY

Author contributions: The contribution of M. Hoffmann was 20%.


https://doi.org/10.1109/HUMANOIDS47582.2021.9555806
https://youtu.be/CCa2OPDq-BY

196

Appendix J. Spatial calibration of whole-body artificial skin on a humanoid robot

Spatial calibration of whole-body artificial skin on a humanoid robot:
comparing self-contact, 3D reconstruction, and CAD-based calibration

Lukas Rustler!, Bohumila Potocna', Michal Polic’»?, Karla Stepanova':2, and Matej Hoffmann!

Abstract— Robots were largely missing the sense of touch
for decades. As artificial sensitive skins covering large areas of
robot bodies are starting to appear, to be useful to the machines,
sensor positions on the robot body are needed. In this work, a
Nao humanoid robot was retrofitted with pressure-sensitive skin
on the head, torso, and arms. We experimentally compare the
accuracy and effort associated with the following skin spatial
calibration approaches and their combinations: (i) combining
CAD models and skin layout in 2D, (ii) 3D reconstruction from
images, (iii) using robot kinematics to calibrate skin by self-
contact. To acquire 3D positions of taxels on individual skin
parts, methods (i) and (ii) were similarly laborious but 3D
reconstruction was more accurate. To align these 3D point
clouds with the robot kinematics, two variants of self-contact
were employed: skin-on-skin and utilization of a custom end
effector (finger). In combination with the 3D reconstruction
data, mean calibration errors below the radius of individual
sensors were achieved (2 mm). Significant perturbation of more
than 100 torso taxel positions could be corrected using self-
contact calibration, reaching approx. 3 mm mean error. This
work is not a proof of concept but deployment of the approaches
at scale: the outcome is actual spatial calibration of all 970
taxels on the robot body. As the different calibration approaches
are evaluated in isolation as well as in different combinations,
this work provides a guideline applicable to spatial calibration
of different sensor arrays.

I. INTRODUCTION

Tactile sensing is crucial to improve robot capabilities
beyond state of the art performance. Artificial skins covering
large areas of robot bodies with sensitivity to force/pressure
make it possible to unambiguously localize multiple simul-
taneous contacts which can be exploited for robot control in
safety-related ways (physical Human-Robot Interaction) or in
social HRI. The importance of endowing robots with touch
has been recognized for several decades and a large number
of technologies have been developed (see e.g., the 2019
special issue of Proceedings of the IEEE [1]). The focus has
largely been on tactile sensing for manipulation, as equipping

This work was supported by the Czech Science Foundation (GA CR),
project EXPRO (No. 20-24186X). L.R. was additionally supported by the
Czech Technical University in Prague (No. SGS20/128/OHK3/2T/13). M.P.
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CAD processing and the custom end effector. Hassan Saeed contributed
scripts for importing and visualizing taxel position data. Maksym Shcherban
assisted with CAD files and visualizations.
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Fig. 1. Nao with artificial skin. (Left) With complete skin. (Right) Without
top layer—skin patches with triangles and taxels exposed.

robot only hands/fingers with tactile sensors requires rela-
tively small patches of electronic skin. Whole-body artificial
skins for robots have been an exception, with only a few
successful technologies deployed on complete robots and
over extended time periods: (i) capacitive skin coming from
the ROBOSKIN project [2] was used for example on the
iCub humanoid; (ii) PVDF films were embedded beneath
the skin of CB? robot [3]; (iii) photo-reflectors covered by
urethane foam [4] were later used on the baby humanoid
Noby; (iv) the multimodal skin modules of Mittendorfer,
Cheng, and colleagues [5] were deployed on a number of
different robots. The potential of sensing over the whole body
surface has also not been fully explored, but Cheng et al.
provide an overview of applications of their electronic skin
[6]. Recently, artificial skin solutions have found their way
to the collaborative robot industry through Airskin (pressure-
sensitive) and Bosch APAS (using proximity).

For large area tactile arrays to be useful, their spatial
calibration—determining the 3D location of individual sen-
sors with respect to known reference frames on the robot—is
indispensable. Often, the sensor arrays are fitted onto existing
robots and placed manually. With skin arrays containing
hundreds or thousands of sensors, manual registration of their
positions is not feasible. We review the approaches used in
the past and then we provide an experimental evaluation
of several methods on what we consider a representative
example: a Nao humanoid robot has been retrofitted with
additional 3D printed covers to host skin arrays on its head,
torso, and hands. The capacitive tactile sensors, 970 in total,
have then been manually placed onto these mounts and bent
to conform to the 3D surface. We compare the accuracy and
effort associated with the following calibration approaches
and their combinations: (i) combining CAD models and skin
layout in 2D, (ii) 3D reconstruction from images, (iii) using
robot kinematics to calibrate skin using self-contact.

An accompanying video illustrating details of the methods
and results is available at nttps://youtu.be/CCa20PDg-BY.
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II. RELATED WORK

Robot kinematic calibration aims at identifying parameters
such as link lengths and orientations of the robot structure
and any added tools [7]. Different mechanical systems like
measurement arms or contactless measurement systems like
laser trackers are employed. For calibrating large-area tactile
arrays on the robot body, the same methods partially apply,
but the number of parameters grows enormously: every
tactile element (taxel in what follows) forms its own link
extending the robot kinematics. For example, mechanical
measurement arms would be applicable to spatial calibration
of large-area sensor arrays. However, with hundreds or
thousands of sensors, such a procedure would be extremely
laborious. Laser trackers and visual-based methods rely on
special markers that are typically larger than the skin taxels.
Identification of individual taxels in a camera image depends
on the appearance of the sensors and whether they are
exposed or covered by a protective layer.

Some artificial skins feature multiple sensing modalities.
The multimodal skin modules of Mittendorfer and Cheng [5]
host 3-axis accelerometers and communication capabilities
that allow the modules to identify their neighbors and hence
establish the skin topology. Combining these and knowledge
about the modules’ dimensions for skin covering a single
body part, it is possible to reconstruct every sensors’ pose
using a touch-less method by sampling of gravity vectors in
multiple robot poses [8]. In [9], this work is extended ex-
ploiting the LEDs also embedded in the modules: selectively
turning on different modules’ LEDs with different colors,
salient visual features are formed. When observed by an
external monocular camera, 6D pose of such “adaptive visual
markers” can be estimated. However, our focus is on tactile
arrays that have pressure-sensing capability only.

Cannata et al. [10] formulate skin spatial calibration as a
maximum likelihood mapping problem in 6D space, where
both the position and orientation of every taxel is recovered.
In their theoretical account, they show how this could be
achieved when the tactile sensors contact external objects
with a known pose with respect to the robot.

It is desirable to have a calibration method that is self-
contained and does not require any external mechanical
or sensing equipment. For humanoid robots or dual-arm
setups, self-contact or self-touch constitutes such a method.
Assuming the taxel positions are known, self-contact can
be employed for calibrating robot kinematics ([11], [12]; in
combination with self-observation [13]). Conversely, if the
kinematics is known and the skin array positions are not—
which is more often the case—self-contact can be deployed
to calibrate the skin, as shown by Albini et al. [14] and here.

Spatial calibration of pressure-sensitive skin of the kind
used here (derived from [2]) has been performed in the past.
Del Prete et al. [15] inferred the taxel poses by estimating
contact points from interaction forces when the iCub arm
was contacting an external point probe. However, this method
requires force/torque sensing located proximally to the skin
array being calibrated and a model of the robot kinematics

and dynamics. The work most related to ours is Albini et
al. [14] who employed self-contact. The main differences
are: (i) touch was performed autonomously by the Baxter
robot relying on the kinematic model and an RGB-D camera;
(ii) contact was performed with a finger/stylus of radius 1
cm; (iii) every taxel’s position was calibrated independently
(122 taxels on the robot forearm were tested). In contrast,
we perform skin spatial calibration on four body parts of
the robot comprising 970 taxels in total and experimentally
compare several different methods and their combinations
(prior knowledge from CAD model and 2D skin layout, 3D
reconstruction from images, and two variants of self-contact).
‘We move the robot into the self-contact positions manually.

III. EXPERIMENTAL SETUP

A. Nao humanoid robot with pressure-sensitive skin

We used the Nao, Evolution (V5, Nao H25 V50). From
kinematic parameters from the manufacturer, we developed
a model of the robot’s upper body using the Denavit-
Hartenberg convention (Table 2.1 in [16] for details).

The robot used, shown in Fig. 1, is uniquely equipped with
artificial skin—same kind that is on the iCub robot. To host
the skin, custom-made 3D printed plastic mounts are attached
to the robot. The skin is composed of tactile sensors placed
on triangular flexible printed circuit boards [17]. Triangles,
hosting 10 taxels (the circles) each are assembled into skin
patches. The robot is covered with 97 triangles in total, which
makes 970 pressure-sensitive taxels over the robot’s body.
The head is covered with 2 patches with 12 triangles each
(240 taxels); every hand is covered with two patches (16 and
8 triangles; 240 taxels per hand); the torso is covered with
two patches (14 and 11 triangles; 250 taxels).

B. CAD-based calibration

One way to acquire 3D coordinates of individual taxels
is to combine CAD models with information about the
tactile sensors in 2D. Skin triangle centers are placed over
the centers of the circular pockets in the plastic part. The
CAD models of these 3D printed parts are available and
the coordinates and surface normals at the future mount-
ing points of the triangles can be extracted. Accurate 2D
information about the coordinates and orientations of every
skin triangle and subsequently every taxel within that triangle
is available. Fig. 2 provides an overview. Therefore, one
can combine these sources of information as follows: 3D
positions of mounting points are loaded. Then, the subset of
the skin patch with its 2D dimensions is imported into the
3D world as a 2D point cloud—a “sheet of paper” with the
skin—and roughly aligned with the 3D part. Then, the skin
patch is broken into individual triangles and their centers are
aligned with their mounting points in 3D. Their 2D rotation
is preserved from the skin patch; the third dimension is set
according to the normals of the centers from CAD. Every
triangle is thus flat in this representation. The results are
shown in Fig. 3 in yellow. The skin for every body part is
represented as an individual 3D point cloud.
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Fig. 3. Skin part calibration — CAD model + 2D skin vs. 3D reconstruction.
(Left) Torso. (Right) Head.

This procedure is rather laborious: one needs to keep
track of the triangle and taxel IDs from the skin patch and
match them with the 3D world. There are the following
main sources of error w.r.t. accuracy of the taxel spatial
coordinates: (i) Every triangle is flat in this model. However,
in reality, every triangle is a flexible PCB and bends to
conform to the surface; (ii) The actual placement of the skin
does not perfectly match the mounting holes in the plastic
part and the triangle orientations from the 2D skin patch are
also not perfectly preserved; (iii) The skin for every body
part as a 3D point cloud has to be manually aligned with a
local reference frame of the robot kinematics.

C. 3D reconstruction

An overview is provided in Fig. 4. The top layer covering
the triangular modules was removed and photos in three
different postures (panels A, B, C) taken: a semicircle was
traversed with the camera and 125, 78, and 57 photos,
respectively, taken (referred to as 3 datasets in this section).
In Meshroom, the reconstructed camera positions in one
dataset are depicted as red pyramids in panel D; panel E
shows the reconstructed textured 3D model. To acquire taxel
positions, the model was imported to Meshlab. Individual
taxel centers were selected by hand on the model surface
(panel F), their 3D coordinates saved along with their taxel
IDs (panel G), and imported into Matlab as 3D point clouds
(panel H). To determine the scale of the reconstruction, for
each dataset, we selected a skin part that was completely
visible (torso or head) and measured the distances for 5 pairs
of neighboring taxels in every triangle in the model (around

Overview of the approaches to skin spatial calibration used in this work. See text for details.

Fig. 4.

3D reconstruction of taxel positions. See text for details.

120 measurements in total). Their mean was computed and
the real value that was measured manually (6.50 mm; ne-
glecting the effects of curvature between neighboring taxels
in 3D) used to set the model scale. The mean difference of
every measurement from 6.50 mm over all 3 datasets was
0.086 + 0.12 mm. Then, the three datasets were brought
into the same coordinate system and the mean positions of
every taxel computed. For the torso and head, most taxels are
present in all three datasets; the mean deviation of the taxel
positions reconstructed from individual datasets from their
averaged position is 0.15 and 0.22 mm, respectively (with
max. deviation of approx. 1 mm). For the hands, for taxels
represented in more than one dataset, these deviations were
higher (left hand: mean 0.53 mm, max. 2.66 mm; right hand:
mean 0.38 mm, max 0.90 mm). Overall, all the errors are
sufficiently small compared to the taxel diameter (4.5 mm)
or the distance between two taxels (6.5 mm). The mean
positions for every taxel from all datasets were then used
as the output of 3D reconstruction. Details are in [18].

D. Estimating Center of Pressure

During self-contact configurations, there are multiple tac-
tile sensors concurrently activated (bottom left of Fig. 2).
On average, it is around 14 taxels per contact on one
skin part. For calibration, we need the corresponding points
that are at the same location in space. Pairwise matching
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of individual taxels on the two skin parts is error-prone.
Therefore, we calculated the Centre of Pressure (CoP) of the
tactile activations on every skin part. Sometimes large, even
discontinuous, areas were activated. Thus, we first clustered
the activations and then calculated the CoP for each of them
by taking the average 3D position of the taxels belonging
to every cluster. With the current model of robot and skin,
we matched the positions of the CoPs on the two skin parts
in the robot base frame and selected the two closest ones
as the contact points X in Equation 1. We used Mean
Shift Clustering and experimented with different settings
of a MaxCentroidDistance parameter (5-50 mm) that
sets the maximum distance between taxels and given cluster
centroid.

E. Custom end effector for self-contact

As an alternative to self-contact of two skin arrays, we
prepared a custom end effector in the shape of a finger or
stylus that can generate more localized skin activations (2.3
taxels activated on average; Fig. 2 top left). In this case, the
CoP is calculated in the same way for the skin part touched
by the finger. On the other kinematic chain, the position
is given by the tip of the finger. The link connecting the
fingertip with the rest of the robot was also added to the
parameters being optimized.

F. Data collection with self-contact

For calibration using self-contact, robot joint angles and
electronic skin activations need to be recorded simultane-
ously. To synchronize the data streams, they were recorded
on a single PC using a set of Python scripts. The robot
was set to the mode in which the joints could be freely
rotated and the experimenter manually brought the robot to
the self-contact configurations. To make sure that all skin
taxels were covered, a visualization was showing online
which taxels were already activated in the dataset. The
procedure is illustrated in the accompanying video. Robot
joint angles were read using the Python API from NAOgi
running on the robot. Skin activations from every body part
were streamed on separate YARP ports containing activations
(8bit resolution) of individual taxels. In this work, these
pressure values were not used; instead only a list of active
taxels for every body part (skin_events port) provided
by the skinManager! was read. The active taxel list was
later synchronized with joint angle data.

The number of contacts collected was: Right Arm — Torso:
1072, Left Arm — Torso: 810, Right Arm — Head: 670, Left
Arm — Head: 599, Right Finger — Torso: 1818, Left Finger
— Torso: 825, Right Finger — Left Arm: 1814, Left Finger —
Right Arm: 908, Left Finger — Head: 893. Note that some
of the touches have been discarded in post-processing. The
quality of calibration of different areas on the skin depends
on how many self-contact data points were collected there.
Fig. 5 visualizes this for the skin on the torso (samples from

ISettings: period 20, minBaseline 3, addThreshold 7, compensationGain
0.2, contactCompensationGain 0.05, zeroUpRawData false, smoothFilter
true, smoothFactor 0.5, binarization false

Fig. 5. Number of times
a given taxel of the torso
was the closest to the
calculated CoP on torso skin
(MaxNeighborDistance
5 mm).

all datasets containing the torso). The color map reveals
that the edges of the torso were poorly stimulated, which
is mainly because of the robot kinematic constraints.

IV. SKIN SPATIAL CALIBRATION — PROBLEM
FORMULATION

There is a chain of transformations that goes from the last
reference frame anchored to the kinematic representation of
the robot (Base frame for the torso skin; head pitch link
frame for the head; wrist yaw for the hands) to skin mount,
which is the reference frame of the 3D printed part that hosts
the skin, skin patches (two skin patches per body part in our
case), triangles with ref. frame in their centers, and individual
taxels. This hierarchy respects how the system is physically
composed.

Fig. 2 provides an overview of the skin spatial calibration
evaluated in this work. The hierarchy of transformations
for the skin arrays on the robot torso (upper block in
dashed rectangle) and right wrist (bottom) is schematically
illustrated. The top row illustrates how information about
some of the transformations can be incorporated (shown for
the robot torso skin but applies to all skin arrays). CAD
models can be used to anchor the skin mounts with respect to
the robot kinematic model. Then, together with information
about the skin dimensions in 2D, the transformations to
every skin patch and every triangle can be approximately
set (see Section III-B). The known geometry of individual
skin triangles can be used to set the coordinates of indi-
vidual taxels, assuming the triangle is flat (Section III-B).
Information about the positions of individual taxels in 3D
can be obtained from 3D reconstruction (Section III-C). This
information can be used to set the transforms further up the
hierarchy—from the skin mount to patch and from patch to
triangle. The information sources described above can be
used to acquire taxel 3D coordinates with respect to the
robot kinematic model. Note that the schematics illustrate
the different options—not all have to be available or used—
that will be quantitatively evaluated in this work.

The procedure described above is deterministic and in-
volves no optimization. However, none of this information
may be available. Therefore, we complement our calibration
approach with self-contact: if the parts in contact are covered
with tactile sensors, the contact points at the end of both
chains can be identified and their coordinates obtained from
forward kinematics. The discrepancy constitutes an error
term that can be used for optimization. Two variants are
employed in this work: (i) skin-on-skin and (ii) skin to
custom end effector (transformation to its tip replaces the
need for skin). With the first approach, one can calibrate
two skin parts simultaneously, or use one skin part to
calibrate another. This approach gives rise to relatively large
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concurrent activations (see Fig. 2, left; approximately 14
taxels on average) and their centers need to be identified
(Section III-D), which introduces errors. Therefore, we tested
also the second approach, whereby the custom end effector
(Section III-E) on left or right hand touches another body
part with skin, thereby calibrating it. The skin activations
are more localized and hence more accurate. The link to the
finger has to be added to parameters being optimized. The
self-contact method can be used alone or in combination with
the information from CAD, 2D skin or 3D reconstruction. In
this work, the robot kinematics up until the last link (local
reference frame in Fig. 2) is assumed to be accurate.
Formally, the optimization problem, estimation of the
parameter vector ¢, can be formulated as follows:

M

¢" = argmin Y _ | X} (¢", 07)-X (97, 00)]1, (1)

m=1

where M is the number of poses used for calibration, and
X ,A;l and X2 are the m™ estimated Cartesian positions of
specific points on the robot that are in contact. They are
computed using a given parameter estimate ¢ and joint
angles from joint encoders ®,,. The positions X,, are
expressed in the robot base frame located in its waist area and
are obtained using forward kinematics (with ®,,, as input)
and the hierarchy of transformations pertaining to the skin
(Fig. 2) or the transformation leading to the custom finger
end effector.

The parameter vector ¢ being optimized may contain:

hierarchy of transforms pertaining to skin part A and/or B:
nao_base skin_mount Xsk‘in,patch skin_triangle
skin_mount® “*skin_patch > “*skin_triangle’ <> tazel or

any subset of them. Additionally, the “finger” transform may
be subject to calibration. From the skin parts A and B, one
has to be the left or right hand and the other may be any other
of the three remaining skin parts (torso, head, other hand).
The transformations from the Nao base frame to the skin
mount and subsequent transformations to the skin patch, skin
triangle, and taxel are general 6D transforms (3D translation,
3D rotation) and hence 6 parameters are needed (we employ
the formula of Rodrigues).

a) Self-contact of two skin arrays: In this case, X ;?L
and X2 are determined from the center of pressure on the
two skin parts (on top of the forward kinematics chain). Note
that CoP estimation (Section III-D) depends on the current
estimation of the taxel positions. Therefore, this estimation
has to be repeated using the list of activated taxels with every
calibration step. The details of this method and an extensive
set of experiments is available in [16].

b) Self-contact with custom end effector: X ﬁ is deter-
mined from the CoP on a skin part and X fL from the finger
transform—on top of the corresponding forward kinematics
chains. The details of this method are available in [18].

A. Non-linear least squares optimization

For solving the calibration task we used the Levenberg-
Marquardt algorithm implemented in the non-linear least-
squares solver from the Matlab Optimization Toolbox. All
experiments were performed using the Multisensorial robot

calibration toolbox [19] (https://github.com/ctu-vras/

multirobot-calibration).

B. Parameter perturbation and performance evaluation

To evaluate the dependence of the optimization perfor-
mance on the quality of the initial estimates of the pa-
rameters, we perturbed all parameters being estimated in a
given experiment by selecting their values from a uniform
distribution centered at the initial estimates /; (translations)
and o; (rotations). The new initial estimates, [?°*, aj**"
were given by:

7% =100 * uni form[—1;1] + I; [mm],

2
a® = 0.5 x uni form[—1;1] + o []. @

Every optimization experiment was run 100 times with
different perturbation of the initial parameters and involved
batch optimization on a given training set (70% of the dataset
selected at random in every run), with an instance of Eq. 1 as
the objective function. Each run ended when sum of squares
of the points decreased under a given threshold (1le™!3 in
our case) or 100 iterations were reached.

For evaluation, we used the reference positions of every
taxel established in Section V-B, with Mean Euclidean Dis-
tance (MED) given by following equation:

T
]V[ED:%ZHXt(d)*)*Xt((i’r)Hv )
t=1

where ¢* is the newly calibrated parameter vector, ¢" is
the reference parameter vector (Section V-B), 7' is the set
of taxels and X(¢) is the position of each taxel under
the corresponding parameter set (¢p*/¢"). The set of taxels
may belong to skin part A or B (Eq. 1; or a union of the
two if both are calibrated simultaneously) and will contain
only those taxels that were subject to perturbation®. After
obtaining MED for each experiment, the maximum, mean,
and Standard Deviation (SD) from all 100 MED values is
computed and reported in Section V. No perturbations were
applied in Sections V-A and V-G.

V. EXPERIMENTS AND RESULTS

In this section, we present the results of different cali-
bration experiments. No ground truth information regarding
the positions of individual taxels with respect to the robot
base frame is available. However, first, the 3D reconstruction
(Section III-C) is sufficiently accurate and can serve as
reference for taxel 3D coordinates within a single body
part. Second, together, the information from CAD, 3D
reconstruction, and both self-contact methods (Fig. 2) is
sufficiently rich that the outcome of calibration taking the
best of all methods can be taken as reference for the complete
hierarchy of reference frames. This will be established in
Section V-B. In the remainder, we will report the accuracy
of approaches relying on different subsets of the information.
Visualization of selected calibration experiments is available
in the accompanying video.

2Directly or indirectly. That is, if say, the torso skin mount was perturbed,
all 250 torso taxels are affected.
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IV-A Skin calibration: CAD model + 2D skin vs. 3D reconstruction.

MaxCentroidDistance [mm]

V-D Mount perturbation and calibration
il il ion of torso and right arm

Right Arm — Torso 116.79 [ 10.38 [ 22.61
V-E Skin triangle (torso) perturbation and calibration
skin-on-skin 33 ] 667 I I
finger 6.74 | 239 [ 192
V-F Perturbation and calibration of 112 taxels of torso skin
skin-on-skin 18.11 12.02 |
finger 14.91 9.01 | 1.90
combination 5.22 3.11 [ 0.65
V-G ial calibration of skin mount, patch, triangle, and
taxel positions with 2D skin part as input (torso)
skin-on-skin 21.52 4.04 [ 4.89
finger 2132 329 I 755
combination 26.73 3.56 | 4.29
TABLE 1

SUMMARY OF RESULTS FROM SECTIONS V-A AND V-D TO V-G.

