
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 11, 2020

ASSIGNMENT OF MASTER’S THESIS
 Title: Framework for Extraction of Wikipedia Articles Content

 Student: Bc. Oleksandr Husiev

 Supervisor: Ing. Milan Dojčinovski, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2020/21

Instructions

DBpedia is a crowd-sourced community effort that aims at extraction of information from Wikipedia. While
much information has been already extracted from semi-structured sources (infoboxes), still vast amounts
of information can be found in Wikipedia texts. The main goal of the thesis is to develop a framework for
extraction of Wikipedia articles content, structure and annotations.
Guidelines:
- Get familiar with the Wikipedia dump structure.
- Get familiar with the NIF data format which will be used to model the extracted data in a machine-
readable format.
- Develop a framework for the extraction of Wikipedia articles content; preserving the content structure
(sections, sub-sections and paragraphs) and annotations (links and titles). The framework should be generic
and configurable to be run on all Wikipedia languages.
- Run and validate the framework on English and at least 4 other selected Wikipedia languages.
- Evaluate the quality and performance of the results.

References

Will be provided by the supervisor.





Master’s thesis

Framework for Extraction of Wikipedia
Articles Content

Oleksandr Husiev

Department of theoretical computer science
Supervisor: Ing. Milan Dojčinovski, Ph. D.

September 17, 2020





Acknowledgements

I would like to thank my supervisor Milan Dojčinovski, family and friends for
their prolonged support during writing this thesis.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on September 17, 2020 . . .. . .. . .. . .. . .. . .. . .



Czech Technical University in Prague
Faculty of Information Technology
© 2020 Oleksandr Husiev. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Husiev, Oleksandr. Framework for Extraction of Wikipedia Articles Content.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2020.



Abstrakt

Tato diplomová práce se zabývá extrakćı obsahu Wikipedie pro DBpedia -
crowd-sourced projekt. Hlavńım ćılem této práce bylo vyvinout rámec pro
extrakci obsahu, struktury a anotaćı článk̊u z Wikipedie. Výsledkem je fra-
mework, který zpracovává velké skládky XML na Wikipedii v několika po-
pulárńıch jazyćıch s možnost́ı dynamicky přidávat nové jazyky a vytvář́ı čistý
textový výstup, odkazy a strukturu stránky ve formátu N-Triples.

Kĺıčová slova NIF, RDF, propojená data, web škrábáńı.

Abstract

This thesis describes the development process of the extraction of Wikipedia
articles content for a DBpedia, a crowd-sourced community effort. The main
goal of this thesis was to develop a framework for extraction of Wikipedia
articles content, structure, and annotations. The result is a framework that
processes large Wikipedia XML dumps in several popular languages, with the
possibility to dynamically add new languages, and produces clean text output,
links, and page structure in N-Triples format.

Keywords NIF, RDF, linked data, web scraping, knowledge graph.

vii





Contents

Introduction 1
Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Background and related works 3
1.1 The Concept of Semantic Web . . . . . . . . . . . . . . . . . . 3
1.2 What is Linked Data? . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Web Ontology Language Overview . . . . . . . . . . . . 4
1.2.2 RDF Description . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 SPARQL Query Language for RDF . . . . . . . . . . . 8

1.3 NLP Interchange Format . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Existing Use Cases for NIF . . . . . . . . . . . . . . . . 12

1.4 Linked Open Data and DBpedia . . . . . . . . . . . . . . . . . 13
1.4.1 Extracting Structured Information from Wikipedia . . . 14
1.4.2 DBpedia Dataset . . . . . . . . . . . . . . . . . . . . . . 15
1.4.3 Triplestore . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.4 DBpedia Dataset Web Endpoints . . . . . . . . . . . . . 15

1.5 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.1 DBpedia Information Extraction Framework . . . . . . 16

2 Analysis and Implementation 19
2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 General Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Usability considerations . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 REST API . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1.1 REST API Endpoints . . . . . . . . . . . . . . 23

2.4.2 Command Line Interface . . . . . . . . . . . . . . . . . . 24

ix



2.4.3 CLI Design Principles . . . . . . . . . . . . . . . . . . . 25
2.4.4 Command Line Input Options . . . . . . . . . . . . . . 25

2.5 Project Architecture . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.1 Tools and libraries . . . . . . . . . . . . . . . . . . . . . 27
2.6.2 Spring Framework . . . . . . . . . . . . . . . . . . . . . 27

2.6.2.1 Spring Dependency Injection . . . . . . . . . . 31
2.6.3 Java Jackson XML Library . . . . . . . . . . . . . . . . 32
2.6.4 Dynamic Language Support . . . . . . . . . . . . . . . . 33

3 Testing and Results 35
3.1 Smoke Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Unit Test coverage . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 JUnit Framework . . . . . . . . . . . . . . . . . . . . . . 40
3.3 End-to-End Testing . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 English language parsing . . . . . . . . . . . . . . . . . 42
3.3.2 Testing other languages . . . . . . . . . . . . . . . . . . 42
3.3.3 Output validation . . . . . . . . . . . . . . . . . . . . . 43
3.3.4 Scale Testing . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Conclusions 45