A. CAD model plus 2D skin geometry

With CAD models including the sites where skin triangle
centers will be approximately placed and the knowledge of
skin arrays dimensions in 2D (Section III-B), coordinates of
every taxel can be acquired. In this section, we assess the
accuracy of this representation by comparing with the taxel
coordinates obtained from 3D reconstruction (Section III-
C), making the assumption that the taxel coordinates in
the local coordinate frame of a body part are correct. The
equivalent two point clouds were fitted with use of SVD
and the algorithm presented in [20]. The 3D positions of all
corresponding taxels—their IDs are known—on individual
skin parts were compared. The errors are shown in the top
part of Table I and visualized in Figure 3. The mean errors
are smaller than the taxel diameter (4.5 mm) or the distance
between two taxels (6.5 mm). Best match is obtained for the
torso, which is the most flat. As expected, the visualizations
reveal that the match degrades in areas with bigger curvature,
since the “CAD + 2D” method assumes flat triangles. The
biggest mismatch is for the head skin array, which can be
explained by the difference of the actual placement of the
sensors vs. the triangle sites expected from the CAD model—
in the bottom center of the head in particular.

B. Best calibration (reference)

To establish the best possible calibration, we proceeded as
follows. The torso was taken as the basis. The T/fs¢-/mome
was taken from the CAD model. The taxel 3D positions
from 3D reconstruction were assumed to be correct and then
fitted onto the torso using the correspondence of the taxels
from 3D reconstruction and their sites in CAD using SVD
[20]. The self-contact with finger against the torso was then
used to calibrate the finger transform. Then, the skin on
the hands was calibrated from self-contact with the torso
and self-contact with the other arm with the finger. Then,
the head skin hierarchy was calibrated from self-contacts
with the hands (skin-on-skin and with finger). Finally, the

Max ED [mm] | Mean ED [mm] SD of ED [mm]
Right Amm 349 123 0.64 5 10 20 30 40 50
Left Arm 003 1.98 094 Max MED [mm)] 244 | 3.61 | 747 | 7.82 | 7.66 | 7.69
Torso 289 090 0.49
Head 744 320 48 Mean MED [mm] 222 | 332 | 698 | 7.37 | 7.27 | 7.25
'V-D Skin mount perturbation and calibration SD of MED [mm] 0.08 0.12 0.15 0.17 0.16 0.16
Right Arm - skin-on-skin 2.16 . . - . . -
Right Arm — finger .82 139 0.5
Left Arm — skin-on-skin 298 2.79 0.08 TABLE II
Left Arm — finger 097 0.65 0.13 EFFECT OF MAXCENTROIDDISTANCE.
Torso — skin-on-skin 212 197 0.05
Torso — finger 0.65 051 0.06
Head - skin-on-skin 251 2.11 0.14 Tbase,f’l‘ame

kin.mount Was unfreezed and let to calibrate using the self-
contact datasets.

C. Experiments with MaxCentroidDistance

We conducted a series of experiments to investigate the
effect of MaxCentroidDistance parameter that deter-
mines how point contacts needed for calibration are formed
from bigger contact areas (Section III-D). Only the skin-
on-skin datasets (no “finger”) were used. One skin part
at a time was calibrated, specifically the T ffffjﬁu‘ffﬁf ©
parameters), using the other skin part from the dataset. The
mount transform of the skin part being calibrated was sig-
nificantly perturbed, differently in each of 100 optimization
runs (Section IV-B and accomp. video). The results using
MED (Section IV-B, Eq. 3) are shown in Table II—all values
are means from experiments run for the four skin parts
separately. The best MaxCentroidDistance setting is
5 mm, which will be used in all experiments that follow. A
setting of 2mm was also tested, but did not give better results
(it is below the diameter of a single taxel).

D. Skin mount perturbation and calibration

Similarly to Section V-C but with
MaxCentroidDistance fixed to 5 mm, the 7775/ meme
(6 parameters) of one skin part at a time was calibrated
using self-contact datasets, newly adding those with the
finger. The results, averages of 100 runs with different
perturbations, are in Table I, V-D. For the torso and head,
both arms were employed for calibration. For example,
“Torso — skin-on-skin” means that Left Arm — Torso
and Right Arm — Torso were used. In general, the mean
errors are very small (around 2 mm or less) and even
maximum errors (of individual taxel positions) are less than
3 mm. Calibration with finger leads to even smaller errors
compared to skin-on-skin.

Calibration using self-contact performs best if one kine-
matic chain is accurately calibrated and used to calibrate an-
other chain. However, this may not always be the case. Here
we complement the results above by testing how the method
performs if the mounis (T3¢, TH-0St) of
two skin parts are perturbed and then calibrated simulta-
neously (12 parameters in total). The results, Table I, V-D
second part, show a significant degradation in performance
with max errors of a few cm rather than mm. Sometimes,
the optimization fails to align the two skin parts correctly
w.r.t. the robot, as demonstrated by the large MED (in one
of the 100 runs); median MED was 3.85 mm. Note that the
perturbation of both mounts was substantial, with up to 10
cm translation in every axis (Section IV-B).
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® Reference
O Calibrated Points
@ 2Dinput

Fig. 6. Sequential calibration of skin mount, patch, triangle, and taxel
positions with 2D skin part as input (torso). (Top — left) skin-on-skin, (top
— right) finger, (bottom) combination.

E. Skin triangle perturbation and calibration (torso)

We chose two triangles of the torso whose taxels received
sufficient stimulation in both skin-on-skin and finger datasets
(Fig. 5). Two T;,f;:j:,ﬁifgle transforms (12 parameters) were
thus subject to perturbation and calibration using all the self-
contact datasets pertaining to the torso. The results, Table I,
V-E, show a significantly better performance of calibration
using the finger. For smaller areas of the skin, the skin-on-

skin calibration accuracy is limited.

F. Skin taxel perturbation and calibration (torso)

The final layer of the skin hierarchy are the individual
sensors: taxels. In this experiment, we perturb the positions
of all the torso taxels that received sufficient stimulation (at
least 5; see Fig. 5)—112 taxels and hence 672 parameters in
total. All datasets pertaining to the torso—left and right hand,
skin-on-skin and finger—were used. The results, Table I,
V-F, show mean errors of 12 and 9 mm for skin-on-skin
and finger calibration, respectively. Employing both methods
drives the error down to 3.11 mm.

G. Skin taxel calibration with 2D skin part as input (torso)

In all sections above, with the exception of the perturbed
and calibrated parameters, all the remaining parameters of
the skin have been set according to the reference values
(Section V-B). Here we simulate a different scenario, cor-
responding to a real use case, whereby we take only 2D
information about the skin patches and initialize all taxels’
position on a plane in 3D (depicted in red in Fig. 6).

The self-contact datasets involving the torso are used to
calibrate all the parameters pertaining to the torso skin.
There is a hierarchy of transformations (6 parameters each)

that need to be calibrated (see Fig. 2): X;lk‘li‘;i’aifmt, 2%
skin_mount 925 % Xskin,patch and 250x Xsmn,triangle

skin_patch ° skin_triangle’ tazxel

(1668 parameters in total). Simultaneous calibration of all
parameters is possible and gives similar results to those
presented here, but the transformations in sequence may
compensate for their respective errors, resulting in small
errors overall, but numerical instability and incorrect esti-
mation of the individual transforms. In order to guarantee
parameter estimation closer to the physical composition of
the skin hierarchy, we calibrated sequentially in 4 steps,
starting with X7go-base and finishing with X F/rtriengte,
The results are visualized in Fig. 6 in yellow and summarized
in Table I, V-G. Overall, the calibration was successful in all
cases with mean error of 4.04 mm for skin-on-skin, 3.29 mm
for finger and 3.56 mm for their combination. Bigger errors
are mostly on the sides of the torso, which have been less
stimulated (Fig. 5).

Approach / publication Mean Error [mm]

Albini et al. [14] <2.9 (REL)
Del Prete et al. [15] 7.2 (6.6) (REL)
Mittendorfer et al. [9] <10 (REL)

Our approaches
3D reconstruction + self-contact skin-on-skin | 1.97

(torso)

3D reconstruction + self-contact finger (torso) 0.51
3D reconstruction + self-contact skin-on-skin | 10.38
(torso and hand simultaneously)

taxel perturbation + self-contact both (torso) 3.11
2D skin input + self-contact both (torso) 3.66

TABLE III
COMPARISON OF DIFFERENT APPROACHES.

H. Summary and comparison to related work

In Table III we compare our results with others. The
comparison is complicated by the fact that the skin, robot,
and calibration methods were different and ground truth was
often unavailable. In Del Prete et al. [15], Albini et al. [14],
and this work, the skin used was very similar, derived from
[2], but not identical. Albini et al. [14], employing self-
contact with “finger”, achieved an error below 2.9 mm. Del
Prete et al. [15], estimating from force/torque measurements,
reported a mean error of 7.2 mm, which could be reduced to
6.6 mm employing constraints for the robot and skin shape.
Mittendorfer et al. [9] employing LEDs on skin as markers
achieve errors below 10 mm. We prefer to quote errors for
skin patches mounted on the robot, for which errors could
often be established in relative terms only (REL). In our case,
we assume that the calibration performed in Section V-B is
sufficiently accurate to serve as ground truth and the reported
errors can be regarded as absolute errors.

In this work, we compared several approaches. Selected
results for the torso skin are added to Table III. The first
component are 3D positions of taxels within a single skin
part. In our case, these can be acquired from 3D recon-
struction with very high accuracy (errors of the order of
0.5 mm or less; Section III-C) or from a combination of
CAD models and 2D skin geometry with approximately
2 mm error w.r.t. 3D reconstructed positions (Section V-
A). The second component is aligning these point clouds
of taxel positions in 3D with the robot kinematics. To this
end, we employ the self-contact datasets. In Section V-
D, we use the taxel positions from 3D reconstruction but
significantly perturb their registration w.r.t. the robot (the
mount transformation). Calibration is performed using self-
contact, with one kinematic chain prepared with reference
values (including skin or finger) and used to calibrate the
skin on another chain. The mean error of taxel positions
is around 2 mm using skin-on-skin and 1 mm using the
finger. Simultaneous calibration using self-contact skin-on-
skin, with mounts of both skin parts perturbed, leads to
significantly larger error for torso and right hand (mean
10.38 mm; median 3.85 mm). If components further down
the skin hierarchy—patches, triangle, or taxels—are per-
turbed, the errors increase. When we perturb all taxels that
were sufficiently stimulated in the self-contact datasets (112
taxels of the torso) and calibrate using self-contact, mean
errors of 12.02, 9.01, and 3.11 mm are obtained for skin-
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on-skin, finger, and their combination, respectively. Finally,
if only the 2D skin layout is available and self-contact is
used for calibration, mean errors of 4.04, 3.29, and 3.66 mm
are obtained for skin-on-skin, finger, and their combination,
respectively.

VI. CONCLUSION AND DISCUSSION

This work is to our knowledge the first to experimentally
compare the accuracy and effort associated with the follow-
ing skin spatial calibration approaches and their combina-
tions: (i) combining CAD models and skin layout in 2D, (ii)
3D reconstruction from images, (iii) using robot kinematics
to calibrate skin using self-contact. In addition, this work is
not a proof of concept but deployment of the approaches at
scale: the outcome of this work is actual spatial calibration
of 970 taxels on the robot body. A detailed summary and
comparison with related work is presented in Section V-H.

We used a hierarchical representation of the tactile sen-
sors’ position in space respecting how the skin is composed
and mounted. We found such a decomposition effective as it
allows one to initialize or set different components from dif-
ferent sources depending on the availability of information.
For example, 3D information about the layout of individual
skin parts may be available from 3D reconstruction and can
be inserted. Self-contact can then be employed to align these
3D point clouds with the robot kinematics. This method
performed best in our setting leading to errors below the
radius of individual sensors. This method can also tolerate if
some taxels were not sufficiently stimulated by self-contact.

Calibration using self-contact works well if one chain
is known and can be used to calibrate another. If this is
not the case, both chains can be calibrated simultaneously,
but the accuracy drops. Two variants of self-contact were
employed: skin-on-skin and using a custom end effector
(“finger”). The former has the advantage that it is com-
pletely self-contained—no additional mechanical component
is needed—but the activated areas on the skin are bigger
which decreases accuracy. The additional end effector needs
to be manufactured and calibrated, but can be tailored to the
size of the sensors, resulting in more localized activations,
and it can be also designed such that it maximizes the areas
reachable by self-contact. In our case, self-contact using the
finger outperformed skin-on-skin.

For high accuracy of 3D positions of individual sensors,
3D reconstruction provided excellent results. It could be
substituted by CAD data combined with 2D skin informa-
tion, which in our case means every triangle (10 taxels)
keeps the 2D layout also in 3D, decreasing the accuracy.
However, given that the effort associated with both pipelines
is considerable but similar, 3D reconstruction is preferred.
In cases where taxels cannot be exposed and made visible
or where no information about skin geometry is available
(e.g., randomly distributed receptors in [21]), contact or self-
contact may remain the only possibility. We have shown
that after significant perturbation of the positions of more
than 100 taxels, their positions can be calibrated using self-
contact. The prerequisite for this, however, is that all the

sensors have been sufficiently stimulated.
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We present a robot kinematic calibration method that combines complementary calibration approaches: self-
contact, planar constraints, and self-observation. We analyze the estimation of the end effector parameters, joint
offsets of the manipulators, and calibration of the complete kinematic chain (DH parameters). The results are
compared with ground truth measurements provided by a laser tracker. Our main findings are: (1) When
applying the complementary calibration approaches in isolation, the self-contact approach yields the best
and most stable results. (2) All combinations of more than one approach were always superior to using any
single approach in terms of calibration errors and the observability of the estimated parameters. Combining
more approaches delivers robot parameters that better generalize to the workspace parts not used for the
calibration. (3) Sequential calibration, i.e. calibrating cameras first and then robot kinematics, is more effective
than simultaneous calibration of all parameters. In real experiments, we employ two industrial manipulators
mounted on a common base. The manipulators are equipped with force/torque sensors at their wrists, with
two cameras attached to the robot base, and with special end effectors with fiducial markers. We collect a
new comprehensive dataset for robot kinematic calibration and make it publicly available. The dataset and
its analysis provide quantitative and qualitative insights that go beyond the specific manipulators used in this
work and apply to self-contained robot kinematic calibration in general.

1. Introduction

Accurate calibration is essential for the performance of every robot.
Traditional calibration procedures involve some form of external mea-
suring apparatus and become impractical if the robot itself or the
site where it is deployed change frequently—the current trend in
automation with the shift from mass to small batch production. Fur-
thermore, collaborative and social robots often employ cheaper and
more elastic materials, making them less accurate and prone to fre-
quent re-calibration. At the same time, advances in sensor technology
make affordable but increasingly accurate devices such as standard or
RGB-D cameras, tactile, force, or inertial sensors available; often, robots
come already equipped with a selection of them. These factors together
constitute the need and the opportunity to perform an automated self-
contained calibration relying on redundant information in these sensory
streams originating from the robot platform itself.

We present a robot kinematic calibration method, which combines
complementary calibration approaches: self-contact, planar constraints,

* Corresponding author.
E-mail address: matej.hoffmann@fel.cvut.cz (M. Hoffmann).
1 Both authors contributed equally.

https://doi.org/10.1016/j.rcim.2021.102250

and self-observation. There are two main approaches to robot calibra-
tion [1]: (i) open-loop approaches, where the manipulator is not in
mechanical (physical) contact with the environment and an external
metrology system is used to measure robot pose components, and
(ii) closed-loop approaches, where physical constraints on robot pose
components substitute for external measurements. However, in their
standard formulations, both approaches require a setup that is external
to the robot itself. This work aims to extend these well-established
tools to automatic self-contained robot calibration [2] to include cam-
era reprojection errors, constraints arising from robot self-contact, or
simultaneous calibration of multiple kinematic chains.

In this work, we employ two industrial manipulators mounted on a
common base with force/torque sensors at their wrists, two cameras
overlooking the workspace, and special end effectors with fiducial
markers. Using this setup, we study different kinematic calibration
methods: self-contact, planar constraints, and self-observation. These
can be employed separately or in combination (simultaneously or

Received 24 August 2020; Received in revised form 27 May 2021; Accepted 20 August 2021
0736-5845/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Setups for automatic calibration of the dual-arm robot with graphs of the kine-
matic chains. Setup for self-touch calibration (left) and calibration when a horizontal
plane is touched (right). All chains originate in a common base frame (bottom yellow
circle). The left and right arm chains are drawn in purple and green, respectively. The
eye chains are drawn in white. Red lines denote reprojection into the cameras. Cyan
indicates the distance between end effector centers (one diameter) or between the end
effector and a plane (end effector radius). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

sequentially). Fig. 1 shows an example: a self-contact configuration
provides constraints that can be exploited to calibrate the kinematic
chain of one or both arms. At the same time, the end effectors are
observed by the cameras, providing additional data (equations) for
calibrating the manipulators’ kinematics and the camera orientation
parameters.

We evaluate the performance of individual approaches on the cal-
ibration of: (i) parameters of the custom end effector, (ii) joint offsets
of the complete kinematic chain of one arm, and (iii) the full Denavit-
Hartenberg (DH) representation of the platform. Calibration using an
external measurement device (laser tracker) is performed and serves
together with the nominal manipulators’ kinematic parameters as a ref-
erence. The calibration performance of individual methods is compared
on an independent testing dataset which covers a significant portion of
the robot workspace.

We present four main contributions. First, we provide a thorough
experimental comparison of geometric kinematic calibration using
self-contained approaches—self-contact, planar constraints, and self-
observation—with kinematic calibration based on an external laser
tracker. We demonstrate the viability of the self-contained approaches.
Second, we design ways how the individual methods can be com-
bined into a single cost function. The merits of such a synergistic
approach leading to better identifiability of the calibrated parameters
and generalization to the part of the robot workspace, which was
not used for parameter calibration, are empirically evaluated. Third,
we compare simultaneous (all parameters at once) with sequential
calibration. Fourth, we collect a new comprehensive dataset for robot
kinematic calibration and make it publicly available. This dataset and
its analysis provide quantitative and qualitative insights that go beyond
the specific manipulators used in this work and apply to self-contained
robot kinematic calibration in general.

To our knowledge, this work is the first that bridges the realm of
very accurate industrial calibration using external metrology with com-
pact approaches relying on sensors on the robot—typical for humanoid
or social robotics. The innovation this work brings is that it expands
the portfolio of traditional calibration methods by self-contained ap-
proaches such as self-contact or self-observation. While traditionally
industrial robots did not have means to detect contacts, this is changing
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now with the advent of collaborative robots where sensitive contact de-
tection is necessary for safe human-robot collaboration. Furthermore,
torque sensing within the robot structure or joint/torque sensors at
the flange facilitate dexterous manipulation and interaction with the
environment. At the same time, integrated vision sensors (cameras,
RGB-D sensors) are becoming popular. Here we provide a framework
that makes it possible to exploit all available calibration methods and
sensory streams simultaneously and combine them in an optimal way,
including weighting by their respective accuracy.

This article is structured as follows. Related work is reviewed in
Section 2. Section 3 describes Experimental setup and data acquisi-
tion: Robot (Section 3.1) and Laser tracker (Section 3.2) setup, robot
control using force feedback (Section 3.3), robot and end effector
dimensions (Section 3.4), camera calibration (Section 3.5), and descrip-
tion of individual acquired datasets (Section 3.6). The optimization
problem formulation for different combinations of kinematic chains is
described in Section 4. Experimental results for end effector, manipu-
lator offsets, and all DH parameters calibration (including laser tracker
reference) are presented in Section 5. Finally, we present the conclusion
(Section 6) and discussion, including future work (Section 7). The
accompanying video illustrating the experiments is available at https:
//youtu.be/LMwINgA1t9w; the dataset is available from [3].

2. Related work

Standard robot kinematic calibration employs different mechanical
systems—for example, measurement arms [4]—or contactless measure-
ment systems like laser trackers [5-8]. Cameras are used less often: for
example, stereo cameras combined with a calibration sphere [9] or a
camera together with a laser pointer at the end effector [10]. All of
these systems require specialized external equipment. Our platform was
previously calibrated using two different methods: (1) Redundant par-
allel Calibration and measuring Machine (RedCaM) by Bene§ et al. [11],
Volech et al. [12], and (2) Leica laser tracker. Petrik and Smutny [13]
reviewed the precision of these methods using a linear probe sensor.

Since we aim at automatic self-contained multisensorial calibra-
tion—that is, calibration using sensors on the robot, involving multiple
sensory modalities like vision and touch—we next focus on reviewing
the state of the art in calibration methods that do not rely on external
metrology systems. We will also pay special attention to humanoid-like
setups that offer the richest possibilities for self-contained calibration.

Calibration by self-observation. Cameras mounted on a robot can be
used to calibrate the robot by closing the calibration loop through self-
observation of its end effectors. The theory for this approach is laid
out in [14] for a stereo camera system observing a robot arm. The
manipulator’s kinematics and extrinsic and intrinsic camera parameters
are calibrated. Self-observation has been applied to humanoid robots
viewing their hands with fiducial markers using online methods to
calibrate kinematics relying on gradient descent by Hersch et al. [15]
and recursive least squares estimation by Martinez-Cantin et al. [16].
Fiducial markers can sometimes be avoided when the robot wrist, hand,
or fingertip are identified directly in the image [17,18]. The work of
Birbach et al. [2] on the humanoid Agile Justin will be discussed in
more detail below.

Calibration using physical constraints. The next family of approaches
exploits physical contacts of the end effector with the environment,
such as fixing the end effector to the ground [19] or using more
complex setups [20-22]. Some form of force sensing on the part of the
manipulator is required. Kinematic calibration using plane constraints
(with known or unknown parameters of the plane) was explored by
Ikits and Hollerbach [23]; they proposed a new approach focusing on
the proper definition of the base and end link frames and evaluated
primarily in simulation. Zhuang et al. [24] explored multiple variants of
plane constraints and the option with/without known plane parameters
and demonstrated their results on a PUMA 560 robot. In particular, they
showed that a single-plane constraint does not necessarily guarantee
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that all kinematic parameters of the robot will be observable. On the
other hand, a multiple-plane constraint should be a remedy to this
problem. They show that the data collected from 3 planar constraints
is equivalent to the data collected from a point measurement device
provided that: (1) all three planes are mutually non-parallel; (2) the
identification Jacobian of the unconstrained system is nonsingular;
and (3) the measured points from each individual plane do not lie
on a line on that plane. Joubair and Bonev [25] showed how multi-
planar constraints can significantly improve the accuracy of calibration
of a six-axis serial robot. Zenha et al. [26] had the simulated iCub
humanoid touch three known planes, employing adaptive parameter es-
timation (Extended Kalman Filter) for kinematic calibration. Khusainov
et al. [27] exploit a specific type of mechanical coupling as they fix the
end effector of a manipulator to the legs of a humanoid robot that is
being calibrated. A point and distance constraint can also be obtained
from visual sensing [28].

Calibration by self-contact (self-touch). Self-contact constitutes a spe-
cific, less common way of kinematic loop closure available only to
humanoid-like or dual arm setups. Additionally, corresponding sensory
and motor equipment such that this self-contact can be performed
in a controlled manner is needed. One possibility is to utilize artifi-
cial electronic skins covering specific areas or complete robot bodies
(see [29,30] for recent overviews). A tactile array may be used for
contact detection. If accurate spatial calibration of the skin is available,
then additional components of the self-contact configuration—where
contact occurs on each of the two intersecting chains—can be mea-
sured. Roncone et al. [31] performed kinematic calibration on the
iCub using autonomous self-touch—index finger on the contralateral
forearm; Li et al. [32] employed a dual KUKA arm setup with a
sensorized “finger” and a tactile array on the other manipulator. Mit-
tendorfer and Cheng [33] also exploit artificial skin to learn models of
robots, but their methods primarily utilize the signals from accelerom-
eters embedded in their multimodal skin. Alternatively, if controlled
self-contact can be established but the exact position is not measured—
typically when using force/torque sensing—such constraints can also be
employed for calibration, as will be demonstrated in this work.

Self-contained multisensorial calibration. There are only a few ap-
proaches that exploit “multisensorial” (or “multimodal”) input for
self-contained calibration. Birbach et al. [2] calibrated the humanoid
robot Justin observing its wrist. Sensors were fused by minimizing a
single cost function that aggregates the errors obtained by comparing
the discrepancies between simulated projections (left and right camera
images, Kinect image, Kinect disparity) and the wrist position from
forward kinematics. An inertial term from an IMU in the head was
also considered. It is claimed that while pair-wise calibration can
lead to inconsistencies, calibrating everything together in a “mutually
supportive way” is the most efficient. Limoyo et al. [34] used contact
constraints from sliding on a surface together with RGB-D camera
information to formulate a self-calibration problem for a mobile manip-
ulator to estimate camera extrinsic parameters and manipulator joint
angle biases. The former part is also experimentally verified. Stepanova
et al. [35] systematically studied on the simulated iCub humanoid robot
how self-observation, self-contact, and their combination can be used
for self-calibration and evaluated the relative performance of these
approaches by varying the number of poses, initial parameter pertur-
bation and measurement noise. They found that employing multiple
kinematic chains (“self-observation” and “self-touch”) is superior in
terms of optimization results as well as observability.

Largely orthogonal to the calibration types mentioned above, ob-
servability and identifiability of the system and speed of optimization
convergence can be improved by (i) combination of geometric and
parametric approaches to kinematic identification [36], (ii) improving
the error model by incorporating impact of strain wave gearing er-
rors [37] and unifying various error sources [38], or (iii) improving
the optimization method [39].
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In summary, existing works on self-contained automatic calibra-
tion have typically focused on a single approach—relying on self-
observation, physical constraints, or self-contact. Birbach et al. [2] com-
bined multiple sensors. However, first, essentially only “self-
observation” chains closed through different vision-like sensors in the
robot head were used. Second, only the case where all chains were
combined using a single cost function was considered. In [34], self-
observation and contact information are combined, but the results have
a proof-of-concept character. Our work is inspired by the simulation
study of Stepanova et al. [35] but presents a completely new setting
and results on a different platform. Using a dual-arm industrial robot
with force/torque sensing and cameras, we present several formulations
of the optimization problem for geometric kinematic calibration and
empirical verification using (i) self-contact, (ii) planar constraints, and
(iii) self-observation. The pros and cons of the individual methods
and their synergies are assessed and compared to an independent
calibration using an industrial quality laser tracker.

3. Experimental setup and data acquisition

In this section, we introduce the experimental setup: the robot
platform and its control, dimensions, and camera calibration. Then we
present the process of data acquisition and the structure of the collected
datasets.

3.1. Robot setup description

For our experiments, we used a robotic platform developed in the
CloPeMa project [40] — Figs. 1 and 2. It consisted of two industrial
manipulators Yaskawa-Motoman MA1400 installed on top of a Yaskawa
R750 robotic turntable, which allows rotation of the two manipulators
around the vertical axis, a control unit, and two computers connected
to a local network. Two Nikon D3100 cameras with Nikkor 18-55 AF-S
DX VR lens were mounted side-by-side on the turntable over the robot
base, moving along with the turntable.

Manipulators were equipped with ATI Industrial Automation Mini45
6-axis force/torque (F/T) sensors, placed between the last link of the
manipulator and the end effector. All the different parts of the robot
system were integrated into and operated with Robot Operating System
(ROS) [41]. Movelt! planning framework was used to control the robot.

We further equipped the robot with custom-made end effectors, one
on each robot arm, that can be used to achieve self-contact and, at the
same time, visual self-observation by the two cameras. To this end, we
designed and 3D printed icosahedron shapes (Fig. 3 (left)) that have
20 flat faces, where fiducial markers can be placed, interleaved with
10 spherical surface regions that can be used for self-contact. The end
effectors (further also referred to as icosahedron) were then attached
to a steel rod. The collision model (Fig. 3, center) for the end effector
was added to the robot model. For calibration employing self-contact or
contact with a plane, the end effectors are treated as spheres (see Fig. 3,
center). The spherical surfaces with corresponding reference frames are
shown in Fig. 3, right.

For visual self-observation, having 20 evenly spaced ArUco markers
should ensure that at least 3 of them are always seen by each camera
unless another part of the robot occludes the view. We used the OpenCV
ArUco module to detect the markers in images.

3.2. Laser tracker setup

For acquiring reference parameter values and a baseline for self-
contained calibration, we used an external “laser tracker”, i.e. Leica
Geosystems Absolute Tracker AT402, which is a portable 3D abso-
lute tracker for fully guided measurement processes [42]. The tracker
collects the 3D coordinates of points in the coordinate system of the
tracker. The measurement has a resolution of 0.1 pm. The tracker was
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Fig. 2. Setup of the whole dual arm robot: visualization of individual links and their
location on the robot. DH parameters of these links are listed in Table 1.

placed approximately 4 m from the manipulator. Thus, the typical U,
uncertainty of the measurement was +7.5 + 3 X 4 microns [42,43].

The retroreflector was attached to the robot approximately 25 cm
from the last joint. During data collection, the distance from the laser
tracker was between 2.5 and 4.5 m. The retroreflector and its collision
model are shown in Fig. 3 (left and center).

3.3. Robot control for contact configurations using force feedback

Driving the two manipulator arms into physical contact is necessary
for exploiting self-contact in robot calibration. A point in the workspace
was chosen where the end effectors should touch. Then, the configu-
ration of each arm and the movement trajectory were obtained using
Movelt!. Each contact consists of three or four phases depending on the
experiment. In the first phase, the robot right arm moves at a speed
of 0.7 ms~! to a point close to the desired pose. In the self-contact
experiment, this is followed by an analogous movement of the left arm.
Then the right arm starts moving to an anticipated contact point (in
fact, a small negative distance was used) with the left arm or a plane
at a speed of 0.1 ms~' until the collision is detected by F/T sensors. The

Leica retroreflector

Icosahedron with spherical tiles
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contact thresholds were determined empirically. Once the end effector
gets into contact, the arm stops moving and cameras are triggered to
take photographs. Joint angles are recorded. Afterwards, the right arm
is slowly (0.1 ms~') moving to the former position (from the end of
the first phase). Then the new target is selected and the whole process
is repeated. For laser tracker experiments, the deceleration phase is
skipped and the robot arm chosen moves directly at a speed of 0.7 ms™!
in free space to predefined configurations which were sampled in a way
that a significant part of the robot joint space is covered.

3.4. Robot and end effector dimensions and representation

A parametric model of the whole robot including the custom-made
end effectors was created. The robot’s complete kinematic model was
described by Denavit-Hartenberg (DH) notation, including cameras,
end effectors, and laser tracker retroreflector.

Initialization of parameters. To obtain the initial model, we used
the nominal parameters of the robot provided by the manufacturer,
previously acquired transformation matrices describing the mounting
of the robot on the base, CAD model and manual measurements of the
custom end effector and laser tracker retroreflector placement (the link
EEL1/2 (7b) represents the transformation to the retroreflector from the
last robot joint — see Figs. 2, 3, and Table 1), and manual measurement
of the cameras’ attachment. Using the Denavit-Hartenberg (DH) nota-
tion [44], Table 1 shows parameters of the manipulators, including the
custom end effector or the retroreflector placement. Table 2 shows the
two links to every camera.

The manipulator has 6 actuated rotational joints, denoted S, L, U,
R, B and T (in italics), connected by links which are denoted S, L, U,
R, B, and T in the order from the turntable to the end effector. Joint
S connects the turntable with link S of the robot; joint L connects
link S with link L, and so on — see Fig. 2. We added one last link to
every manipulator’s kinematic chain. These links represent the transfor-
mation to the end effector (icosahedron) (EE1, EE2) or retroreflector
(EEL1, EEL2). Links between the origin and the turntables (TT1 and
TT2) were added as well. The camera chain was also expressed using
DH representation and is composed of 2 links: the link between the
origin and the camera turntable (TT3, TT4) and the link to the camera
entrance pupil (C1, C2). These last links (EE1, EE2, EEL1, EEL2, C1,
C2) are not connected by an actual joint, and thus their joint angle was
set to zero. These joints may still have a non-zero offset o though.

We consider the complete kinematic system of the robot platform to
be composed of four individual kinematic chains described by the DH
parameters: (1) Right arm (TT1, S1, L1, U1, R1, B1, T1, EE1), (2) Left
arm (TT2, S2, L2, U2, R2, B2, T2, EE2), (3) Right camera (TT3, C1) and
(4) Left camera (TT4, C2). Additionally, we consider kinematic chains
for laser tracker measurement (5) Right arm (TT1, S1, L1, U1, R1, B1,
T1, EEL1), and (6) Left arm (TT2, S2, L2, U2, R2, B2, T2, EEL2). All
the kinematic chains start in the base frame. The transformation from
the base frame to the first joint, i.e. to the turntable joint, is identity.
For calibration using the laser tracker, we replaced the icosahedron end
effector links with links ending in the retroreflectors (EEL1, EEL2) (see
Fig. 2, Table 1 for robot DH parameters, and Table 2 for camera DH

Fig. 3. Custom end effector with icosahedron and laser tracker retroreflector (left), its collision model in self-contact configuration (¢ and o are DH parameters of end effector
and r is the radius of icosahedrons) (center), and spherical tiles used for contacts with their reference frames (right).
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Table 1

Complete initial DH parameter description of both arm kinematic chains. 7a is the last link to the icosahedron end effector; 7b is the link to the laser tracker retroreflector. The
parameters with gray shading were not calibrated unless otherwise stated (when calibrating using the laser tracker, we do not calibrate the 6th link). The individual links are
visualized in Fig. 2.

Manipulator 1 (right arm) Manipulator 2 (left arm)

Link Link name a [m] d [m] a [rad] o [rad] Link name a [m] d [m] a [rad] o [rad]
0 TT1 0 —-0.263 0.262 —1.571 TT2 0 —-0.263 —0.262 —1.571
1 S1 0.150 1.416 -1.571 0 S2 0.150 1.416 -1.571 0
2 L1 0.614 0 3.142 -1.571 12 0.614 0 3.142 -1.571
3 Ul 0.200 0 -1.571 0 U2 0.200 0 -1.571 0
4 R1 0 —0.640 1.571 0 R2 0 —0.640 1.571 0
5 Bl 0.030 0 1.571 -1.571 B2 0.030 0 1.571 -1.571
6 T1 0 0.200 0 0 T2 0 0.200 0 0
7a EE1 0 0.350 0 0 EE2 0 0.350 0 0
Laser tracker: Manipulator 1 (right arm) Laser tracker: Manipulator 2 (left arm)
Link Link name a [m] d [m] a [rad] o [rad] Link name a [m] d [m] a [rad] o [rad]
6 T1 0 0.200 0 0 T2 0 0.200 0 0
7b EEL1 0.02 0.250 0 1.571 EEL2 0.020 0.250 0 1.571
Table 2
Initial DH parameters of camera chains. Parameters with gray shading were not subject to calibration unless otherwise stated.
Camera 1 Camera 2
Link Link name a [m] d [m] a [rad] o [rad] Link name a [m] d [m] a [rad] o [rad]
0 TT3 0.2315 1.8034 —2.5086 -2.7753 TT4 0.2315 1.8602 2.5486 —0.0860
1 Cc1 0 —0.5670 0 0.2863 C2 0 —0.4982 0 3.0618
parameters). The left and right arm chains finish with the end effectors;
the last frame is in the center of each icosahedron or in the laser tracker dp =[-0.020602 —0.205606 —0.001819
retroreflector. Note that since the mounting of the two manipulators ~0.000820  0.718890]
on the turntable is not identical, the first 4-tuple of DH parameters
is also n'ot the same; we recognize two d.lstmct turntable l}nks in the d, =[-0.022546 0213094 —0.000684
arm chains and two more turntable links in the camera chains. All the 3)

chains have the same rotation of the first joint, but all other joints and
parameters are independent.

3.5. Camera calibration

The calibration of the intrinsic parameters of the cameras was
carried out with a dot pattern. The dataset used for calibration was
composed of 22 pattern images. Each of the captured images had a
different position and orientation w.r.t. cameras. Calibration of the
camera matrix K and distortion coefficients vector d was performed us-
ing OpenCV camera calibration function calibrateCamera [45], and the
following pinhole camera model extended with radial and tangential

distortion coefficients:
Ve=Velzer  r=A x24y2

x!!=xl(1+ dyr? + dyrt +d3r6)+

X = v/

2d,xy! + ds(r* +2x72)
Y=y (L4 dyr? + dyr* + dyr©)+ @
2 2
dy(r- + 2y2 )+ 2d5x2y2
"
u X("
v|=K|y!
1 1
where [x,,..z.] is a 3D point in camera frame, [u,v] are the image
coordinates.
New camera matrices K and the distortion coefficients d and d;
for right and left camera, respectively, were found as:

—0.000512  0.662333]

The distortion coefficients are presented here in the order as they
are returned from OpenCV camera calibration function calibrateCam-
era [45].

3.6. Data acquisition and description

An accompanying video illustrating the experiments is available at
https://youtu.be/LMwINqA1t9w. There were 5 distinct datasets col-
lected: (1) self-contact/self-touch experiment (both robot end effectors
get into contact), (2) contact with a lower and upper horizontal plane,
(3) contact with a vertical plane (“wall”), (4) repeatability measure-
ment, and (5) laser tracker dataset. Datasets were acquired using a
simple GUI applet [46]. Laser tracker data were also recorded for parts
of self-contact and planar contact datasets (not used in this paper but
included in the published dataset) [3].

Individual datasets. The whole dataset D¢ is a set of individual
datasets:

DWhole — (st phe pvr, plty,

where D*, D"?, D", and D' are datasets collected during self-contact/
self-touch experiment (st), contact with horizontal planes (hp), con-
tact with a vertical plane (vp), and laser tracker experiments (It),
respectively.

The world coordinate system is a right-handed Cartesian coordinate
system with axes denoted by x, y, z. Units are meters; the origin is in
the center of the robot base on the floor, the y-axis points behind the

8185.397 0.000 2009.318 L . .
robot, and z-axis points up. Euler angles refer to the orientation of the
Kp=| 0.000 8170.401  2963.960 |, X ; N
end effector with respect to a coordinate system x’, y/, z’ attached to
0.000 0.000 1.000 R .
a moving body (end effector). In our notation, «, f, and y represent
8110.478 0.000 1949.921 the first, second, and third rotation, respectively. The rotation axis is
K, =| 0.000 8098.218  2991.727 |, @ indicated by the subscript (x, y, z and x’, ', z’ denote the fixed and
0.000 0.000 1.000

current axes, respectively).
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Table 3
Dataset overview.

Dataset Orientations

Self-touch (D*)

Contact positions No. datapoints

4 x 4 x 2 grid in the xyz-box with
x €[-0.3,0.2]m, y € [-1.1,-0.6]m and z = {0.8, 1}m

9 combinations of right and left arm orientations
— see Fig. 4

566 datapoints (10 not logged)

Horizontal planes (") 5x5 grid in the xy-plane with x € [-0.4,0.3]m,

y € [~1.35,-0.65]m, and z = {0.67, 85)m

5 orientations in Euler angles (a,.f,.7.):
{(0, 185,52), (0,180,-20), (0, 180,124), (0, 180, -164),
(0,180, -92)}

5 orientations in Euler angles (a_, f,,7.):
{(180,90,0), (108,90,0), (36,90,0), (—-36,90,0),

454 datapoints (48 not logged)

Vertical plane (D) 5 x 5 grid in the yz-plane with y € [-1.2,-0.7] m,

z=1[0.7,1.1] m, and x = 0.05 m

248 datapoints (2 not logged)

(~108,90,0)}
s [onal=10225,-085,08]'m right arm  (a..4,.7,) : (~108,90,0) 20 datapoints
[ .7 = [-0.025, 085, 'm leftarm  (a..,.7,)  (0.-90,0)
[x,y,2]" =[0.3,-0.825,0.67]"m ) 20 datpoints
$ (0,185,
Repeatability PP [yl = [-04,-0825.067)"m right arm (@, f,.7.) * (0,185,52)
measurement T P :
[x,y,z]" =[0.17,-0.825, 1.1]"m i N 20 datapoints
Py 2l” =[0.17,-095.0.7]m right arm  (a;, f,,7.) : (—108,90,0)

Laser tracker (D') whole configuration space of the manipulator was

sampled (see text for details)

586 datapoints (99 not logged)

1
< —>right arm
£0.9 —>left arm |
0.8 =
02 o i 1
02 94 05
X [m] ’ Y [m]

Fig. 4. Positions of end effector centers during the self-contact experiment. The end
of each arrow denotes a position of end effector center in individual poses (red — left
arm, blue — right arm). The distance between left and right arm position is given by
two times the radius of the end effectors in contact.

Contact points of end effectors in datasets D*, D", and D*? were
planned on grids in the manipulators’ workspace, as shown in Figs. 4
and 5 for the self-contact and contact with planes, respectively. Several
end effector orientations were tested for every position. A detailed
description of individual datasets with contact points and orientations
is provided in Table 3. Every experiment was repeated twice; a few
configurations could not be reached due to robot motion planner
failure. In all cases, photographs of one or both icosahedrons in every
pose were taken and added to the dataset. In addition, for every setup
(self-touch, horizontal and vertical plane), 20 repetitions in 2 different
positions were performed to evaluate the measurements’ repeatability
(Repeatability measurement dataset). For kinematic calibration, the
distribution of robot joint angles is important. It is visualized in Fig. 6
for the different experiments.

Laser tracker experiment (D'). We sampled the whole range of the
first 4 joints of the manipulator and added uniform noise to the values
to cover the whole range of joint angles. The joint angles of the last two
joints were set so that the retroreflector faced the laser tracker. Config-
urations which would be in collision with the robot or the surrounding
environment were excluded. This resulted in 685 configurations for the
right arm, out of which 586 poses were actually recorded by the laser
tracker (see Fig. 7; Fig. 8 for joint space distribution).

Dataset structure. The whole dataset D"/ contains M dataset points
(in fact, they are row vectors): D*"/¢ = (D, ..., D,/ }. Each dataset
point D; of the dataset D™ consists of the assumed pose of right
and left icosahedron centers x!” and x!/, respectively (computed
from forward kinematics); the joint configuration of the robot 6 =
{07%,...,0%.01,...,6%} (ra and la denoting right and left arm, respec-
tively); coordinates of every marker (K being the number of markers)

1 [~rightarm
0.8 « not captured by Leica
+ captured by Leica
i1
0.75 v
T —higher horizontal plane _
= —>lower horizontal plane Eoo
N g7 ||+ notcaptured by Leica =
« captured by Leica
08
o, O
= .
0.65 . 07
05 ey e Q\“:‘\//
< \:\.\‘/
-1 ° 0.2 0.6
0.2 0.1 08
‘15 .04 0 -
Y [m i
fm X (m) X(m] sz Y [m]

Fig. 5. Positions of end effector centers in the horizontal plane contact datasets (left,
higher plane in blue, lower plane in green) and vertical plane contact dataset (right)
with the information whether the pose was logged by laser tracker (blue) or not (red).

in each of the cameras u = {u]", ..., u¢, u’lc, s u'lg} (rc and Ic denoting

right camera and left camera, respectively); position of laser tracker ball
retroreflector in the tracker coordinate system including uncertainties
U95 [42] of position detection and the tracker measurement timestamp
L = {x!,u",t"}. We also saved for reference the magnitude of force
measured by both force sensors before (F,) and during (F,) the contact
for each arm F = {F°, Fa’",FIf”, Fé”]; and the names of saved camera
images n", n'. Individual dataset points are organized in a matrix, where
each line i of the matrix corresponds to the individual dataset point:

pihole — [Dy,..., DMJT,Where :

D, =[x""x". 6, F,L,n n' u]".
X

@

The whole dataset D" contains M = 1268 logged poses with
23022 marker reprojections in total (12371 from the right camera and
10651 from the left camera), which makes approx. 25 marker reprojec-
tion per pose for self-contact experiment and 11 marker reprojections
per pose for planar constraints. There are also 586 poses acquired by
the laser tracker—this dataset does not contain marker reprojections.
The reprojections are sorted from the lowest to the highest marker ID
for every camera image. If a marker was not found in the image, its
coordinates are denoted as (NaN, NaN). Similarly, if data were not
measured or captured by Leica tracker, all corresponding values are
filled with NaN.

For optimization, we transformed the dataset so that one line would
relate to one data point. That is, for a single robot configuration with
multiple marker reprojections, the corresponding datapoint is unfolded
into multiple rows—1 per marker detected. A number defining the
robot configuration (i from the original dataset D*"¢) is repeated on
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Fig. 6. Distributions of robot joint angles (S1,L1,U1,R1,B1,T1) for measured poses for
the right arm across different experiments (only the right arm was evaluated in all
experiments). “Planar datasets” subfigure compares the vertical plane contact in blue
with the horizontal plane contact in red. “Whole dataset” subfigure compares the self-
touch experiment in red with the combination of all planar setups (2 horizontal + 1
vertical plane) in blue.
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Fig. 7. Positions of the retroreflector in the Laser tracker dataset (right arm) with
information whether the pose was additionally logged by the tracker or not (blue —
captured by the tracker (586 poses), red — not captured by the tracker (99 poses)
due to the poor visibility of the retroreflector). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Distribution of joint angles for Laser tracker dataset (right arm).

every line. Thus, one line consists of a number defining the robot pose,
a face number of the detected marker, index of the arm (1 for right or
2 for left), index of the camera (1 for right or 2 for left), position of the
marker center in the camera u = (u,v) in [px], and the current robot
joint configuration (turntable, S1, L1, Ul, R1, B1, T1, S2, L2, U2, R2,
B2, T2) in [rad], position of the tracker ball retroreflector in the tracker
coordinate system, and uncertainty U95 of the measurement.

The dataset and its description can be downloaded from [3]. For the
positions including LEICA measurements, the appropriate csv file with
(x, y, z) positions detected by the laser tracker scanner are available.

4. Multi-chain robot calibration

In multi-chain robot calibration we estimate parameter vector ¢ =
{lay,....a,l,[d},....d,].[ay,....a,),[0,...,0,]} with k € N, where N =
{1,...,n} is a set of indices identifying individual links; a;, d; and a;
are the first three parameters of the DH formulation of link k; o is
the offset that specifies the positioning of the encoders on the joints
with respect to the DH representation. This is sometimes referred to
as static geometric calibration. We often estimate a subset of these
parameters only, assuming that the others are known. This subset can
for example consist of a subset of links N’ ¢ N (e.g., only parameters
of one arm are to be calibrated) or a subset of the link parameters. Here
we focus on offsets in the revolute joints o (sometimes dubbed “daily
calibration” [47]).

Let D C D" denote the set of robot configurations (dataset
points) used for optimization:

D; =[mj,c;,u;,0;]

where i € {1,...,M'} is an index identifying one particular dataset
point, M’ is the number of dataset points used for optimization, m; is
face number of the detected marker, c; is the index of the used camera,
u; = (u;,v;) is the position of the marker center in the camera, and 6, is
the current robot joint configuration (joint angles from joint encoders
for the given robot configuration).

Estimation of the parameter vector ¢ is done by optimizing a given
objective function f(¢, D,¢):

¢ = arg;nin f(¢.D.{), 5)

»
7@.D.0) =llz@.D.OI = Y (. D,. 0%, 6)

i=1
where M’ is the number of robot configurations and corresponding end
effector positions used for calibration (hereafter often referred to as
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Fig. 9. Self-contact experiment. The left and right arm chains are drawn in purple
and green, respectively. Cyan indicates the distance between end effector centers. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

“poses” for short), ¢ is a given parameter estimate, dataset point D;
includes joint angles 6, from joint encoders for the given robot config-
uration, and constant vector ¢ defines all other necessary parameters
such as camera calibration, fixed transformations, fixed DH parameters,
or other properties of the robot. For chains involving cameras, the
function g(¢, D;, ¢) refers to reprojection error as described in the next
section while for the chains including contact, it corresponds to the
distance between a real (observed) end effector position p/ and an
estimated end effector position p¢ computed using forward kinematic
function for a given parameter estimate ¢ and joint angles from joint
encoders ;. For the case of planar constraints, the shortest distance of
end effector position (icosahedron center) to the parameterized plane
is minimized.

We study different combinations of intersecting chains and their
performance in calibrating one another. Specific form of the function
g(¢, D, ¢) for individual considered chains and their combinations is
discussed in the following subsections. At the end of every subsection,
we also state how many components of the pose can be measured using
the different methods—similarly to the analysis for standard open-loop
and closed-loop calibration approaches in [1].

For problem representation, optimization, and some visualization,
we employed the multisensorial calibration toolbox [48].

4.1. Self-contact — two arms chain (LA-RA)

This corresponds to the self-contact scenario in which contact occurs
directly between the end effectors of the Left Arm (LA) and Right Arm
(RA). As described in Section 3.1, for contact, the end effectors can
be treated as spheres and the contact can occur between any of the
10 spherical tiles. The newly established kinematic chain for the upper
body includes both arms; the head and eyes are excluded (see Fig. 9).
To optimize parameters describing this chain, we minimize the distance
between estimated positions in the 3D space of left and right arm end
effectors (see Fig. 10).

In this case, the parameter vector ¢ consists of the following pa-
rameters: ¢ = {¢", $'"}, where ¢’* and ¢'* are DH parameters being
calibrated corresponding to the robot right and left arm, respectively.
The objective function to be optimized is:

g(@. D", ) =[c(¢. D1.{) — q(©). ...
(@, Dy 8)— 9@

where the function ¢(¢, D;, {) computes the distance of the end effector
centers in the configuration given by the dataset point D;, where D, €

(7)
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2
% S@é’

Fig. 10. Visualization of self-contact scenario. When end effectors are in contact, they
are separated by distance d. This can happen in multiple configurations. For simplicity,
we visualize the case when only end effector link length is estimated for one arm (left)
or both arms (right), with the additional assumption that the link length is the same

for both arms.
—

Fig. 11. Contact with planar constraints: horizontal plane (left), vertical plane (right).

D", D c D* is a subset of the dataset points with a particular
robot configuration (see Dataset structure in Section 3.6 for details).
The distance of the end effector centers, marked as ¢(¢), is equal to
one icosahedron diameter 2r, because both end effectors have identical
shape. For the icosahedron diameter, we took the value from CAD
model of 2r = 116 mm and kept it fixed [46].

As can be seen, the objective function contains a set of constraints
on the distances between the end effector positions. These constraints
can be written for the case of self-contact as follows: Let (x],y!, z[) and
(xf,, yf ,zf), be the center of right and left arm end effector computed
from forward kinematics for data point i with the given joint configu-
ration 0;, respectively. Then for each data point D; in the dataset, we
have the following constraint (left side of the equation corresponds to
c(¢, D;, ¢) and right side to ¢(¢) in Eq. (7)):

V&l =02+ 0) =2+l - R =2r ®

According to [1], this corresponds to restricting 1 position pa-
rameter. The parameters of the touched surface (2r) are in this case
known—same as for planar constraints with known plane parameters.

4.2. Planar constraints — one arm chain in contact with a plane (LA/RA)

This corresponds to the scenario where the Left (LA) or Right (RA)
robotic arm is getting into contact with a plane (see Fig. 11). In this type



214 Appendix K. Automatic self-contained calibration of an industrial dual-arm robot

K. Stepanova et al.

Robotics and Computer-Integrated Manufacturing 73 (2022) 102250

n'P

End effector in
contact

nhP

|

<

AN AL
Horizontal plane ™ ~~-l&Zezsp-""""""""Yigptica| plane

coordinate system

Base coordinate  coordinate system
system

Fig. 12. Visualization of planes with their corresponding parameters (n?, d"? and n*, d*?) and coordinate frames. End effector with radius r in contact with horizontal plane in

multiple places is shown.

of optimization problem, we can distinguish formulations including
single-plane or multiple-plane constraints [24,25]. The classical formu-
lations of the problem use either a general equation of the constraint
plane or plane normals [23]. The general equation of a plane is:

ax+by+cz+d=0, (C)]

where n = (a, b, ¢) is a plane normal vector. The parameters of the plane
can be known in advance (as in [23,26] or [20] where calibration cube
is used), or unknown (as in our case or [24]). The planes and their
corresponding parameters are visualized in Fig. 12.

When the parameters of the plane are unknown, the parameter
vector ¢ consists of the following parameters: ¢ = {¢"/'* n,d}, where
¢’/'* are the DH parameters of the robot arm in contact, n is a
plane normal, and d is the distance of the plane from the origin. We
formulated the objective function as the distances between contacts and
a single or multiple fitted planes:

&(¢?,D".5) = [e(¢™', D", ) —r,
(@2, D", ¢) — r,c(@, D7, 8) — 1], (10)

where D? c DWhle pr = {D’”’],D”"Z,D””) is a set of datasets where
contacts between the end effector and lower horizontal plane (D""!),
higher horizontal plane (D"??) or vertical plane (D"?) were performed.
The set ¢ = {§"?', $"P?, ¢*?} is a set of parameters for lower horizontal
plane (¢""), higher horizontal plane (¢"”?), and vertical plane (¢*?),
respectively. The vector c(¢’, D/, ¢) is a vector of distances between in-
dividual end effector positions and the given plane j for each datapoint
D{ from the given dataset D’. The distance is computed using plane
normals and corresponding plane coordinates as follows: c(¢’, Df O =
||nfp{(¢’""/1") +d||. Point p{ is the center of the end effector computed
by forward kinematics from dataset point D{ ; ¢/7%/14 is the estimated
parameter vector corresponding to the DH parameters of the touching
arm; n/ = [a b c] is the plane normal; d is the distance of the plane from
the origin. These plane parameters (n/ and d’) are estimated at each
iteration of the optimization process based on current point coordinates
estimates by SVD method as described below. The ¢ wraps up all other
necessary parameters.

To acquire parameters of the fitted plane in each iteration, the mea-
sured points are converted to homogeneous coordinates and their cen-
ter of gravity is computed and subtracted from all points. Afterwards,
Matlab function SVD is called. The singular vector corresponding to the
smallest singular value is set as a normal of the plane. Parameter d
in Eq. (9) is calculated from:

d = —axy — by, — cz, 11)

where (x, yy. zo) are coordinates of the points center.

Let n = [a,b,c] be a plane normal, d the distance of the plane
from the origin, (x],)],z]) the center of the right arm end effector
computed from forward kinematics for data point D; with the given

Fig. 13. Self-observation chains: Red denotes reprojection from individual AruCo
markers to left and right camera.

joint configuration 6;, and r the radius of the icosahedron. Then for
each data point D, in the dataset D"?/*? we get the following constraint
(left side of the equation corresponds to c(¢*?/"?, D'P/"?, ¢) in Eq. (10)):

\(ax! + byl + ezl +d)?2 =r (12)

As per [1], this type of calibration corresponds to the restriction of 1
position parameter. Compared to the self-contact setup, in the case of
planes with unknown parameters (our case), new calibration parame-
ters (parameters of the plane n and d) have to be added.

4.3. Self-observation by cameras (LA-LEye, LA-REye, RA-LEye, RA-REye)

This corresponds to the scenario where we observe the Left Arm
(LA) or Right Arm (RA) end effector with AruCo markers via Left
Camera (LEye) or Right Camera (REye) (see Fig. 13). We calibrate: (i)
extrinsic parameters of the cameras (in our case as DH links) while
assuming the robot DH parameters to be known, or (ii) the whole
kinematic chain of the robot arm simultaneously with camera extrinsic
parameters. In this case, the optimization is done by minimizing the
reprojection error between the observed AruCo markers’ positions in
the camera and the estimated position using the current estimated
kinematic model.
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To obtain projected marker positions (which determine end effector

position) in each of the robot cameras, we apply the calibrated camera
model. The camera was precalibrated using a standard camera intrinsic
calibration (see Section 3.5). The extrinsic parameters (in our case
expressed in DH parameters) of the camera were precalibrated based
on reprojections of AruCo markers using the fixed nominal parameters
of the arm. First, we have to transform marker positions to the camera
frame:
[x 1 =Temera o 0 0 1]"
where [x,, y., z., 1]” are homogeneous coordinates of marker position in
the frame of the given camera and T';;""* is a transformation from the
marker M,, to the given camera achieved through standard approach
for forward kinematics using DH parameters. Afterwards, we apply a
standard pinhole camera model extended with radial and tangential
distortion coefficients and transform the 3D point in camera frame
([x, Y., z.]) into image coordinates [u,v] (2D plane of the camera)
(see camera model in Section 3.5). The actual marker position means
the center of the ArUco marker. The OpenCV function calibrateCamera
provides calibration with resolution of whole pixels. ArUco marker de-
tection is done by the OpenCV function cv2.aruco.detectMarkers, which
provides the coordinates of all four marker corners. From these, the
center of the marker is calculated as an intersection of the diag-
onals connecting the marker corners. The error resulting from this
assumption is smaller than the calibration error [46].

The parameter vector ¢ consists of the following parameters: ¢ =
(¢l @rel'c}, where ¢, ¢'%, ¢, and ¢ are calibrated DH pa-
rameters corresponding to the right arm, left arm, right camera, and
left camera, respectively. The objective function is formulated as the
distance between projected markers and their pixel coordinates in the
images:

£°@.D%.0) = [p(é.D1.0) — 2(D)). ...
2. D}y O) — 2D}

where p(¢, D;, ) is the reprojection of marker m; from dataset point D,
where i € {1,...,M'}, M’ is the length of the dataset D. The z(D)) is
the actual marker position in the camera image.

This approach does not require information from both eyes and
enables us to estimate only one side of the robot body (e.g., parameters
of the left arm and left camera). For example, the estimated parameter
vector ¢ in the case of the kinematic chain connecting left arm and left
camera consists of the following parameters: ¢ = {¢', ¢/}, where ¢’
and ¢'® are parameters corresponding to the robot left arm and to the
left camera, respectively.

The conditions in the objective function can be expressed as follows:
Let x™ be a center of origin of marker m; (obtained by forward kine-
matics for the given DH parameters estimate), x° be a marker position
in the given camera frame, TEEF be a transformation from marker m;
to the arm end effector (transforms to individual ArUco markers can
be found at the dataset page at [3]) and T¢7/" transformation from
the end effector to the given camera frame, p(x¢) a reprojection of 3D
point in camera frame to image coordinates [u, v] (see Eq. (1)):

Ye o Zc

13)

u
v[=p(x) = pTEEFT R ET - x™).
1
Then, for each data point i (corresponding to position of marker
m; in the configuration 6,), reprojection of marker m; to camera frame
[4;, v;], and each measured marker position in the camera image (u]", v}")
we get two equations:

a4

According to [1], this type of calibration corresponds to the re-
striction of 2 position parameters. Still, we have to add camera DH
parameters (see Table 2) to parameters being calibrated to enable the
reprojection of markers to the camera frame.

10
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Fig. 14. Illustration of calibration combining multiple chains: self-contact and self-
observation. All chains originate in a common base frame (bottom yellow circle). The
left and right arm chains are drawn in purple and green, respectively. The eye chains
are drawn in white. Red lines denote reprojection into the cameras. The cyan mark
indicates the distance between end effector centers (one diameter). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

4.4. Combining multiple chains (LA-RA-LEye, LA-RA-LEye-REye)

In order to estimate all kinematic parameters of the robot, we
can take advantage of combining some or all of the above-mentioned
kinematic chains. For example, in the case that we combine LA-RA,
LA-LEye and LA-REye chains together into LA-RA-LReye (see Fig. 14),
the estimated parameter vector ¢ consists of the following parameters:
¢ = (¢, ¢, ¢, ¢/}, where ¢!, ¢", ¢", and ¢° are parameters cor-
responding to the left arm, right arm, right camera, and left camera,
respectively. Similarly, contact of right arm with a horizontal and
vertical plane can be combined with self-observation by right camera,
resulting in the parameter vector ¢: ¢ = (@', ¢",n",d"P, nor, avr},
where n’? and d"? are parameters defining the horizontal plane, and
n'? and d? are parameters defining the vertical plane.

The overall objective function can be generally defined as (depend-
ing on which datasets and criteria we want to use for calibration):

8. D.8) = [k 0 g" (¢, D*,{). k" © g"(¢, D*, ),
k° © (¢, D%, {)] s

where D*, D? = {D"' D"? D'} and D*° = {D¥, D"} are datasets
for self-touch, planar constraints optimization, and self-observation,
respectively. Parameters k™, k”, k* are scale factors to reflect the
different uncertainty/reliability of the components, the number of mea-
surements per configuration, and transformations from distance errors
given in meters with the reprojection errors in pixels. Symbol © marks
a Hadamard product: i.e. (k* © g"); = ki’ - g'. The value of these
parameters is set independently for each pose: k' = 5 - p* - p;,
K = nl » -p, and K = nf° - p*, wherelrf’,rll', n°° reflect the

(15)

"2

reliability of the measurement (e.g., 7; = o, >, where ¢; is the un-
certainty of the measurement in the given pose). In this work, n = 1
was used for all approaches. The parameter p; reflects the fact that
there are multiple markers detected by cameras for the given contact
configuration. Therefore, in the case of (planar constraints/self-touch)
contact and self-observation combination p? = 10, p% = 20 (there
are two icosahedrons in contact and on average 20 marker detections
per contact event), and p** = 1. The coefficient y; is determined
from intrinsic parameters of cameras (60deg horizontal view angle,
image size 4000 x 6000px) and distance d; of the end effector from the
camera: y;, = 4000px/(d;(z/3)), u;, = 6000px/(d;(x/3)). For simplicity,



216

Appendix K. Automatic self-contained calibration of an industrial dual-arm robot

K. Stepanova et al.

Hix = M, was used. Fig. 14 shows connections of different calibration
chains and constraints (e.g., distance between end effectors during a
self-contact or distance between end effector and a plane for a plane
constraint).

4.5. Calibration using laser tracker

In this scenario, the robot arm with attached retroreflector is mov-
ing in free space to the configurations selected by sampling a joint
space in the way that the retroreflector is facing the laser tracker (more
details under Laser tracker experiment in Section 3.6). The distance
between the position of the retroreflector acquired by the laser tracker
and the position computed from current robot arm DH parameters (plus
current joint angle values and using forward kinematics) is minimized.

The parameter vector ¢ consists of the following parameters: ¢ =
{¢'%/" R, T}, where ¢"/'* are DH parameters corresponding to the
right/left robot arm (with the link EEL1/EEL2 to the retroreflector —
see Table 1), R and T are rotation and translation matrices defining
laser tracker position w.r.t. the robot base frame.

The objective function is formulated as the error of distances:

£"@.D,0) = [p@,D.{)..... p(d. Dy 0

where the function p(¢p, D;,{) = ||xiL —x[|| computes the distance of the
transformed point x‘" from laser tracker and the point x| gained from
forward kinematics and current estimate of robot DH parameters in the
configuration given by the dataset point D,.

To calibrate the robot DH parameters, we minimize the distance
between these 2 sets of 3D points (set X! contains points from laser
tracker in its coordinate system and set X" includes points in the base
coordinate system computed from a joint configuration using forward
kinematics and the current estimate of robot DH parameters) using an
iterative approach.

In each iteration of the optimization process we:

(16)

1. recompute the estimate of robot DH parameters

2. recompute rotation and translation matrix defining laser tracker
position w.r.t. base frame. The relation between corresponding
points in sets is generally:

X' =Rx"+T+N,, 7)

where R and T are rotation and translation matrices defining
laser tracker position w.r.t. the robot base frame, N; is noise
for the ith datapoint. We used an algorithm introduced by Arun
et al. [49] for finding least-squares solution of R and T. It is a
non-iterative algorithm using the singular value decomposition

of a 3 X 3 matrix.

This is a standard open-loop calibration method in which 3 com-
ponents of the pose are measured: the 3D position, not orientation,
is acquired from the laser tracking system [1]. The transform (R, T)
relating the robot base frame to the laser tracker frame of reference
has to be added to calibration. Since we express rotation by rotation
vector, this corresponds to adding 6 parameters to calibration.

4.6. Non-linear least squares optimization

For solving the optimization problem, the Levenberg-Marquardt
iterative algorithm was employed. This is a standard choice for kine-
matic calibration (e.g., [2,14,50]) and combines the advantages of
gradient descent and Gauss—Newton algorithms, which can be also
applied to this problem. For implementation, we used the Matlab
Optimization Toolbox and the nonlinear least-squares solver Isqnonlin
with the Levenberg—Marquardt option and parameters typicalx and
scaleproblem.
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4.7. Observability and identifiability of parameters

According to [51], the observability index measures the quality of
the dataset based on the identification Jacobian matrix J, which rep-
resents the sensitivity of minimized values to the change of individual
parameters. Borm and Menq [52] proposed a measure O,; Driels and
Pathre [53] proposed O,; Nahvi and Hollerbach proposed measures
05 [54] and O, [55]. All these measures can be computed from the
singular value decomposition of J. They are defined as:

1
_(0105...04) /m o

min
0, = . 0y = min,

N Omax
O

03 =0y Oy =, (8

where o; is jth singular number, m is the number of independent

parameters to be identified and » is the number of calibration configu-

rations.

The identification Jacobian matrix itself shows us the identifiability
of individual optimized parameters: J(i, j) = 3 d)’ , where X; is a distance
(Egs. (7) and (10)) or a reprojection error (fiq. (13)) and ¢; is the
parameter to be estimated. If a matrix column related to a parameter
consists only of zeros, the parameter is unidentifiable which leads to an
unobservable problem (the minimal singular number is zero). Accord-
ing to [1], an unidentifiable parameter means that the experimental
setup does not allow it to be identified, not that it is intrinsically
unidentifiable. The identifiability can be improved by adding additional
sensors to the setup as well as by extending the amount of poses in the
dataset. In our analysis, we compare observability indices O, (repre-
senting the volume of a hyperellipsoid specified by singular numbers)
and O, (noise amplification index which measures both eccentricity of
the hyperellipsoid through O, and size of the hyperellipsoid through
03) (see [1] for an overview) for individual chains and estimated
parameter vectors.

4.8. Perturbation of the initial parameters estimate

To evaluate the dependence of the optimization performance on
the quality of the initial estimates of the parameters, we perturbed
all estimated parameters by a perturbation factor p = {1,3,10} (in
experimental section, we show results for p = 3). We perturbed all
initial offset values o; as follows:

o/ =0.1p- U(=1,1) + o, [rad], (19)

where U (a, b) is uniform distribution between @ and b. It is reasonable to
expect that the remaining DH parameters (a, a, and d) will be in general
more accurate as they can be extracted from CAD models and there is
no moving part and no encoder involved. Therefore, their perturbation
was chosen as follows:

a: o =001p-U(-11)+a [rad],

, (20)
a,d : @ =00lp-U(=1,1)+ @, [m].

4.9. Evaluation

Before optimization, we randomly divided the dataset into training
and testing data with a ratio of approximately 70 to 30. Training and
testing datasets contained distinct sets of poses—multiple observations
of markers in a given pose were all added to the same batch. Opti-
mization was based on the training data; testing data were used to
evaluate the result. We used root-mean-square (RMS) error to compare
the results from multiple optimization runs. It is computed as:

(k{g(¢.D;.0)* =

+/ Lk o ge(o. D<, )12
27 1K © 8. DO

(21)
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where M is the number of observations/measurements, k¢ is a scale
factor for the given calibration approach c¢ (see Section 4.4) and
g"(qS,Df,C) is the corresponding objective function (see Sections 4.1,
4.2, 4.3 or 4.5 for specific form of individual objective functions).
Symbol © marks a Hadamard product: i.e. (k" © g*); = k' - g".

4.10. Accuracy of measuring individual components

The accuracy of several components constitutes a lower bound on
the overall accuracy. In particular, we estimated or experimentally
evaluated the accuracy of the following (we note in brackets for which
chains is the accuracy of the given component relevant):

+ 3D printed parts and their dimensions: 0. mm error based on
the printer specification; we assume the end effector rod to be
straight. (self-contact (Section 4.1) and contact with a plane chains
(Section 4.2))

Intrinsic camera calibration: we evaluated error of intrinsic
camera calibration using multiple calibration patterns split to
training and testing dataset. The resulting error is 0.73 mean re-
projection error for calibration points in pixels on the testing set.
This error is composed of the accuracy of detecting the dot pattern
and the calibration itself. (self-observation chains (Section 4.3))
Pose extraction from ArUco markers: The calibration object
with the Aruco markers was mounted on a linear positioning
table. The object was moved along straight lines with a 0.01 mm
precision. We captured images of the object in different positions
and detected centers of the observed Aruco markers as shown in
Fig. 15. Due to camera reprojection, the markers move along lines
in the undistorted image (radial undistortion). We estimate the
error of marker detection as distance of the detected markers from
interpolated straight line (Fig. 15). The mean error is around 0.33
pixels for well visible markers (ID 107, 112, 113) and 0.63 pixels
for other markers with maximal error of 1.5 pixels. We investigate
the error along the line with similar results. Intrinsic camera
calibration puts a lower bound on these results. (self-observation
chains (Section 4.3))

Repeatability of measurements: The details of robot movements
and how they were stopped once contact was detected are de-
scribed in Section 3.3. We used the laser tracker to measure
the repeatability of these movements, using 20 repetitions of the
same movement at two different positions sampled from the grid
for planar constraints (Fig. 5). These involved only small robot
movements (10 cm) and repeatability was high — Fig. 16. For
self-touch, larger movements from the robot home position were
executed. However, self-contact experiments involved both large
movements and small movements similar to those for contact with
a plane. Thus, the statistics for Fig. 16 was combined for the
self-touch distribution, resulting in overall lower repeatability.
Results in x-coordinate are shown. Similar distribution and range
of errors was observed for y and z coordinate. (all chains)
Camera projection error propagation: Cameras measure pro-
jections to the image plane, producing higher uncertainty in the
z-axis of the image coordinate system (image depth). The uncer-
tainties in all three axes can be obtained by error propagation
from object position uncertainty. The projection uncertainty can
be written as a quadric equation u” Qu = 1, where Q is a matrix
(4 x 4 identity matrix assumed here) and u is a 4 X 1 vector
of both cameras’ projection pixel coordinates. The projections
vector u can be expressed as u = J, X, where J, is the Jacobian
matrix computed from projection equations (Eq. (1)) and X are
the projected point coordinates. Combining these two equations,
we obtain the equation for position uncertainty X7Q, X = 1,
where 0, = .IXTQJX, which can be interpreted as an ellipsoid.
Then, the eigenvalues of Q, are a=2, b=2, ¢~2, where a, b, ¢ are
half the principal axes’ length in meters. In our case, the mean
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Fig. 15. Pose extraction from ArUco markers. (top) Icosahedron moving along a
straight line with markers positions reprojected to camera frame (v and v are
coordinates of the camera image). (bottom) Errors measured as perpendicular distance
from the line for individual markers at specific positions.
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Fig. 16. Error distribution of different components. Data for self-touch and planes
obtained from repeatability experiments. Camera errors from camera resolution and
3D space projection from robot workspace.

values are a = 0.146 mm, b = 0.150 mm, ¢ = 1.330 mm, i.e. an
error of 1 pixel corresponds to more than 1 mm error in object
position in one axis. The comparison of uncertainties can be seen
in Fig. 16. The length of the last axis of the ellipsoid (image depth)
is one order of magnitude higher than the other lengths and the
touch uncertainty (self-observation chains (Section 4.3)).

Based on the above-mentioned analysis, we can see that the lower
bound of error for self-observation will consist of the combination
of intrinsic camera calibration error (¢’) and ArUco marker detection
error (eAUe0): ¢ = o @e?V. The measured displacement of the
end effector between contacts is influenced by ¢4"U¢® and the observed
error is systematic. In the worst case, we can estimate the error to
be independent on the direction of the impact and for all directions
consider the maximum observed error. As can be seen, repeatability
measurements show that the accuracy is very high and the errors are
below 0.03 mm. Finally, an analysis of camera errors in 3D space
reveals their limited accuracy, in particular in one axis corresponding
to the depth.
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5. Experimental results

To evaluate and compare the results of kinematic parameters cali-
bration across individual approaches and their combinations, we show
results for the right arm of the robot only—this kinematic chain can
be calibrated using all the datasets collected. First, we show the results
for end effector length and angle offset (Section 5.1) without and with
camera calibration. Afterward, we show results of “daily calibration”
(calibrating only joint angle offsets o) of the whole right robot arm
(including length of the end effector), consisting of: reference values
acquired by the laser tracker (Section 5.2), calibration by individual
approaches without and with camera calibration (Section 5.3). Finally,
the results for all DH calibration are shown in Section 5.6 and evaluated
on the independent laser tracker dataset.

The following notation/labeling of experiments is used for the
individual evaluated approaches: self-contact/self-touch (Section 4.1); 1
horizontal plane, 2 horizontal planes, all planes (2 horizontal and vertical
plane) (Section 4.2); all (combination of all planes and self-contact
calibration, Section 4.4); self-observation (Section 4.3).

Each dataset (see Section 3.6 for details) was split into training and
testing part (70:30). The resulting RMS errors (according to Eq. (21))
for both training and testing datasets are shown and compared to the
case where nominal parameters are used (before). We show result-
ing RMSE separately for self-contact distances between icosahedrons
(‘dist’), distances to plane (‘plane dist’), and for camera reprojections in
pixels (‘mark.’) (e.g., Fig. 17). In addition, we investigate corrections
to the parameter values and their mean and variance.

Calibration methods relying on physical contact—self-contact and
planar constraints—can be employed independently or in combination
with calibration using cameras (self-observation). We distinguish three
possibilities that will be used throughout the rest of the Experimental
results section:

» No cameras. Only contact-based calibration was employed and
cameras were not used at all.

Fixed cameras. Cameras’ DH parameters were precalibrated (see
Table 2) using the contact-based datasets (self-contact and contact
with plane) from marker reprojection errors, using nominal values
of the robot kinematic parameters. Then, to calibrate the robot
right arm, reprojection of markers to the camera frame is used
together with contact information, while the camera extrinsics
stay fixed.

Camera position calibration (Cam. calib.). Cameras were pre-
calibrated in the same way as in Fixed cameras. During robot kine-
matic calibration, reprojection errors are combined with contact-
based constraints. Additionally, camera extrinsics (expressed in
DH parameters) are subject to calibration as well.

Self-observation (S-0), i.e., information from camera reprojection
errors, can also be employed independently. The datasets used are those
featuring contact (D%, D"?, Dwhole  etc.), but the constraints arising
from physical contact are not employed.

Table 4 provides an overview which parameters can be subject to
calibration under the different approaches. The parameters that can
be calibrated using the contact-based approaches are marked in black.
Fixed cameras enable calibration of the end effector orientation (o,
in green; contact information alone does not provide any information
about orientation — see Figs. 10 and 12). Camera extrinsic parameters,
which may be also subject to calibration, are shown in blue.

5.1. Calibration of end effector length and joint angle offset

First, we evaluated the ability to calibrate the length and joint
angle offset of the last link (EE1/EE2) by individual approaches. The
diameter of the final part of the custom end effector—assuming it is a
sphere in this case as the contact is at the spherical tiles—is known.
The parameter being calibrated in all cases is the end effector length
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Table 4

Overview of calibrated parameters. Parameters in green are added to the corresponding
approach under fixedCameras. When using calibCameras, all the blue parameters are
added. See Tables 1 and 2 for details about DH parameters.

Calibration Calibrated parameters

End effector deprs

Offsets 0L1> Oyt Ori> Op1> dpgis

Offsets by ext. device 0115 Oy1s Oris Op1s Apprs dpprs OpEL

All DH parameters ay . dp, opy, ay, dy, ay . oyys ag s dp s @g . Opis

ag. dp ., ap . opy. ary. apy, dgpys

Camera calibration arrys drps, @prs, opps. deys Ocys appys dyrys Qppys

orrss deas 0

Table 5

End effector length calibration (corrections to the manually acquired values). Compar-
ing calibration using plane constraints (h. plane — 1 horizontal plane, 2 h. planes — 2
horizontal planes, all planes), self-contact calibration, combination of planar constraints
and self-contact (all) with self-observation only (on different datasets — e.g., S-O (D"?) —
self-observation calibration on a dataset from touching a horizontal plane). No cameras
/ Cam. calib / Fixed cameras — see text. Mean and standard deviation over 20
repetitions is displayed.

Calibrating end effector length — corrections

[mm] No cameras Cam. calib. Fixed cameras
1 h. plane 10 + 4 12+ 2 3.32 + 0.26
2 h. planes 14 £ 2 15+2 4.84 + 0.11
all planes 13+3 102 + 0.2 4.34 + 0.07
self-contact 4.31 + 0.05 4.21 + 0.04 4.12 + 0.04
all 4.31 + 0.04 4.25 + 0.04 3.89 + 0.04
S-0 (D) - 8+ 18 3.11 + 0.24
S-0 (Drianes) - 10.17 + 0.25 4.38 + 0.11
S-O (Dwhle) - 6.25 + 0.07 5.95 + 0.10

Calibrating end effector orientation — corrections

[rad] 1072 No cameras Cam.calib. Fixed cameras
1 h. plane - 2.96 + 0.11 4.25 + 0.23
2 h. planes - 3.29 + 0.09 5.76 + 0.21
all planes - 3.28 + 0.09 3.69 + 0.17
self-contact - 7.04 + 0.09 1.06 + 0.13
all - 6.34 + 0.08 2.20 + 0.08
S-0 (D) - 3.06 + 0.15 4.17 + 0.38
S-0 (Drianes) - 3.23 + 0.13 3.60 + 0.12
S-O (Dwhele) - 6.40 + 0.09 2.39 + 0.09

dppy; with fixed cameras, the orientation, oz, can be also calibrated.
In the case of planar constraints, the plane parameters {n"?/v?, ghr/vr}
are estimated in addition.

In the self-contact scenario, we compared the case where we assume
that the length and offset for the left arm end effector are known and
the case where we calibrate both EE1 and EE2 with the assumption
that both end effectors have the same length—this is necessary to
avoid compensation of the length of one end effector by the other
end effector. In Table 5, we show results for the case when both end
effectors lengths are calibrated simultaneously.

Table 5, the top part, summarizes the corrections to the nominal
values of the length of the end effector achieved by individual calibra-
tion approaches. The most consistent estimates (mean corrections over
20 repetitions) across individual approaches are achieved with fixed
precalibrated cameras, where the range of estimates is from 3.89 mm
(all) to 4.84 mm (2 horizontal planes) and from 3.11 mm to 5.95 mm for
the self-observation approach trained on three different datasets.

The quality of the individual estimates can also be evaluated with
respect to the standard deviation (s.d.) across 20 repetitions. For planar
constraints without cameras, we get a very high standard deviation
(around 4 mm) indicating poor estimates. On the contrary, using the
self-contact approach even without cameras results in standard devia-
tion around 0.05 mm, which is comparable to the standard deviation
achieved when camera information is included (either precalibrated
cameras or cameras calibrated together with end effector length). The
addition of cameras also improves consistency of end effector length
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Fig. 17. RMS errors — end effector calibration. Distances in 3D (left y-axis, mm); camera reprojection (right y-axis, px). plane dist — Euclidean distance from a plane, dist — Eucl.
distance between end effectors in self-contact, mark. — error of individual markers reprojected to cameras. No cameras — only planar constraints or self-touch; Fixed cameras —
precalibrated but fixed cameras; Calib cameras — precalibrated cameras with additional optimization. Error on both training (Train) and testing (Test) dataset shown. before —
nominal parameters, hp — 1 horizontal plane, ap - all planes (2 horizontal, 1 vertical), all - self-contact + planar constraints.

estimates by planar constraints (standard deviation drops from 4 to
0.2 mm for calibrated cameras and to 0.07 mm for fixed cameras). We
also evaluated the calibration using only self-observation information.
When we used precalibrated cameras on the whole dataset, we achieve
comparable results to other estimates. When we calibrate the cameras
together with end effector length, the length of the end effector is
overestimated and the standard deviation (based on the used training
data) is also significantly higher.

We compare orientation corrections using only self-observation cali-
bration (with cameras precalibrated on different subsets of datasets) or
self-observation combined with other constraints (self-contact, planar
constraints) — see Table 5, bottom part. The corrections to manu-
ally measured parameters of the orientation vary between 0-0.06 rad
(0°-3.4°).

The resulting RMS errors (see Section 4.9) for end effector cal-
ibration in mm and px are shown in Fig. 17. For all variants of
the optimization problem, both mean dist RMSE and markers RMSE
decreased compared to the nominal end effector value (Fig. 17). For the
variant all and Fixed cameras, the distance RMSE decreased from 3.8 mm
before calibration to 1.40 mm after calibration and markers RMSE
decreased from 20.8 px before to 18.0 px. Without cameras, we achieved
slightly better results for self-contact distance RMSE (1.34 mm), but
in this case the end effector orientation is not calibrated—resulting in
higher error in camera reprojection. For the case with calibrated cam-
eras, the resulting RMSE are slightly smaller (mean self-contact distance
1.34 mm and camera reprojection RMSE 16.0 px) than for the case with
fixed cameras. The calibration resulted in the estimation of end effector
length and orientation—the corrections of these parameters are listed
in Table 5.

For the end effector parameters, we do not have any reference value
apart from manual measurements (laser tracker calibration cannot be
applied due to the retroreflector placement — see Fig. 3). However,
the corrections found using the whole dataset and the combination of
all chains (self-touch + planar constraints + cameras) were reliable
enough. Consistent adaptation was observed for the length. Hence, for
subsequent calibration of the robot arm kinematics, we used the end
effector length estimate of 35.4 cm. For the orientation, no significant
adaptation was arrived at and the nominal value was kept for the
remaining experiments (see Table 1).

To validate the selection of the end effector length—which will
be used in what follows as an initial value of this parameter—we
performed two additional experiments. First, we systematically varied
the initial end effector length parameter before calibration in the range
from 10 to 70 mm and evaluated the RMS error after calibration on
the self-contact dataset — see Fig. 18. Two solutions were found with
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Fig. 18. RMS error on self-contact dataset for different values of end effector length.

minimal RMS error (35.38 cm and 61.4 cm), but one of them is not to be
considered, as we do not expect errors bigger than 1 cm from manual
measurement (35 cm). These two solutions can be explained by the
nature of the self-contact as there are multiple possibilities arising from
the geometrical consideration of self-contact (see Fig. 10, right).

Second, the sensitivity to perturbation of the initial end effector
length for individual approaches was evaluated in the case with/
without cameras and compared to the case without perturbation. The
resulting corrections can be seen in Fig. 19. For the case with per-
turbation and without cameras (center), two solutions were found by
self-touch calibration, corresponding to Fig. 17. When fixed precali-
brated cameras are added, we achieve results with a low standard
deviation for all calibration setups; for self-touch calibration, only one
solution is selected. For self-touch and all conditions with fixed cam-
eras, we achieve the same results both for perturbed initial value and
non-perturbed.

5.2. Calibration of robot joint offsets by an external measurement device
(reference)

The whole dataset D%k collected by the laser tracker (Leica) was
used for right arm joint angle offsets calibration to create a reference
value to our other calibration approaches (see Section 4.5). Parameters
subject to calibration are listed in Table 4. First, we estimated the
tracker position (R, T') and retroreflector DH parameters (a, d, and joint
angle offset o) (link 7b in Table 1). Afterwards, we calibrated all offsets
of the robot arm including the retroreflector DH parameters.

As can be seen in Fig. 20, left, RMSE improved with further cali-
bration: from 6.08 mm before calibration to 3.03 mm after retroreflector
calibration and to 2.64 mm after all offsets calibration. To achieve the
best possible solution quality, we have not split the original dataset into
training and testing part in this case. Instead, we evaluated the RMSE
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Fig. 21. Residual errors for individual datapoints before calibration using nominal
parameters (left) and after calibration of all offsets of robotic arm including the tracker
retroreflector full DH parameters (right).

on a separate dataset (self-contact dataset D*) using the parameters
estimated by the laser tracker calibration and compared to RMSE
for nominal parameters (Fig. 20, right). In this case, we used same
parameters of the end effector for both methods and compared the error
at the end of the 5th link (see Fig. 20). A slight improvement of RMSE
can be observed also on this dataset: from 3.755 mm to 3.708 mm with
the same uncalibrated end effector. The distribution of errors on the
laser tracker dataset before and after calibration can be seen in Fig. 21.

The corrections for retroreflector parameters (compared to nominal
parameters) {dgg;;, aggpr} are 0.72 mm, and 0.92 mm, respectively,
and for offset parameters {0, oy, o, 0p;, and op; |} are {—1.43,
—0.18, —0.59, —1.03, and 4.123} mrad, respectively.

5.3. Calibration of robot joint offsets — self-contained approaches

We compared the quality of the right arm joint angle offsets calibra-
tion, including the end effector length, by individual approaches. Self-
contact approach (Section 4.1), planar constraints (using 1-3 planes;
Section 4.2) and pure self-observation calibration (Section 4.3) were
compared to the results for nominal parameters and the reference
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parameters acquired by the laser tracker measurement device (Sec-
tion 5.2). For the contact-based methods (self-contact, planar con-
straints), we compared the results with no camera information, fixed
precalibrated cameras, and cameras being part of the calibration pro-
cess. Parameters subject to calibration are listed in Table 4. Depending
on the particular method, additional parameters may be subject to cal-
ibration (e.g., parameters of the plane) (see corresponding subsections
in Section 4).

RMSE after calibration of offsets and end effector length without
perturbation can be seen in Fig. 22. The RMS error of distance in self-
contact (in mm) drops from 3.80 mm before calibration to 1.40 mm after
end effector calibration, and to 1.31 mm after all offsets calibration.
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Fig. 24. Corrections of offsets and end effector parameters (dyz;, ogp,) after calibrating end effector and offsets of right arm without cameras (using only planar constraints or
self-touch), with precalibrated but fixed cameras and with precalibrated cameras which are calibrated during the experiment. Offset of the end effector cannot be calibrated without
cameras and nominal values are used. Laser tracker calibration (ground truth) values in turquoise.

Distance to plane (in mm) drops from 1.00 mm before calibration to
0.93 mmafter end effector calibration, and to 0.89 mm after all offsets
calibration without cameras (0.91 mm with camera calibration and
0.92 mm with fixed cameras). Distance of reprojected markers in camera
(in pixels) drops from 20.8 px before calibration to 18.0 px after end
effector calibration to 15.3 px after all offsets calibration including
camera calibration and to 15.6 px for fixed cameras calibration.

Corrections of the parameters to the nominal parameters are shown
in Fig. 24. Corrections of the parameters are the smallest (also having
the smallest standard deviation) compared to the values achieved by
laser tracker calibration for the variant all with fixed precalibrated
cameras, which means that we combined all of the chains (planar
constraints, self-touch, self-observation) to optimize the offset param-
eters. The resulting correction for parameter dpp, is 5.46 + 0.14 mm.
The corrections for parameters {o;,, oy, og;, 0p;, and ogg} are:
{-2.10+0.38, —0.89+0.24, 1.48 +0.13, —0.76 +0.06, and 32.2+ 1.6} mrad,
respectively. The corresponding corrections from laser tracker calibra-
tion for parameters {o;, oy, og;, and op} are {—1.43, —0.18, —0.59,
and —1.03} mrad, respectively.

5.4. Comparison of nominal DH parameters and former calibration/
calibration performed by laser tracker

To evaluate the resulting offset parameters for the robot acquired
through calibration using individual approaches, we conducted a com-
parison study on the laser tracker testing dataset D""**¢" (which covers
the whole robot right arm workspace and not only the area where
calibration using self-contained approaches was performed). To be able
to perform such an evaluation, the transform to laser retroreflector,
acquired from laser tracker calibration, was used for all compared cali-
bration results. These results are shown in Fig. 23. Using the calibrated
parameters by variant all, we can achieve better RMSE than nominal
parameters—both in the case without cameras or with fixed precali-
brated cameras. The resulting RMSE is 3.06 mm, 2.63 mm, 3.04 mm,

16

2.73 mm for nominal parameters, laser tracker, variant all without
cameras, and variant all with precalibrated fixed cameras, respectively.
Adding the option of camera calibration increases the RMSE for the
variant all to 3.18 mm on this laser tracker testing dataset D'"acker
compared to the nominal parameters (3.06 mm).

The lowest RMS errors (for some setups lower than RMSE with
nominal parameters, which is 3.06 mm) are achieved for different
calibration approaches with fixed precalibrated cameras—the resulting
RMSE are 9.3 mm, 4.5 mm, 3.8 mm, 3.31 mm, 2.84 mm, and 2.73 mm
for vertical plane (vp), lower horizontal plane (hp), both horizontal
planes (tables), self-contact (selftouch), all planes (ap), and variant all,
respectively.

Pure self-observation (SO) highly depends on the quality of the
training dataset. For the datasets from planar contact with one plane,
we have only 250 datapoints and the resulting error is 29.4 mm for
2 cameras and 23.7 mm for 1 camera. When more data points are
added—all planes (750 datapoints) or self-contact (566 datapoints)—the
RMSE drops to 10.2 mm and 12.15 mm for all planes and self-contact,
respectively. When D*"'¢ is used (1316 datapoints), the RMSE drops
below RMSE achieved for nominal parameters (3.06 mm): to 2.90 mm
for 2 cameras setup and 2.82 mm for 1 camera setup (still higher than
variant all with fixed cameras — 2.73 mm).

5.5. Calibration of robot joint offsets — sensitivity to perturbation

To evaluate the sensitivity of calibration approaches to perturba-
tion, we run the experiment with initial perturbed parameters (p =
3) (see Section 4.8 for details). The results can be seen in Fig. 25.
For fixed precalibrated cameras we achieve very similar results as
without perturbation with comparable low standard deviation. For
example, for the variant all with fixed precalibrated cameras, the
resulting correction for parameter dpp; is 546 = 0.14 mm without
perturbation and 5.52 + 0.14 mmwith perturbation. The corrections for
offset parameters {o;, 0y ,0g 051, 0pE; }, and are: {—2.10£0.38, -0.89+
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Fig. 25. Corrections of offsets and end effector parameters (dp,, oxp,) after calibrating end effector and offsets of right arm without cameras (using only planar constraints or
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0.24,1.48 + 0.13,—0.76 + 0.06,32.2 + 1.6}1073 rad without perturbation,
and {—2.24+0.28,-0.96+0.23, 1.55+0.20, -0.75+0.07,32.1 +: 1.3} 1073 rad
with perturbation, respectively. Without cameras, the corrections have
higher standard deviation, especially for the ’self-touch’ calibration. For
all perturbation levels, the performance is stable (low error s.d.) in the
case of fixed cameras.

5.6. Calibration of all DH parameters

In Fig. 26, we show a comparison of RMSE after calibration of all
DH parameters (see Table 4) by the method all for different setups
(fixed cameras, calibrated cameras and no cameras). Results on both
training and testing datasets are shown and compared to the case
where nominal parameters are used (before), EEF length and orientation
calibration by the variant all (EEF cal.) and right arm offset calibration
by the variant all (offset cal.). The self-contact distance, plane distance,
and camera reprojection RMSE drops from 1.33 mm, 0.92 mm, and
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15.6 px, respectively, after offset calibration, to 1.00 mm, 0.58 mm, and
14.8 px after calibration of all DH parameters with calibrated cameras,
and further to 1.00 mm, 0.55 mm, and 15.2 px after calibration with
precalibrated fixed cameras. When cameras are not used (noCams),
self-contact distance further drops to 0.59 mm and planar distance to
0.64 mm. In this case, the end effector offset is not calibrated and the
camera reprojection error would be higher.

In Fig. 27, we show the resulting corrections of DH parameters
(corrections are calculated as the difference from the nominal param-
eters) for the variant all when perturbed DH parameters were used
as initial value (perturbation factor p = 3). We show initial values
of perturbed DH parameters, the results of calibration by method all
in the case without cameras (using only contact information from
planar constraints and self-touch), with precalibrated cameras which
are calibrated during the experiment, and with precalibrated but fixed
cameras. In all compared cases, we reach a lower dispersion of the
final values and these values are very close to the industrial nominal
DH parameters. The best results with the lowest standard deviation
and closest to the industrial nominal values are consistently reached
by the method when precalibrated fixed cameras are used. When no
cameras are used, we can see that the corrections of DH parameters for
variant all are unrealistically far from the nominal parameters (e.g., for
parameter ap, we get corrections around 0.2 m). When also camera
calibration is employed, the corresponding DH parameters corrections
are reasonably close to nominal parameters and the calibration method
is able to even for initially perturbed parameters (up to 10 cm difference
from the nominal parameters) reach reasonable DH parameters values
(all corrections are under 5 mm). We also show the results of the
parameters from the laser tracker for comparison. End effector param-
eters cannot be calibrated by laser tracker thanks to its placement (see
Fig. 3). Therefore, the value is not changing from the initial parameter.
For the end effector length, we visualize as the nominal parameter
the correction to the initial end effector length value achieved by the
former end effector calibration (Section 5.1).
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Fig. 28. Comparison of RMSE for all DH calibration on the whole laser tracker dataset
(D'racker), Results are shown for the whole laser tracker dataset (red) and for the subset
of the robot workspace which corresponds to the area where other self-contact methods
were trained (blue). Results for the calibration by the variant all without cameras
(noCams), with fixed precalibrated cameras (FixedCams) and cameras being calibrated
(CamCalib) is compared to the self-observation approach (S-O) trained on the dataset
Do, Nominal parameters and the calibration by laser tracker. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

In Fig. 28, we show the resulting RMSE of our calibration contact-
based approach on the testing laser tracker dataset D"“k¢", The results
for self-contact approach with fixed precalibrated cameras and with
cameras calibrated as a part of the calibration approach are compared
to self-observation approach where only camera information is used.
All approaches are trained on the same D“/'¢ dataset. Comparison
to the RMSE when nominal parameters and when DH parameters
from laser tracker calibration are used, is provided. We show results
for the whole laser tracker dataset and for the subset of the dataset
which corresponds to the area where self-contact and self-observation
approaches were calibrated. On the whole dataset, RMSE is {3.06 +
0,2.63 + 0,224 + 77,3.68 + 0.20,3.58 + 0.21, and 12.36 + 0.55} mm for
nominal parameters calibration (Nominal), laser tracker, self-contact
calibration without cameras (noCams (all)), self-contact with cameras
being part of calibration (CamCalib (alD), self-contact calibration with
fixed precalibrated cameras (FixedCams (all)), and self-observation ap-
proach (S-O (all)), respectively. On the subset of the dataset, RMSE is
{1.73+0,1.71 + 0,205+ 71,2.75 + 0.17,2.28 + 0.17, and 11.88 + 0.38} mm
for nominal parameters calibration (Nominal), laser tracker, self-contact
calibration without cameras (noCams (all)), self-contact with cameras
being part of calibration (CamCalib (alD), self-contact calibration with
fixed precalibrated cameras (FixedCams (all)), and self-observation ap-
proach (S-O (alD), respectively. We can see that including self-contact
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information as a part of calibration provides significantly better results
than using pure self-observation approach.

5.7. Observability analysis of individual approaches

We evaluated the observability indices O, and O, for the different
combinations of calibration approaches and parameters subject to cali-
bration. An overview is shown in Fig. 29 with O, on top and O, at the
bottom. Please refer to Section 4.7 for details about how the indices
are calculated. The bar groups on the x-axis correspond to the param-
eters subject to calibration and the number of parameters (columns
of the identification Jacobian matrix J). Calibration using the laser
tracker adds two additional parameters pertaining to the retroreflector
placement (see Table 4). Color coding of individual bars marks the
calibration approach with the no. data points in a given dataset without
cameras/with cameras (rows of J). Due to the variable size of J, com-
parisons are to be made with caution. As expected, for the cases without
cameras (noCams), there is a trend that with the number of calibrated
parameters increasing (from ee-noCams, over offsets-noCams, to allDH-
noCams), the observability indices are lower. When self-observation as
a calibration method and corresponding camera extrinsic parameters
are added (calibCams), observability indices O, in general significantly
increase. Observability index O, increases after adding camera chains
to calibration for the allDH calibration case, but drops for end effector
length calibration—adding new parameters to be calibrated (columns
of J) outweighs the effect of additional data from self-observation (rows
of J). Comparing situations where the dataset and hence J has a similar
size, we see that horizontal plane was more effective than vertical plane
in our setup and that selftouch slightly outperformed combinations of
all planar constraints (all planes). This is largely consistent with the
RMSE errors after calibration (Fig. 23). Finally, for calibrating all DH
parameters, the inclusion of cameras seems necessary.

Note that the observability analysis is also affected by measurement
noise that may increase the effective rank of the Jacobian matrix. We
assume that the measurement noise in this case is sufficiently small
(experimental verification is presented at [3]).
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Fig. 29. Observability indices O, (top) and O, (bottom). Groups on the x-axis
correspond to parameters subject to calibration (ee — end effector length; offsets — o;
of individual links; allDH - all DH parameters; noCams / calibCams — without/with the
“self-observation chains”; Table 4 for details). Color coding of individual bars marks
the calibration approach and dataset (no. data points without cameras/with cameras).

6. Conclusion

Using a dual-arm industrial robot with force/torque sensing and
cameras, we presented a thorough experimental comparison of ge-
ometric kinematic calibration using “self-contained approaches” us-
ing sensors on the robot—self-contact, planar constraints, and self-
observation—with calibration using an external laser tracker. The main
findings are summarized below.

First, we studied estimation of the kinematic parameters of a new
tool—a custom end effector (Section 5.1). To calibrate the tool length,
self-contact alone proved effective; planar constraints or
self-observation alone did not perform as well in isolation and improved
only in synergy with one of the other approaches/datasets. Testing RMS
errors of approximately 1 to 1.5 mm on the part of the workspace
where calibration was performed were achieved. For orientation of the
tool, the addition of cameras (self-observation) was needed. Combining
different methods/kinematic chains proved effective, supported also by
the observability analysis (Section 5.7 and Fig. 29).

Second, we analyzed the performance of “daily calibration”: the
joint angle offsets of a complete robot arm were added to the tool
calibration (Section 5.3). While the end effector calibration is respon-
sible for most of the error in the workspace, further improvement from
the offset calibration is achieved with all methods. To assess whether
the calibration is effective only locally—on the particular dataset—
or whether better kinematic parameters of the robot were learned, a
comparison on an independent dataset covering the whole workspace
(laser tracker calibration) was performed (Section 5.4 and Fig. 23).
Corrections to robot parameter values were also analyzed. Importantly,
all self-contained approaches except for the planar constraints in iso-
lation were able to achieve good results, sometimes outperforming
the robot nominal parameters. Self-contact alone proved the most
effective; the best results were achieved using a combination of datasets
and methods. Self-contact was further improved by the addition of
planar constraints. Self-observation alone was sensitive to the size
of the dataset but was effective in combination with contact-based
methods; the best results were achieved using sequential calibration:
camera extrinsics were calibrated first, followed by robot arm kine-
matics and tool calibration. Additionally, similar results were achieved
when perturbing the initial parameter estimates (Section 5.5).
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Third, we performed a complete geometric kinematic calibration
of one robot arm plus the tool (all DH parameters) using different
methods (Section 5.6). Good results are achieved on the individual
datasets (Fig. 26), but further analysis reveals that the calibration
suffered from overfitting to the particular dataset/part of the robot
workspace. On an independent dataset, the performance of nominal
parameters was not matched (Fig. 28). We also found that when all
DH parameters are subject to calibration, the need for the synergy of
different approaches increases, as testified by the unrealistic parameter
corrections with the contact-only (noCams) approaches in Fig. 27 and
the observability analysis (Fig. 29, allDHnoCams) or the self-observation
only approach in Fig. 28. Like previously, the sequential calibration—
first cameras, then robot kinematics—gives the best results. Although
the performance of nominal or laser tracker calibration parameters on
the whole workspace could not be matched (Fig. 28), the performance
of the combination of self-contained approaches—also in the case of
initial parameter perturbation—is reasonable (less than 4 mm error)
and for a less accurate platform like a service robot may suffice.

Fourth, the comprehensive dataset collected is made publicly avail-
able [3] and can be used for additional analyses. This constitutes an
additional contribution of this work.

7. Discussion and future work

Geometric kinematic calibration of industrial robots is usually per-
formed using external metrology—measurement arms (e.g., [4]) or
contactless measurement systems like laser trackers [5-8]. Newman
et al. [7] calibrated a Motoman P-8 robot using an SMX laser tracker,
improving the RMS error from 3.595 mm to 2.524 mm. Specifically
related to the setup used in this work, our platform was previously
calibrated using two different methods: (1) Redundant parallel Cali-
bration and measuring Machine (RedCaM) by Benes et al. [11], Volech
etal. [12], and (2) Leica laser tracker. Petrik and Smutny [13] reviewed
the precision of these methods using a linear probe sensor. Based
on a dataset of 43 different poses with touching end effectors, they
calculated the mean error as 0.67 (range 2.92) mm on CAD model,
0.54 (range 2.55) mm on Leica based calibration and 2.45 (range
9.92) mm on RedCaM based calibration. Other approaches—see [8]
and additional references cited therein—usually achieve sub-millimeter
accuracy. It was not our goal to directly compete with these works;
instead, our aim was to assess the potential of automatic self-contained
kinematic calibration: using sensors on the robot and avoiding the need
for external metrology. We could demonstrate that such self-contained
approaches—even if the initial robot parameters are perturbed—can
yield less than 4 mm position errors over the robot workspace. The
accuracy increases when a combination or synergy of these approaches
(e.g., self-contact and self-observation) is exploited. We chose our
platform, an industrial robot, out of convenience and to have a stable
enough plant that can provide stationary results. However, we see
the main application area in collaborative and service robotics. These
platforms are typically more lightweight, flexible, and less precise and
they may be often redeployed, their kinematic configuration changed
etc. At the same time, they often come with a rich set of inexpensive but
increasingly powerful sensors. Cameras and means to detect physical
contact are becoming common. All these factors pave the way for
automatic multisensorial self-contained calibration as demonstrated
here.

We provide not only a thorough experimental investigation, but also
a conceptual contribution in that we develop methods how to combine
several of the methods into a single cost function. Further, unlike
Birbach et al. [2] who claim that simultaneous calibration using all
the available sensors is advantageous, we consistently found sequential
calibration to perform best: camera calibration followed by robot kine-
matics. Conversely, calibrating robot kinematics together with camera
extrinsics simultaneously was not as successful. Furthermore, if camera
extrinsics were not precalibrated and inaccurate nominal parameters
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were used, the optimization often converged to physically impossi-
ble local minima. One known limitation of closed-loop calibration
approaches—those relying on physical constraints on the end effector
position or orientation—is that the set of poses is limited, which may
affect the identifiability of parameters [1]. This holds pretty much for
all self-contained calibration—self-contact or self-observation—as these
also naturally constrain the set of robot configurations available. This
has also been the case in this study. Better coverage of individual
joint ranges within the approaches used here—in particular for the
planar constraints—would further improve the results and yield better
generalization to other parts of the workspace. Combining different
methods / kinematic chains significantly mitigates this problem.

It should also be noted that although we used specially designed
end effectors that were developed to combine self-contact (acting as a
sphere) and self-observation (with flat tiles to host fiducial markers),
the methods developed here have wider applicability. Contact can
occur at any part of the robot provided that the link can be represented
in the kinematic model; fiducial markers can be placed on any robot
part or avoided altogether by tracking parts of the robot directly
(e.g., [2,17,18]).

There are several directions for future work. First, when combining
several calibration approaches into a single cost function (Section 4.4),
the errors obtained from the different components could be scaled by
coefficients that are inversely proportional to their uncertainty. We at-
tempted to acquire such coefficients using repeatability measurements,
but failed to obtain estimates that would reflect the true uncertainty as-
sociated with different approaches and possibly individual data points.
Additional measurements of the uncertainty of individual components
(beyond Section 4.10) and their propagation would be required. Thus,
all components were weighted equally in this work, but this can be
changed in the future.

Second, the methods presented here can be extended to exploit
the existing sensors differently or to incorporate additional sensory
modalities. For example, the two cameras in our setup were not used
explicitly as a stereo head. Instead of reprojecting the end effector
into the 2 image frames, one could also project the observed position
of the end effector in image coordinates of both eyes (pixel (u,v)) to
3D space (X%*) (similar to [17,56]). The self-contact approach would
yield more than a 1-dimensional constraint in case the contact position
(and hence 3 components of the pose) could be measured such as
when using an artificial electronic skin [31,32,35]. Inertial sensors—in
the robot head [2] or distributed on the robot body [57,58]—could
be also added. Finally, one could also calibrate both manipulators
simultaneously.

Third, for online recalibration to be performed repeatedly, the
number of poses / data points needed can be reduced by employing
intelligent pose selection (e.g., [59-62]).

Fourth, the standard calibration method using non-linear least
squares optimization (Levenberg-Marquardt algorithm) can be com-
pared with filtering approaches [18,26] or with methods that pose
fewer assumptions on the initial model available (e.g., [63]).
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Safe physical HRI: Toward a unified treatment of speed and separation
monitoring together with power and force limiting

Petr Svarny, Michael Tesar, Jan Kristof Behrens, and Matej Hoffmann

Abstract— So-called collaborative robots are a current trend
in industrial robotics. However, they still face many problems
in practical application such as reduced speed to ascertain
their collaborativeness. The standards prescribe two regimes:
(i) speed and separation monitoring and (ii) power and force
limiting, where the former requires reliable estimation of dis-
tances between the robot and human body parts and the latter
imposes constraints on the energy absorbed during collisions
prior to robot stopping. Following the standards, we deploy the
two collaborative regimes in a single application and study the
performance in a mock collaborative task under the individual
regimes, including transitions between them. Additionally, we
compare the performance under “safety zone monitoring” with
keypoint pair-wise separation distance assessment relying on
an RGB-D sensor and skeleton extraction algorithm to track
human body parts in the workspace. Best performance has been
achieved in the following setting: robot operates at full speed
until a distance threshold between any robot and human body
part is crossed; then, reduced robot speed per power and force
limiting is triggered. Robot is halted only when the operator’s
head crosses a predefined distance from selected robot parts. We
demonstrate our methodology on a setup combining a KUKA
LBR iiwa robot, Intel RealSense RGB-D sensor and OpenPose
for human pose estimation.

I. INTRODUCTION

So-called “collaborative robots” (or “cobots”), i.e. robots
that are safe when sharing the same (collaborative)
workspace with human operators, represent a rising trend in
robotics. However, their industrial application is limited by
their performance—the reduced speed and limited payload
in particular. Safe physical Human-Robot Interaction (pHRI)
saw great development in the last decade, with the introduc-
tion of new safety standards [1], [2] and a rapidly growing
market of cobots. However, it is a more recent attempt to
enhance not only the safety of these robots but also their
performance. This attempt to make collaborative robotics
more attractive to the traditional industry is visible also in
projects promoting the advancement in this field (see the
COVR project! [3]).

Haddadin and Croft [4] provide a survey of pHRI. Accord-
ing to [2], there are two ways of satisfying the safety require-
ments when a human physically collaborates with a robot: (i)
Power and force limiting (PFL) and (ii) Speed and separation
monitoring (SSM). For PFL, physical contacts with a moving
robot are allowed but the forces / pressures / energy absorbed

Petr Svarny and Matej Hoffmann are with the Department of Cy-
bernetics, Faculty of Electrical Engineering, Czech Technical University
in Prague. Michael Tesar and Jan K. Behrens with the Czech Institute
of Informatics, Robotics, and Cybernetics of the Czech Technical Uni-
versity in Prague. (e-mail: petr.svarny @fel.cvut.cz; michael.tesar@cvut.cz;
jan.kristof.behrens @cvut.cz, matej.hoffmann@fel.cvut.cz).

"http://safearoundrobots.com/

Collaborative workspace

(a) (b)

Fig. 1: Experimental setup — collaborative workspace. (a)
External view. (b) Camera view with human keypoint ex-
traction.

during a collision need to be within human body part
specific limits. This translates onto lightweight structure, soft
padding, no pinch points, and possibly introduction of elastic
elements (see the series elastic actuators in Sawyer robot;
[5] for a formal treatment of robots with flexible joints) on
the robot side, in combination with collision detection and
response relying on motor load measurements, force/torque
or joint torque sensing. This is addressed by interaction
control methods for this post-impact phase (see [5] for a
recent survey). The performance of robots complying with
this safety requirement in terms of payload, speed, and
repeatability is limited.

Safe collaborative operation according to speed and sepa-
ration monitoring prohibits contacts with a moving robot and
thus focuses on the pre-impact phase: a protective separation
distance, S, between the operator and robot needs to be
maintained at all times. When the distance decreases below
Sy, the robot stops [2].

In industry, S, is typically safeguarded using light cur-
tains (essentially electronic versions of physical fences) or
safety-rated scanners that monitor 2D or 3D zones (e.g.,
Pilz SafetyEYE). One can usually define a protection field
(denoted “red” zone)—if an object is detected inside, the
robot is brought to an immediate halt—and a warning field
(called “yellow” zone) that may trigger a reduced maximum
allowed robot speed. However, the flexibility of such setups
is limited: the information is reduced to detecting whether
an object of a certain minimum volume has entered one of
the two predefined zones. Also, the higher the robot kinetic
energy, the bigger is its footprint on the shop floor.

With increasing performance and falling prices of RGB-D
sensors (RGB image + depth information), we can prototype
collaborative scenarios using already available sensors (like
Intel RealSense) and tools for human keypoint or skeleton
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extraction from camera images [6], [7]. This combination
permits real-time perception of the positions of individual
body parts of any operators in the collaborative workspace.
Deployment in real applications will depend on the develop-
ment of safety-rated modules providing this functionality?.

In this work, we take advantage of the keypoint in-
formation and follow [2] to deploy the two collaborative
regimes (SSM and PFL) in a single application. The de-
ployment of both regimes in a single scenario provides in
our view the unique contribution of this work. The PFL
regime prescribes different thresholds for the body parts of
the operator and hence only with the keypoint information
available can the body part specific limits be taken into
consideration—demonstrated on the head keypoints here. We
study the performance in a mock collaborative task under
different settings like distances from robot base to individual
keypoints, stopping or slowing down, and their transitions—
the distances and speeds are based on [2] in our setup. We
use a KUKA LBR iiwa collaborative robot, Intel RealSense
RGB-D sensor and OpenPose for human pose estimation as
shown in Fig. 1.

This article is structured into related work reviewed in
the next section, followed by Materials and Methods, and
Results. We close by Discussions and Conclusions.

II. RELATED WORK

A functional solution for safe pHRI according to the
speed and separation monitoring requirements will neces-
sarily involve: (i) sensing of the human operators’ as well as
robot’s positions (and speeds), (ii) a suitable representation of
the corresponding separation distances, and (iii) appropriate
responses of the machine (speed reduction / stop / avoidance
maneuvers). On the perception side, tracking the robot parts
in space tends to be relatively easy as accurate models of
the machine as well as joint encoder readings are available
and hence position (and possibly also orientation, speed, and
acceleration) for the end-effector as well as other chosen
keypoints can be readily obtained from forward kinematics.
On the other hand, the perception of the human operators
in the workspace is more challenging. Two key technologies
have appeared that facilitate progress in this area: (i) com-
pact and affordable RGB-D sensors and (ii) convolutional
neural networks for human keypoint/skeleton extraction from
camera images [6], [7], or full 3D human body reconstruc-
tion [8]. These technologies together—albeit currently not
safety-rated—make it possible to perceive the positions of
individual body parts of any operators in the collaborative
workspace in real time. Alternative technologies include
distributed wireless sensor networks that track operators who
do not wear any devices [9] or proximity sensors distributed
on the robot, usually part of electronic skins (e.g., Bosch
APAS robot). The main benefit of all these solutions is their
resolution—compared to mere zone monitoring—and hence
reduction of the effective footprint of the robot.

2For example , https://www.veobot .com/

Once the robot and human positions are obtained, their
relative distances (and possibly speeds or time to collision)
need to be evaluated. Euclidean distance is the most natural
candidate and also one that appears in the safety norms.
However, other representations have been proposed and may
be better suited for the nature of the sensory data (like the
depth space approach for RGB-D data [10], [11]) or for
planning and control of the robot where the configuration
space (joint space) of the robot can be used for representing
both the robot body and the obstacles. Flacco et al. [11]
provide an overview. Another key component is in what form
are the robot and human body parts represented. Drawing
on the results of the computer graphics community ([12]
for a survey), this often takes the form of some collision
primitives. These can be simple shapes like spheres [10] or
more complex meshes [13] and can differ for the robot and
the human: Zanchettin et al. [14] represent robot links as
segments and humans as a set of capsules. Of course, for
safety to be guaranteed, the whole body of both agents should
be represented and considering only the robot end-effector
does not suffice. Often, the “robot-centered” approach is
taken—in the sense that the collision primitives are centered
on the robot body and possibly dynamically shaped based
on the current robot velocity [13], [14], [15], [16]. A bi-
ologically inspired approach relying on peripersonal space
representation was presented in [17], [18].

Interaction control methods for the post-impact phase (see
[5] for a survey) are not our focus here. We rely mainly on
the information in [2] to calculate the speed our robot can
run with while fulfilling the PFL regime criteria.

There is a large body of work dealing with motion
planning and control in dynamic environments. In the face
of dynamically appearing obstacles (the case in HRI sce-
narios), classical offline trajectory planning [19] has to
be complemented by reactive strategies [20], [21]. This
problem gives rise to new velocity-dependent formulations
such as “velocity obstacles” [22] or “dynamic envelope”
[23]. Recently, the approaches are somewhat closer to the
“control” than to the “planning” community: the work of
De Luca and Flacco ([10]; [24] deal with both pre-impact
and post-impact control) or Zanchettin et al. [14] are good
examples. In summary, researchers in robotics often find
themselves developing compelling solutions for real-time
obstacle avoidance, but these may require substantial tuning
and the separation distance is often optimized rather than
guaranteed (e.g., [15], [20]). There are notable exceptions
like the work of Marvel [25] and Zanchettin et al. [14]
that take the constraints imposed by the safety standards
seriously. Regarding the PFL regime, Sloth and Petersen [26]
recently presented a method to compute safe path velocities
complying with [2]; Mansfeld et. al. [27] developed a “safety
map” and use alternative, less conservative, collision limits
derived from biomechanics impact data. Similarly, [28], [29]
provide a treatment of robot control taking into account the
energy dissipated in possible contacts with the operator.

The SSM part of our framework follows up on our
previous work [18], [30], in which we take advantage of the
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keypoint extraction to monitor distances between individual
parts of the human and robot body and exploit also the key-
point semantics to modulate the behavior. In this work, we
make important steps in bringing these ideas to an industrial
setting by moving to an industrial collaborative robot, adding
the PFL regime, and illustrating how to determine all the
relevant parameters in accordance with [2].

III. MATERIALS AND METHODS
A. Robot platform

A 7 DoF industrial manipulator KUKA LBR iiwa 7 R800
was used. The robot operates either at full speed (up to
1 m/s for the end-effector) or reduced speed (0.42 m/s).
As an additional low-level safety layer, the KUKA Collision
detection based on external torque estimation was turned on.

B. RGB-D camera

The camera was an Intel RealSense D435 RGB-D. We cal-
ibrate the robot and camera position through the ROS Hand-
Eye calibration tool. The camera resolution is 848x480, and
we use the RealSense short range presets’.

C. HRI setup

Our setup is illustrated in Fig. 1. A mock collaborative task
has been staged: the robot performs a periodic operation.
Operator periodically replaces one of the objects, entering
the robot workspace, and is perceived by the camera. The
robot responds appropriately (slow down or stop). The robot
was placed on a fixed table while the RGB-D sensor was
on a fixed position so that it can capture the whole robot
workspace. The camera was fixed to a construction that was
separate from the robot’s platform to avoid tremors during
the robot’s movement. The setup was designed to minimize
the chance of occlusions.*

D. Software framework and robot control

A schematics of the overall framework is shown in Fig. 2.
OpenPose (see Sec. III-E) finds human keypoints in pictures
captured by the camera as orchestrated by a ROS node.
The robot node consumes and produces information about
the coordinate transformations. The relative distances are
assessed in the peripersonal space module (pps) and fed into
the robot controller to generate the appropriate response.

High-level control of the robot was done in the ROS
node move_robot. We used the Movelt! motion planning
framework [32] to generate and execute the trajectories for
our mock task. Our scenario additionally required speed
modulation (stop, slow down, speed up) on the run which
is not provided by Moveit! and we have implemented a
custom solution for smoothly modulating the trajectories in
joint space, compliant with the corresponding limits of the
platform. In brief, we used cascaded robot control which
masks system non-linearities and lets us see the robot as

3See the file ShortRangePreset json in the wiki pages at [31].
4The complete setup including all experimental scenarios is illustrated in
the accompanying video at https://youtu.be/zP3c7Eq8yVk.
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Fig. 2: Software architecture schematics.

a system of seven double-integrators, which we control
similarly to a saturation controller [33]. We distinguish:

(i) Stopping motion. The remaining trajectory of the robot
is replaced by an alternative trajectory with a maximal decel-
eration for the fastest joint and relatively scaled deceleration
for all other joints. The overall stopping time ¢, is dependent
on the velocity of the joints ; and the acceleration limits
@i min < T < @jmax> stop,; denotes the minimal stopping
time for a joint j:

te = mMmax tsop. (1)
€ j€Joints stop.J
. 0—%j ve
T; < 0 7?']' £
tstopg = .0 o 0 o )
i = @j,min

The worst-case run-time of the stopping trajectory cal-
culation tca < 0.02 s was determined empirically. When
the stop signal arrives, the earliest future state (with ¢ >
tnow 1 tealc) along the current trajectory is selected and used
as reference state x.o¢ for calculations.

£5(0) = bj1 = et (3)
dj(te) = bj1 +bjote =0 — bjo = % @
25 (t) = Tjref + Tjref t + x;’tref 2 s)

To facilitate the full breaking potential, we use polyno-
mials (with parameters b; o, bj,1 and b;2) of degree two to
describe the joint positions. Hence, the velocities &; are linear
with the maximum deceleration for at least one joint. This
breaking behavior yields the shortest stopping time possible,
but will for general trajectories slightly deviate from the
original path. For point-to-point movements in free space
(as in our example), this stopping strategy will remain on
the planned path. Figure 3 shows the planned joint velocity
and position, the stopping plan, and the joint velocity of a
simulated robot.

(ii) Deceleration to reduced speed. When the signal arrives
to slow down, a stopping trajectory is calculated as above.
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Fig. 3: Stopping motion using the trajectory controller. The
stopping signal was received at 0.4077 s. The deceleration
starts 0.0086 s later. The robot stops from the a speed of
1.1 rad /s in 0.3836 s (red area). The first red vertical
line shows arrival of stop signal and the blue vertical line
(0.0085 s later) marks the end of computation of the new
trajectory. Note, that we consider the worst-case execution
time in the selection of the reference state.

The original trajectory is scaled using the IterativeParabolic-
TimeParameterization (Movelt!) to comply with the desired
reduced speed. When the linear deceleration reaches the
speed of the scaled trajectory, we search for the closest
trajectory point ahead of the scaled trajectory. The scaled
trajectory is shifted in time to continue after the deceleration
and both trajectories are stitched at this point together.
Acceleration back to full speed is performed similarly.

The target joint position commands were then passed to
the KUKA Sunrise cabinet via the FRI interface.

We took a conservative approach in the design of our
controller as follows: when “pps status” signaled a more
restrictive regime, it was executed immediately; conversely,
in the other direction, a filter was applied to warrant that the
operator has left the area. The pipeline described above is
not safety-rated and the high-level robot control is capable
of performing a Stop Category 2 only.

E. Human keypoint 3D estimation and distance measure-
ments

The integral part of collision avoidance is to correctly
estimate the position of the operator’s keypoints in space. We
created a ROS node that processed data from the Realsense
D435 camera using the Realsense Python API (2.17.1)[31]
to collect aligned color and depth images. All our image
operations also rely on OpenCV3[34].

The color images were sent to the OpenPose library
Python API[35] to estimate human keypoints. For OpenPose,
we use the COCO model and with the net resolution match-
ing the input images. We also used the model’s confidence
value to drop detections that were below 0.6 confidence as
they were often false positives. This threshold was found by
letting OpenPose analyze a scene without the human.

The resulting keypoint locations were then deprojected
using the aligned depth image and thus we received the 3D
coordinates of the operator in the camera’s frame of refer-

full to reduced speed

(a) T epeed o otop
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6 1

(c)
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12 (d) * s
.
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Fig. 4: Keypoints and bounding spheres representation (as-
pect ratio kept). (a) Stopping and stopping after reduced
speed distances. (b) OpenPose keypoint distribution [6]
with bounding spheres on the keypoints of interest. (c)
KUKA LBR iiwa keypoints (picture source: KUKA LBR
iiwa brochure) with compensation bounding spheres. (d)
Schematic 2D separation distance calculation between robot
and human keypoints. The compensation coefficients are the
distances between the keypoints and the farthest point of the
body that belongs to the body part near the keypoint.

ence. These keypoints are represented as reference frames
and added to the ROS transform library (called tf). The ¢f
package stores the relationships between different coordinate
frames in a tree structure, allowing for calculation of the
position of the human keypoints w.r.t. the robot’s keypoints
by using the relation between their frames.

Our experiment takes into account only upper body and
hip keypoints detected by OpenPose’s posture model (see
Fig. 4b), namely keypoints 0-7 and 14-17. These are the
most relevant keypoints to our application and assume stan-
dard behavior of the operator. What we consider for our
experiment as the human head are the keypoints of the nose
(0), eyes (14, 15) and ears (16, 17).

F. Keypoint “bounding spheres”

Discrete keypoints allow a faster calculation of distances
and unambiguous interpretability of the system’s expected
behavior. Nevertheless, they do not take into account the
full occupancy of the bodies, which could lead to the
underestimation of the real separation distance. This problem
is especially relevant with sparsely placed keypoints.

We need to guarantee S, the protective separation dis-
tance [2]. For this purpose, we introduce compensation
coefficients for the robot r¢ompen and the human heompen-

The calculation of the compensation coefficients with
given keypoints is divided into two steps. In the first step,
every part of the body is assigned to its nearest keypoint.
Then, for every keypoint, the maximal distance over all its
assigned part (from the first step) is selected as the com-
pensation coefficient (see Fig. 4d)—thereby guaranteeing the
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separation distance .S}, in all cases. With increasing density
of the keypoints, the compensation coefficients get smaller.

In our case, the robot compensation values were deter-
mined from the model of the robot. For the human, the
values were assigned empirically based on the distribution
of OpenPose keypoints (Table I). The human operator was
interacting with the robot only with his upper body and
the lower body was not taken into account. The resulting
bounding spheres are in Fig. 4 and the values are in Table I.

EE 7 6 5 4 3 2 1 Base
0.01  0.11 015 015 0.5 0.15 0.15 0.14 0.10
Nose Neck Eye Ear Arm Elbow Wrist
0.10 025 0.10 0.10 0.15 0.15 0.15

TABLE I: Robot r¢ompen and human heompen compensation
values in meters.

G. Protective separation distance

The protective separation distance is the “shortest per-
missible distance between any moving hazardous part of the
robot system and any human in the collaborative workspace”,
Sp, and it is described in [2] by the following formula:

Sp(to) =Sh+ S +Ss+C+ Zg+ Z, (6)

with

contribution to the S, (¢y) attributable to the oper-

ators change in location;

Sy contribution to the S,(to) attributable to the robot
systems reaction time;

Ss  contribution to the Sy, (to) due to the robot systems
stopping distance;

C distance that a part of the body can intrude into the

sensing field before it is detected;

position uncertainty of the operator in the collab-

orative workspace, as measured by the presence

sensing device resulting from the sensing system

measurement tolerance;

Zy position uncertainty of the robot system from the
accuracy of the robot position measurement.

Sp(to) can either be calculated dynamically or, as in
our case, a fixed value based on worst case situation. Eq.
6 applies to all personnel in the collaborative workspace
and to all moving parts of the robot system. In our case,
we calculated the necessary stopping distance based on
the maximal robot end-effector speed measured during the
robot’s unconstrained movement. The contributions marked
as S; are determined using the robot’s maximal speed vV;qz
multiplied with the appropriate ¢;, so for example it should be
Sy =ty - Umas. However, we used the average robot speed,
= max=0 " jn our calculations in order to simulate the
robot’s slowing down during the stopping movement. This
is a slight alteration of the very conservative demands of [2].

We determined the terms of Eq. 6 as follows:

Sh (t:+ts)-vn, where vy, is the default human walking
speed (1.6 m/s) [2], t, is the time it took the robot

to react to a issued stop status (0.1 s), and ¢4 the
time it took the robot to stop its movement: 0.43 s,
thus 1.6 - (0.1 + 0.43) = 0.85 m;

Sy ty - Umax = 0.1-1=0.1 m;

Ss ts- vy = 0.43-0.5 =0.22 m;

C the setup did not allow the operator to enter the
workspace without being detected: 0 m;

Zq see the heompen Values from Subsection III-F: 0 m;

Zy the LBR iiwa’s repeatability value: 0.0001 m.

The time t5 was determined based on measured calculation
times (0.005 s) and the maximal deceleration of the robot
which was set to 1.5 rad /s.

Using these values, we can calculate the S}, as in Eq. 7.

Sy(to) = 0.85 + 0.1+ 0.2240.0001 = 1.17 m  (7)

H. Power and force limiting

The SSM regime prescribes that the robot stops before
contact occurs. In our approach, we also allow the robot
to slow down so that it can operate in the PFL regime,
see below. We assume the end-effector exerts pressure on
a surface area of at least 1 cm 2,

We can calculate the maximal relative speed of the system
for a transient contact given the surface and the robot weight.
For this, we use the formula A.6 from [2]. This equation also
asks for some preliminary calculations, like for example p,
the reduced mass for the two body system of the robot and
the human operator. We summarize the calculation here. In
order to ascertain absolute safety, we assume the worst case
scenario, i.e. an impact in the chest. The values for my, pmax
and k are taken from the appropriate tables in [2].

M 23.9
my = 5 my = - +0 8)
_1+1*1_ 1+2*1 ©)
= ")~ \a0 " 239
maz - A 2.4x10%-1x 1074
Urel,maz = P = x - = 0.50 (10)

N 1w-2.5 x 104

Thus we know that the speed of 0.42 m/s is a conservative
speed in order to be in the PFL regime. We determine the
distance at which the robot needs to start slowing down to be
PFL compliant in the same way as we did with SSM in Eq. 7.
However, we take into account only the difference between
1 m/s and 0.42 m/s. The resulting value for S}, is 0.73 m
(full to reduced speed). The stopping distance for 0.42 m/s
according to the equation would be 0.60 m (reduced to stop).
According to [2], non-zero energy contact with the human
head is not allowed. Thus our final setup forces the robot to
stop on the proximity of the human head (see Section IV-C).

L. Keypoint separation distance representation

The separation distance is represented in a matrix of min-
imal effective separation distances for every pair of human-
robot keypoints that allow to meet the desired protective
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Stop from Reduce  speed Stop from

full speed reduced  speed

Nose  Wrist Nose Wrist Nose Wrist

End-effector  1.28 1.33 1.44 1.49 0.71 0.76
3 1.33 1.38 1.49 1.54 0.76 0.81
Base 1.28 1.33 1.44 1.49 0.71 0.76

TABLE II: Effective keypoint-pair protective separation dis-
tance in meters.

separation distance for all. This matrix can be set explicitly
or it can be a sum of different matrices as in our case.

The resulting separation distance is composed of several
components—a baseline and any terms relevant from the
safety perspective. The baseline is determined by the experi-
menter or calculated according to the methodology described
together with Eq. 6 in Sec. III-G. We have to evaluate
the maximum possible speed and the protective separation
distance based on the “worst cases over the entire course of
the application”[2]. The resulting keypoints S/ are added
to compensation coefficients based on the bounding spheres
hcompen and reompen described already in Sec.III-F.

‘This addition leads to the keypoint separation distances
Sy between any two given keypoints i, j.

an

Thus we calculate the keypoint separation distances for
each keypoint pair. We show two calculations: (1) According
to SSM, the values necessary for a cat. 2 stop from full speed
based on the Eq. 7 with the addition of the compensation
values from Table I according to Eq. 11 are shown in Table IT
(left). (2) Combination of SSM and PFL regimes: robot
first slows down and then stops only if needed. We add
the calculations from Section III-G; the resulting values are
in Table II (middle). An example is provided in Eq. 12
with the nose-end-effector keypoint pair. Reduced speed is
triggered at the distance S} .q,, that is composed of
Sfulltoreduced per PFL (Section III-H) and Sreducedtostop,kp
per SSM (Section III-G, Table II, last column).

ij i i j
Skp - hcompcn+ Sp +Tcompcn

¥
reduced,kp
1.44 =

Sfulltoreduced +
0.73 +

Because of the shape of the KUKA robot, the values result
in similar effective Sj,,; accordingly we list three keypoints
from the robot and omit duplicate keypoint-pair values.

Srihuced k
reducedtostop,kp (12
0.71 (12)

IV. RESULTS

The robot performs a mock pick-and-place task; the
operator periodically replaces one of the objects, entering
the robot workspace. The robot responds appropriately by
slowing down or stopping and resumes operation whenever
possible. The scenarios contrast the standard approach of
a zone scanner or safety mat (Sc. 1, 2) with the pairwise
distance evaluation between operator and robot keypoints
(Sc. 3-5). Some scenarios employ a safe reduced speed
per PFL (Sc. 2, 4, 5) and Sc. 5 issues a stop only on
human head proximity. The description of the scenarios in

our implementation (Sec. IV-A — IV-C) is followed by a
performance comparison on the mock task (Sec. IV-D). All
upper body keypoints (see Fig. 4, right) were considered at
all times, but we show only the safety-inducing keypoints in
the plots below for clarity.

A. Scenario 1 and 2: Robot base vs. human keypoints

In the first two scenarios, the distances between the
robot base and the human keypoints were considered. The
baseline S, of 1.17 m (Eq. 7) is extended by compensation
coefficients specific to the human keypoint bounding spheres
(Sec. III-F, Table II). In addition, as only the base of the
manipulator is considered, the robot’s maximum reach of
0.8 m has to be added, giving 1.17+0.8 m, plus keypoint
compensations.

In a similar manner, the second scenario approximated the
setting with distance-based zones for reduced speed and stop-
ping by using the values from Sec. III-H. A reduced speed
zone started at 2.13 m (0.7340.6+0.8) and stop at 1.40 m
(0.6+0.8). The separation distance for slowing down from
the maximum velocity was a composition of the necessary
distance for slowing down, the necessary distance to stop
from the reduced speed, and the robot’s reach, see Fig. 4a.

B. Scenario 3 and 4: Robot vs. human keypoints

In Scenario 3, we measure keypoint-pair separation dis-
tance with respect to the robot’s moving parts (namely any
joint above joint 3) to stop at S, = 1.17 m. The fourth
scenario involved a reduced speed zone (see Sec. III-H).
When a human keypoint got closer than 1.33 m to any of the
moving robot keypoints, the robot slowed down. If the human
got closer than 0.60 m, the robot stopped. The behavior of
the system is illustrated in Fig. 5.

C. Scenario 5: Addition of keypoint discrimination

The last scenario described the case when the robot reacted
with a stop only if the human head was closer than 0.60 m
to the robot. Otherwise, the robot slows down (keypoint
distance below 1.33 m). The behavior is illustrated in Fig. 6.
Notice that the safety regimes of the robot were triggered
by different keypoint pairs than in the case of the previous
scenario in Fig. 5.

D. Performance in mock task

Here we quantitatively evaluate the performance on the
task under the different “safety regimes” as described above.
The robot performs the task 20 times (measured at one of
the two target objects) and the time needed is recorded. As
a baseline, we use the unobstructed task at full speed of
the robot and reduced speed. The full speed scenario would
not comply with collaborative operation; reduced speed at all
times would comply, provided the operator head is protected.

The results are shown in Table III. Operating the robot
in the reduced speed PFL compliant regime, scenarios 4
and 5, outperformed most of the experimental scenarios.
The scenarios that take pairwise distances between robot
and operator keypoints into account and use two thresholds
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Fig. 5: Scenario 4: Reduced speed (light area) or stop (dark)
triggered by keypoint distances below threshold. Positions of
selected joints showing the slowing down / stopping (contin-
uous lines, right y-axis). Keypoint pair distances triggering
the behavior are shown (individual data points, left y-axis).
Relevant threshold values: Reduced speed at 1.63 m and the
stopping behavior at 0.90 m. These values are based on Eq.
12 and the appropriate compensation values from Table I.

(scenario 4 and 5) performed better than all other collabora-
tive regimes. The last scenario that stops only for the head
keypoints achieves the best performance.

Full sp. Reduced sp. Sc.1 Sc.2 Sc.3 Sc.4 Sc. 5
154 256 267 254 257 231 228

TABLE III: Task duration for different scenarios in seconds.

V. DISCUSSION AND CONCLUSION

In this work, we used a robot in a mock collaborative
scenario, in which it shares its workspace with a human. The
operator’s position was perceived with an Intel RealSense
RGB-D sensor and human keypoints were extracted using
OpenPose. Our paper presents an application of the standard
for collaborative robot operation ISO/TS 15066 [2]. The stan-
dard prescribes two collaborative regimes (SSM and PFL).
However, to our knowledge, there is no work considering
both in a single application. We follow the standard to derive
the protective separation distance (per SSM) and calculate the
reduced robot velocity (in compliance with PFL constraints)
and deploy them in a single framework. We demonstrate
this union with an implementation of pairwise keypoint
distance monitoring. Compared to classical zone monitoring,
the keypoint distance method has higher resolution and con-
straints robot operation less. Also, keypoints can be treated
differently, taking the sensitivity of human body parts or
robot keypoints (e.g. sharpe edges) into account—in this way
the constraints on collisions (per PFL) can be transformed
into separation distances (per SSM).
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Fig. 6: Scenario 5. See also caption of Fig. 5. As soon as the
first threshold at 1.58 m is met, the robot reacts with slowing
down. When the human operator crosses the second threshold
at 0.85 m with his head, the robot stops. Thresholds contain
the compensation from Sec. III-F. Notice that the detection
of the operator’s elbow below the threshold does not trigger
a stop but it does lead to a longer reduced speed period.

The operation of this framework was illustrated with a
KUKA LBR iiwa robot interacting with a human partner that
is perceived by a RGB-D sensor during a mock collaborative
task. Contrasting a classical “stop zone” from the robot base
with the keypoint-based approaches confirmed the potential
of the distance monitoring between pairs of keypoints.

Multiple features could enhance our setup, notably we
could add dynamic protective separation distances and oc-
clusion compensation. The current approach monitors only
positions and uses the maximum speeds for calculations.
Instead, we could monitor relative speed and dynamically
modify the protective separation distance accordingly.

Currently, occlusions could cause a misestimation of the
human’s keypoint location and thus the distance. Possible
compensations and thus future enhancements are to use
multiple sensors, compensate for occlusion by creating a
human model or filter out the robot body in the scene. With
these additions we could also incorporate active evasion of
the human instead of our current reactive behavior (see [11]).

RGB-D sensors are not safety-rated yet. The reliability of
the current sensors can be improved by combining multiple
sensors and fusing the information from them [36], [37].
However, there is a clear need of safety-rated devices similar
to those for zone monitoring that will provide 3D object
coordinates and possibly human keypoint extraction: certified
products are expected to appear on the market soon. The
availability of such technology would dramatically expand
the possibilities of human-robot collaboration in the SSM
regime. Furthermore, as illustrated in this work, exploiting
the “keypoint semantics” (e.g. chest vs. head) can be com-
bined with the safety requirements as per PFL.
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Petr Svarny, Jakub Rozlivek, Lukas Rustler, and Matej Hoffmann

Abstract— The need to guarantee safety of collaborative
robots limits their performance, in particular, their speed and
hence cycle time. The standard ISO/TS 15066 defines the
Power and Force Limiting operation mode and prescribes force
thresholds that a moving robot is allowed to exert on human
body parts during impact, along with a simple formula to
obtain maximum allowed speed of the robot in the whole
workspace. In this work, we measure the forces exerted by
two collaborative manipulators (UR10e and KUKA LBR iiwa)
moving downward against an impact measuring device. First,
we empirically show that the impact forces can vary by more
than 100 percent within the robot workspace. The forces are
negatively correlated with the distance from the robot base
and the height in the workspace. Second, we present a data-
driven model, 3D Collision-Force-Map, predicting impact forces
from distance, height, and velocity and demonstrate that it
can be trained on a limited number of data points. Third, we
analyze the force evolution upon impact and find that clamping
never occurs for the UR10e. We show that formulas relating
robot mass, velocity, and impact forces from ISO/TS 15066 are
insufficient—leading both to significant underestimation and
overestimation and thus to unnecessarily long cycle times or
even dangerous applications. We propose an empirical method
that can be deployed to quickly determine the optimal speed and
position where a task can be safely performed with maximum
efficiency.

I. INTRODUCTION

Physical Human-Robot Interaction (pHRI) or Human-
Robot Collaboration (HRC) (e.g., [1]) is a dynamically
growing research field. At the same time, in industry, the
expectations associated with collaborative robots (or co-
bots; robots designed for direct interaction with humans [2])
are high, but their uptake has been somewhat held up by
their performance limitations derived from strict safety con-
straints. Various safety standards, especially ISO 10218 [3]
and ISO/TS 15066 [4] (TS 15066 for short), formulate these
safety demands. These standards currently list four modes
of collaboration. While all HRC is “continuous, purposeful
interaction associated with potential or accidental physical
events” [5], only the Power and Force Limiting (PFL) mode
permits physical contact between the robot and the human
when the robot is still autonomously moving, provided that
the impact force, pressure, and energy stay within prescribed
limits [4]. Nevertheless, the force thresholds derived from

This work was supported by the Czech Science Foundation (GA CR),
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the TS 15066 for the PFL mode enforce low operational
velocities, especially if there is a risk of clamping (see
for example [6] or [7]). These constraints motivate current
investigations geared to overcoming the limitations.

(a) UR10e.
Fig. 1: Setup — robots and impact measuring device.

(b) KUKA LBR iiwa.

TS 15066 prescribes limits based on pain thresholds from
studies like [8]. These limits are, however, subject to a heated
debate, e.g. [6], [9], [10].

A detailed treatment of safety aspects of human-robot
collisions is presented in [11], [12]. Contact modeling per se
is notoriously difficult; in HRC, it is even more challenging
as many parameters (mass and its distribution in colliding
bodies, behavior of robot controller upon impact, etc.) are
not known. Kovincic et al. [13], [14] suggest using collected
impact data to model the impact forces using machine
learning approaches because robot reaction mechanisms play
a significant role in the resulting forces and are “not known or
can not be identified” [13]. Schlotzhauer et al. [15] introduce
a 2D Collision-Force-Map (2D CFM) and approximate the
impact forces of UR10 and UR10e robots in a pick and place
task with a second degree polynomial.

Finally, robot performance can be further boosted if PFL
is not treated in isolation. For example, combinations with
the Speed and Separation Monitoring collaboration mode—
where robot needs to come to stop before contact—can be
implemented (e.g., [16]). This can take the form of optimal
velocity scaling [7], velocity scaling based on an impact force
model [17], the use of control barrier functions [18], or by
predicting the exerted force based on motor currents [19].

This work focuses on the PFL collaborative mode. We
measure the forces exerted by two collaborative manipulators
(UR10e and KUKA LBR iiwa) on an impact measuring
device in different positions in the robot workspace and with
various velocities (Fig. 1). Our approach is similar to 2D
CFM [15] in that we use empirical measurements and fit a
function relating robot position and speed to the impact force.
Newly, we establish the importance of the height, leading to
a 3D Collision-Force-Map (3D CFM).

Our contributions are the following: (i) a 3D collision-
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Phase IT Phase Il
Fig. 2: Collision phases from [11]. Phase I, the initial dynamic
impact with the force Fr, and Phase II, either a diminishing force
profile Fra in the case of no clamping or a non-diminishing force

profile Frp if there is clamping.

force-map is created, considering the velocity, distance from
robot base, and, newly, the height in the workspace; (ii) a
simple data-driven model using only few samples is pre-
sented and validated; (iii) behavior of the two manipulators
upon impact is analyzed, drawing important implications for
their deployment in collaborative applications.

This article is structured as follows. The related theory is
in Section II. The Experimental setup section is followed by
Experiments and Results (IV). We close with Conclusion,
Discussion, and Future work.

An accompanying video illustrating the experiments is
available at https://youtu.be/4eHsbed4EunU. The dataset
with the data collected is at [20].

II. COLLISION FORCE MAPS AND EFFECTIVE MASS
A. Power and Force Limiting

A human-robot collision can be decomposed into two
phases (see [11]). An initial dynamic impact in Phase I is
followed by the Phase II force profile that depends on the
clamping nature of the incident (see Fig. 2). There are at
least three possible scenarios (for details see [5]):

« unconstrained dynamic impact (no force in Phase II),

o constrained dynamic impact without clamping (dimin-
ishing force in Phase II)

« constrained dynamic impact with clamping (force is not
diminishing in Phase II)

TS 15066 [4] does not make a distinction between the im-
pact phases and merely distinguishes between two scenarios,
a transient contact, i.e. dynamic impact that is unconstrained
or is not followed by clamping, and quasi-static contact, i.e.
dynamic impact followed by clamping. The equation A.6
from TS 15066 relating velocity (v) and (maximum) impact
force (Fiax) is:

Fmax -1 71. (1)

with mp the effective robot mass, my the human body part
mass, k the spring constant for the human body part and
Fnax the maximum impact force permitted for the given
body region. As pointed out in [6], this is a simplified contact
model with a single spring constant for the human body.
However, the risks cannot be evaluated solely based on the
robot—it is necessary to take into account the application as
a whole. We assume a mock pick and place scenario with
a risk of a constrained dynamic impact on the human hand

as in [15]. Contact may occur as the robot is descending
towards the table, possibly clamping the hand of the operator.
In practice, a risk analysis according to [21] will be required.
If we investigate constrained dynamic impacts, even with-
out clamping, we can approximate m;,l ~ 0 as in [7]'. This
approximation allows us also to simplify the situation by
investigating the relative velocity as simply the robot velocity
with the human hand being still. The other variables are
therefore set based on [4] as Fiax = 140 N and & = 75000
N/m. The moving masses of the UR and KUKA robot
are approximately 30 kg and 20 kg respectively. Using the
approximation from [4] that the effective robot mass mpg
is M/2 + my, (half of the total mass of the moving parts
of the robot, plus the effective payload my, which is zero
in our case), together with Eq. 1, would give permissible
velocity up to 0.13 m/s for the UR robot and 0.16 m/s for the
KUKA robot in case of clamping. If there is no clamping, the
permissible force becomes 280 N and thus also the velocities
are higher, namely 0.26 m/s for the UR and 0.32 m/s for the
KUKA due to the weight difference between the robots.

B. Collision-Force-Map — 2D and 3D

The assumptions and approximations made in [4] are too
coarse and do not match empirical impact measurements.
Schlotzhauer et al. [15] proposed a 2D Collision-Force-
Map—a data-driven linear model to predict the impact force
as a function of the distance from the z-axis of the robot base
frame (d) and velocity (v). The model is a second degree
polynomial of the form:

In(F) = Bo+B1-v+Pa-d+ B3 - d* 2)

The parameters are robot-, software-, and application-specific
and should be found from a large number of measurements.

In this work, we add the height in the workspace (h)
as an important additional dimension that affects the force
exerted on impact. Euclidean distance in 3D between the
end effector (EE) and the robot base would be a candidate
representation, leading to a different 2D Collision-Force-
Map. However, our empirical measurements—see Fig. 3—
reveal a more complicated relationship between d, h, and
v. For the UR10e robot (Left), the dependence of force on
distance has a different profile for A > 0.38 m than for lower
heights. This is true for two different speeds. For the KUKA
(Right), the contribution of height to predicting the impact
forces goes down with the distance from the base.

C. Effective mass as function of d and h

We sought a theoretical rationale for the observations
above. While TS 15066 considers the “effective robot mass”
statically, Khatib [22] introduced the robot effective mass as
a dynamic property depending on the robot’s configuration
and the impact direction. This has been later adopted by
many others, sometimes also called reflected mass (e.g., [1],

The impacted body part is constrained and thus immovable. Its weight in
the PFL two-body spring model can be considered therefore as significantly
larger than the other body’s, and hence approximated as infinite.
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Fig. 3: Impact forces for different distances, heights, and velocities
of EE. (Left) UR10e. (Right) KUKA LBR iiwa 7R800 with 10 Nm
external torque limit.
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(a) mp at 9 inspection points.  (b) mp as a function of d and h.
Fig. 4: Calculating effective mass of model 3 DoF planar manip-
ulator. Collision direction “down™: u = [0, —1].

[6], [71, [11], [23]). The effective mass of a manipulator in
a given direction uw can be modeled using the formula [23]:

my' =u"[J(q) M (q)]7 (q)]u, 3)

where ¢ are the joint angles of a given position, M (q) and
J(q) are the Inertia matrix and the Jacobian matrix of the
manipulator, respectively (see, e.g., [24, Ch. 3 and Ch. 7]).
Although the robots have 6 (UR10e) and 7 (KUKA)
degrees of freedom (DoF), the robot configurations at impact
can be coarsely approximated with a 3 DoF planar manipu-
lator. Inspired by the UR10e manipulator, we used a model
with three links with masses [13,4,4] in kg and the length
of the links [0.5,0.45,0.05] in m. On a grid resembling
Fig. 5, we used the analytical solution of inverse kinematics,
restricted to the “elbow up” configuration, to reach with the
EE the targets on the grid—see Fig. 4a—and calculated the
effective mass, with v = [0, —1] (collision in the downward
direction). We sampled the workspace more densely, giving
rise to Fig. 4b, providing a prediction in line with Fig. 3.
The results also suggest that the effect of d and h should be
considered together and “cross-factors” are needed.

D. Acquiring 3D Collision-Force-Map from data

We investigated the significance of every element of the
model like the one in Eq. 2, with additional terms in h
and terms with interaction factors between d, h, and v—
for 3 datasets (Table I) simultaneously using a two-stage
process. We started with the polynomial model containing
all terms (variables d, v, h) up to degree three and their
interaction terms up to degree three (19 terms together). We
removed all terms with a p-value higher than 0.05 for all
three datasets in stage one, to obtain 13 terms for stage two.
In stage two, we iteratively removed terms and compared two
model parameters: Root Mean Squared Error (RM SE) and
coefficient of determination (R?). In every iteration, the fit
would typically be worse and hence RM SE would increase

and R? decrease. The term for which its removal produced
the smallest change of these two parameters was removed.
The change was defined as follows: >~ ... .. (ARMSE +
100AR?). The elimination procedure was stopped when this
change for the term to be eliminated was bigger than 0.5 (i.e.,
removal of this term would make the fit significantly worse).
The result of this process gave rise to Eq. 4:

hl(F)=5o+/31'U+52'd+53'd2+,34-d~h+
+B5 B2+ Be-d> v+ Br-d-v’ + Ps-d-h* (4
III. EXPERIMENTAL SETUP

A. Setup and robots

An overview is in Fig. 1 and in the accompanying video.
The experiments consisted of a series of impacts with the
robots at different locations in the workspace and different
speeds onto an impact measuring device. Both robots were
commanded using the Cartesian linear movement—where
the EE follows a straight line—toward the impact. As a
large number of impacts were performed (more than 400 per
robot in total), we preferred not to use the robot flange but
the surface at the last joint instead. Robots were controlled
using their standard control interfaces while experimental
data were collected. We also specify the safety settings used
for the experiments as they influence the robots’ overall
behavior and, in particular, the response to a collision.

a) URI0e: Our UR10e is equipped with additional
protective layer, Airskin, that is not used in this work but
the extra weight (1.8 kg) is considered. The worst-case data
collection frequency was 800 Hz. The second most restrictive
safety setting was used, which restricts the robot mainly in
force and speed, but allows for sufficient acceleration and
deceleration with respect to our velocities.”

b) KUKA LBR iiwa 7R800: The robot is equipped
with a joint torque sensor in every axis and the safety
setting restricts the maximal external torque at any joint. Two
different settings were employed: 10 and 30 Nm. The data
from the robot were collected with a frequency of 1000 Hz.

B. Measuring device

We used CBSF-75-Basic—a measuring device (force
transducer) for gauging forces and pressures, with a spring
constant of 75000 N/m (see also [25]). Impact forces of up
to 500 N can be measured, with maximum error up to 3
N (calibration protocol from supplier). Following TS 15066,
appropriate damping material was added to mimic impacts
on the back of the non-dominant hand. Peak force from the
impact Phase I (Fig. 2) was recorded and used for analysis.

C. Data collection

Schlotzhauer et al. [15] experimentally verified the ro-
tational symmetry assumption. Thus, a single dimension,
distance from the robot base, was the only relevant parameter.

2 Allowed power: 200 W, Momentum: 10 kg m/s, Stopping time: 300 ms,
Stopping distance: 0.3 m, Tool speed: 0.75 m/s, Tool force: 120 N, Elbow
speed: 0.75 m/s, Elbow force: 120N.
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Fig. 5: Measuremeﬁts loc;tions distribution. (Left) UR10e.
(Right) KUKA LBR iiwa 7R800.

samples training states testing states
dataset per sptate (used . les*) | (used : ples*)
UR10e 3 27 (75) 88 (249)
KUKA 30 Nm 3 27 (78) 98 (291)
KUKA 10 Nm 1 27 (26) 98 (98)

TABLE I. Collected datasets. A “state” is a combination of
distance, height, and speed. *Samples that exceeded the measuring
device limit of 500 N were not used.

In our case, it is sufficient to study a plane in the 3D
workspace, varying two dimensions: d and h.

For the UR robot, the d ranged from 0.52 m to 0.89 m
with increments of 0.09 m and five different heights from
the level of the robot’s base starting at 0.14 m with 0.08
m increments — see Fig. 5 (Left). The KUKA robot has a
different reach. We sampled the workspace at the following
positions: d from 0.56 m to 0.86 m with an increment of
0.075 m and five heights corresponding to heights used with
UR robot — see Fig. 5 (Right). At a given position, we
performed measurements with five different velocities (0.20,
0.25, 0.30, 0.35, 0.40 m/s) in the downward direction.

a) Training set: 1t is our goal to develop a practical
tool that can be rapidly deployed. Therefore, the number
of measurements needed should be as small as possible.
For training the model, we use only a subset of the grid—
9 locations with blue square markers in Fig. 5—and 3
velocities (0.20, 0.30, 0.40 m/s). This gives rise to only 27
training measurements per robot, or 81 if every measurement
is repeated 3 times. An overview is in Table I. For the KUKA
robot, the repeatability was higher. Hence, for the 10 Nm ext.
torque setting, measurements were performed only once.

b) Testing set: For every robot, 16 additional positions
(black dots in Fig. 5) were tested with 5 velocities (0.20,
0.25, 0.30, 0.35, 0.40 m/s). For the 9 positions from the
training set, only the velocities 0.25 and 0.35 m/s were added.
In total, this gave 98 measurements per robot>.

c) Rotational symmetry verification: In order to verify
the assumption that rotation of the first joint does not
influence the results, 117 additional measurements on the
URI10e robot were performed.

All measurements above the recommended limit of the
impact measuring device (500 N) were discarded.

IV. EXPERIMENTS AND RESULTS

Our results consist of a series of experiments in which two
collaborative robots collide with an impact measuring device.
An illustration is provided in the accompanying video. First,

3Two positions (h = 0.3, d = 0.61; h = 0.3, d = 0.79) were omitted due
to the experimenter’s oversight on UR10e.

FINI
— /’\.\ ®  Measured data 500

Fig. 6: UR10e — 4D visualization of 3D CFM model predictions
within the sampled robot workspace for different collision veloci-
ties. The robot base is located at d = 0 and h = 0. Black points
are showing measured training data capturing the measurement grid
from Fig. 5 (Left).

we present and evaluate the 3D Collision-Force-Map model
for the two robots. Second, we compare the results obtained
with the 2D CFM [15] and the treatment of Power and
Force Limiting in TS 15066 [4]. Finally, we present the force
profiles after impact and analyze their implications.

A. 3D Collision-Force-Map for URI0e

First, the rotational symmetry was experimentally verified
using 117 measurements: 39 combinations of positions in the
workspace and speed with 3 repetitions. The error, i.e. the
difference in measured force on impact at different positions
on the same circle (same d, h, and speed), was maximum
10 N (3.5 %), mean 1 N (0.05 %).

Second, restricting ourselves to a plane, we measured the
impact forces on the grid of positions and at 5 different
speeds (see Section III-C). Every measurement was repeated
3 times, with a maximum standard deviation (SD) of these
three measurements of 3.85 N and a mean of these SDs
across all locations/speeds of 1.12 N. In total, 324 measure-
ments were performed.

The training set was used to fit the model of the form in
Eq. 4. The obtained model was:

In(F) = 6.2990 + 3.3761 - v — 1.1050 - d —
—1.3066 - d* — 1.5258 - d - h — 6.6954 - h® + 6)
+4.0919 - d? - v — 6.0090 - d - v® + 8.5207 - d - h?

Figure 6 shows the three variables, h, d, and v; only
the surface of this color map is visible though. As would
be expected, impact forces are directly proportional to the
velocity. For a fixed v and h or d, a 2D visualization is
possible—green lines in Fig. 7.

Table II quantifies the accuracy of our model on the
testing set (we refer to the UR10e row here). We evaluate
underestimation and overestimation of the impact forces
separately—the former being more critical regarding safety
assessment of the application. The maximal underestimation
over the testing set (see Table I) is 3.56 % (8.42 N) and the
mean underestimation is 1.37 % (4.45 N). Overestimation is
higher, 6.35 % (22.45 N) at maximum and 2.40 % (6.97 N)
on average. The error over the whole 3D CFM dataset is un-
derestimating slightly more, 3.68 % (7.07 N). Overestimation
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dataset max UE mean UE max OE mean OE dataset max UE mean UE max OE mean OE
atase [% / NI [% / N] [% / N] [% / N] [% /N] [% / N] (% / NI [% / N]
URIO Ts 3567842 1377445 | 63572245 | 2407697 UR10e Ts 6.51/14.60 2.23/6.33 7.56 /1122  1.76 / 5.17
© All [ 3687707 | 1.507/4.63 | 63572245 | 2.1676.26 1;“ lg-f) 11 // 12‘;-2(3’ 32-;7// 1%4921 33 i ;33 i 22773 // 77]998
s 2 o A .. = i 13 .
Kuka 30 Nm 15 | 93072232 | 2.63/7.61 | 94071634 | 3.12/807 KUKA 30 Nm x| 12.01/28.83 | 3.75/1037 [ 789722.14 | 2847746
All (03072232 | 258 /737 | 940/ 16.54 | 3.08/7.93
Ts | 87072923 | 3047759 | 52472176 2.8 /582
Kuka 10 Nm TS | 57671936 | 19675.18 | 50271471 | 1.63 /416 KUKA 10Nm 0 | g0 5058 | 500008 F et aiie— o027 543
All 59372020 | 1.94/5.26 | 5.38/19.48 | 1.59 /4.11 - - —= - - B

TABLE II: Accuracy of 3D CFM model with underestimation
(UE), overestimation (OE), the test set (Ts), complete dataset (All).

UR10e Kuka 30 Nm ext torque Kuka 10 Nm ext torque
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Fig. 7: Impact force model comparison of 3D CFM (ours) — green,
2D CFM [15] - blue, and the value for Power and Force Limiting
mode from [4] — red. EE velocity = 0.30 m/s. (Top) Constant
height of end effector in the workspace (0.14 m). (Bottom) Constant
distance from base (0.70 m for UR10, 0.71 m for KUKA).

is more frequent for higher force values and underestimation
for lower impact forces. The higher relative overestimation
is probably due to the lower density of measurements for
higher forces—when impact forces surpassed 500 N.

With a bound on the underestimation, the 3D CFM can be
used to determine a safe speed for a collaborative application.
Adding 10% to all predicted forces—a conservative choice—
and knowing d, h, and allowed impact forces, one can
rearrange Eq. 4 to obtain the maximum safe EE velocity.

B. 3D Collision-Force-Map for KUKA LBR iiwa 7R800

Similarly to the UR robot, restricted to a plane, we
measured impact forces on the grid of positions and at 5
different speeds (Section III-C, Fig. 5 (Right), Table I for
details). We collected measurements with two different safety
settings (30 and 10 Nm of max. external torque at any joint).

a) 30 Nm external torque setting: Every measurement,
same location and speed, was repeated 3 times, with max-
imum SD of 3.09 N. The mean of these SDs across all
locations/speeds was 0.58 N. The dataset is composed of
369 measurements (see Table I). The model, 3D CFM, for
this robot and settings is given by the equation:

In(F) = 7.0641 4 4.2943 - v — 4.5286 - d +
+0.9917 - d® — 0.5795 - d - h — 6.0074 - h? + (6)
+3.9366 - d% - v — 7.2169 - d - v* + 7.0446 - d - h?
The results for one speed (0.30 m/s) are shown in Fig. 7,
center, with the green line—with fixed height (0.14 m, top)
or distance (0.71 m, bottom).

The accuracy of the model is quantified in Table II. The
maximal underestimation error is 9.30 % (22.32 N) with a

TABLE III: Accuracy of 2D CFM models. Gray values indicate
worse performance than 3D CFM model (Table II).

mean underestimation of 2.63 % (7.61 N) over the testing set
and 2.58 % (7.37 N) over the whole 3D CFM dataset. The
overestimation is comparable to the underestimation, with
a mean value of 3.12 % (8.07 N) over the testing set and
3.08 % (7.93 N) over the whole 3D CFM dataset, and with
the maximal error of 9.40 % (16.54 N). Both under- and
overestimation are worse than in the case of the UR robot.
b) 10 Nm external torque setting: Due to the high
repeatability of the measurements in the 30 Nm setting,
deviations under the precision of the measurement device,
only one measurement per position and speed was taken. The
resulting dataset contains 124 measurements (see Table I).
The resulting model, 3D CFM, for KUKA with 10 Nm is:

In(F) = 6.6936 + 4.9297 - v — 4.4782 - d +
+1.2926-d?> — 0.3758 - d - h — 5.5669 - k2 +  (7)
+3.2609 - d? - v — 7.2332 - d - v2 + 6.4016 - d - hZ.

The results for one speed (0.30 m/s) are shown in Fig. 7,
right, with the green line—with fixed height (0.14 m, top)
or distance (0.71 m, bottom). Compared to the 30 Nm
setting, the forces are on average approximately 5% lower.
The accuracy of the model is quantified in Table II. The
maximal underestimation is lower than with the previous
safety settings with 5.76 % (19.36 N) and an average of
1.96 % (5.18 N) over the testing set and 1.94 % (5.26 N)
over the whole 3D CFM dataset. The overestimation is even
lower than with the UR robot with a peak value of 5.02 %
(14.71 N) and 1.63 % (4.16 N) on average over the testing
set and 1.59 % (4.11 N) over the whole 3D CFM dataset.

C. 3D Collision-Force Map vs. 2D CFM vs. PFL (TS 15066)

First, we want to compare our results with the 2D
Collision-Force-Map (2D CFM) [15]. We used the least-
squares method to train the 2D CFM model (Eq. 2) on
our data, using the 0.20, 0.30, and 0.40 m/s EE velocities.
A comparison for one velocity (0.30 m/s) and one height
(0.14 m) is visualized in the top panels of Fig. 7. As the
2D CFM model does take h into account and as we have
shown the forces to importantly depend on this parameter,
a single 2D CFM model will fail to deliver predictions on
the whole workspace. To allow for a more fair comparison,
we have trained it separately for every height—blue lines in
the bottom panels of Fig. 7. As can be seen in Table III,
the 2D CFM overestimation errors are comparable to our
3D CFM model errors (higher for UR and lower for KUKA
30 Nm dataset). On the other hand, the 2D CFM models
underestimate significantly more than our 3D CFM model.

Power and Force Limiting according to [4] does not take d
or h into account and considers velocity only (see Section II-
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Fig. 8: Force evolution after impact. UR10e (at d = 0.89 m,
h = 0.14 m) — solid lines. KUKA (at d = 0.86 m, h = 0.14 m,
30 Nm ext. torque limit) — dashed lines. Phase I / Phase impact
phase boundary (cf. Fig 2) — cyan dotted line. Permissible force per
TS 15066 — red dotted line.

A). Eq. 1 can be rearranged and F' obtained. With the
corresponding robot masses and v = 0.3, this gives rise to
the red lines in Fig. 7. Clearly, such an approximation is
insufficient. Moreover, next to overestimation, it leads also to
gross underestimation of the impact forces and hence violates
the safety of the human (by the very standards of [4]).

D. Nature of dynamic impact

Peak force estimation is only one component required to
assess safety of a HRC application. Collision force evolution
after “Phase I” (Section II-A, Fig. 2) is also important. Fig. 8
shows this for a selection of our experiments. For the UR10e
robot, only Phase I is present. That is, although the scenario
has a “clamping nature”, the UR10e controller makes the EE
actively bounce back and thus makes the actual contact of a
transient kind. On the other hand, the KUKA robot shows a
prolonged damped harmonic movement upon impact.

TS 15066 prescribes maximum force thresholds for the
first 0.5 s of impact (transient contact) and half this threshold
afterward (quasi-static contact)—as shown in Fig. 8 with red
dotted lines. Thus, based on our empirical findings, one could
apply the higher force thresholds for the UR10e (e.g., 280 N)
and only half that threshold for the KUKA (140 N), which
would dramatically alter the safe speeds in the application.

V. CONCLUSION, DISCUSSION, FUTURE WORK

Using two collaborative robots, UR10e and KUKA LBR
iiwa 7R800, we performed 934 measurements of forces
exerted on the impact of the robot end-effector with an
impact measuring device, with different robot velocities and
at different locations in the robot workspace. The collision
direction was always down, perpendicular to the table sur-
face. We established a clear relationship between the distance
from the robot base and the impact forces (in line with
[15]) and, newly, also the height in the workspace—both
variables being inversely proportional to the impact forces.
We developed a data-driven model—3D Collision-Force-
Map—that estimates the forces as a function of distance,
height, and velocity, including their mutual relationships.
This model is more accurate than 2D CFM [15] and PFL
according to [4] that does not take position in the workspace
into account. Furthermore, we show that it can be trained

from a limited amount of data: we sampled only 9 positions
in the workspace and 3 velocities to train the model.

Thus, our main contribution is a tool that allows for rapid
prototyping of a collaborative robot workspace. For quasi-
static impacts on the back of the hand, a force limit of 140
N is prescribed by TS 15066 [4], which would based on the
formula from TS 15066 limit the allowed EE speed in the
whole workspace to 0.13 and 0.16 m/s for the UR10e and
KUKA LBR iiwa, respectively. Our measurements reveal that
if the task is performed, for example, 0.8 m away and 0.4 m
above the robot base, speeds of 0.16 m/s (UR10e) and 0.20
m/s (KUKA LBR iiwa) stay within the prescribed force limit.
Furthermore, we observe that despite the clamping nature
of our scenario, the UR10e robot generates only transient
contact. With the 280 N limit, 0.36 m/s will still be safe with
the UR10e—an almost threefold increase. The PFL formulas
from TS 15066 are insufficient—leading both to significant
underestimation and overestimation at different locations in
the robot workspace, and thus to unnecessarily long cycle
times or even dangerous applications. The impact measuring
device was firmly attached to the table. The possibility that a
human operator would be moving against the robot prior to
collision was thus not considered. However, we focused on
quasi-static contacts where the limits are stricter. The most
dangerous part of the incident is in the clamping nature.

Interestingly, the trend of the relationship between distance
from / height above the robot base and the forces exerted
on collision is largely consistent across two different col-
laborative robots and also in line with our simple 3 DoF
model. However, whether the effective mass entirely deter-
mines the trends in empirically measured forces remains an
open question. In addition, the impacts are not uncontrolled.
The collision is detected by the robot internal controllers,
generating a response, which is likely quick enough to shape
the force evolution even during the first phase of the impact.
Extending the effective mass models is thus impeded by the
fact that accurate inertial parameters of the manipulators are
not known and the controllers are proprietary. In our case,
different safety settings (external torque) resulted in different
impact forces. Thus, empirical assessment of impact forces
in the robot workspace seems indispensable at the moment.

It should be noted that our results are not expected to
generalize to other robots or even different collision sites,
directions, or kinematic configurations on the same manip-
ulators. We concentrated on downward movement of the
robot to the table, which is typical of many applications,
and quasi-static contact, which represents the worst-case
scenario. Impacts were made with the last robot joint, not
the flange, for practical reasons. We propose an empirical
method that can be deployed by robot integrators on a
specific application site to quickly determine the optimal
speed and position in the workspace where a task can be
safely performed with maximum efficiency. The contact type
and location on the robot and position in the workspace
should all be set according to the application. In summary,
for effective design of a collaborative application, empirical
measurements are indispensable.
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