5 Acronyms 47

Bibliography 49

x



List of Figures

1.1 The Structure of OWL 2 . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Basic RDF Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 A network visualization of the triplestore . . . . . . . . . . . . . . 9

2.1 General Extraction Framework data workflow . . . . . . . . . . . . 21
2.2 Framework Main Class Diagram . . . . . . . . . . . . . . . . . . . 28
2.3 Usage of IDEs for Java development . . . . . . . . . . . . . . . . . 28

xi





Introduction

Motivation

Knowledge bases are growing up in importance as a Web and enterprise search
engine. At the moment, knowledge bases cover only specific niches and are
not useful outside of their primary purpose. As part of a broader DBpe-
dia initiative, this thesis has an objective to structure information, store it
in a machine-readable form, and provide better ways for information to be
collected, organized, searched, and utilized.

A DBpedia is a knowledge base, which information is organized as an open
knowledge graph. DBpedia data is served as Linked Data, which opens a new
way to access the Web for applications: via browser, automated crawlers, or
complex SQL-like queries. For example, current technologies do not allow
to combine information about cities, criminal rates, climate, and open job
postings into one search. The goal of DBpedia is to enable such queries to
happen.

The creation of the Framework for Extraction of Wikipedia Articles Con-
tent is important as it will allow the DBpedia initiative to receive formatted
article data from the Wikipedia on a regular basis.

Objectives

The main sight of the thesis is to extract structured content from Wikipedia
articles. This content can be divided into several main parts: context, struc-
ture, and links. Context is the text itself. The structure is how the article is
organized and split into sections, subsections and paragraphs, and links are
either links to other Wikipedia articles or external websites. Additionally, it
is essential to take care of article publication dates, clean up the non-standard
articles and sections, and cover other Wikipedia languages.

1. Accept and process input data in the form of Wikipedia XML dumps

1



Introduction

2. Extract context.

3. Extract page structure.

4. Extract links.

5. Provide outputs for context, links and page structure in the form of
N-Triples.

6. Implement language extensibility.

7. Provide a user interface.

Challenges

The main problem, however, is the current size of Wikipedia. Only a full En-
glish Wikipedia dump containing only text and XML structures takes around
16 GB of space. Therefore, a thesis should research the design and implemen-
tation of not only functional but an efficient parser with both horizontal and
vertical scalability in mind.

An additional challenge lies in the structure of a general wiki page. Not
all pages and their components are structured in the same way. For example,
some of the pages might have a line break in the middle of a citation link,
that can be ambiguously interpreted as a new paragraph start. This can
cause unexpected errors and exceptions during the parsing, and the goal of
the project is also to minimize and gracefully handle such exceptions.

2



Chapter 1
Background and related works

1.1 The Concept of Semantic Web

The Semantic Web is essentially a Web of Data, an extension to the Web
that links the related data. The collection of Semantic Web technologies
(such as Resource Description Framework (RDF), Web Ontology Language
(OWL), Simple Knowledge Organization System (SKOS), SPARQL Protocol
and RDF Query Language) (SPARQL), etc.) provides an environment where
application can query that data, draw inferences using vocabularies, etc. The
goal of the Semantic Web is to transform current Internet data and eventually
make it machine-readable. The term ”Semantic Web” was initially coined by
Tim Berners-Lee[1] for a web of data where not simply text, but also meaning,
or logical connections can be processed by machines.

The Semantic Web is an extension of the current World Wide Web, defined
by standards set by the World Wide Web Consortium (W3C).

Although Semantic Web is a term that has often been criticized as con-
fusing, opaque, and academic, it does nonetheless capture two of the most
critical aspects of these technologies:

• Semantic: The meaning of the data is not only explicitly represented
and richly expressive, but it also “travels” along with the data itself;

• Web: Individual pieces of data are linked together into a network of
information, just as documents are linked together on the World Wide
Web.

Less familiar synonyms to the Semantic Web are the following: Linked
Data Web, the Web of Data, Web 3.0, the Enterprise Information Web, or the
Giant Global Graph.

3



1. Background and related works

1.2 What is Linked Data?

In order to make Semantic Web, or Web of Data, a reality, it is necessary to
support a vast amount of data that are manageable and reachable by a variety
of Semantic Web tools. Not only access to data but also relationships among
data should be provided. This collection of interconnected datasets can also
be referred to as Linked Data.

The term was introduced in 2006 by Tim Berners-Lee’s four rules for pub-
lishing data on the Web[2], stating the following expectations for HyperText
Markup Language (HTML) or RDF standards:

1. Use Uniform Resource Identifier (URI) as an identifier.

2. Use Hypertext Transfer Protocol (HTTP) URIs so that people can look
up those names.

3. When someone looks up a URI, provide useful information, using the
standards (RDF*, SPARQL)

4. Include links to other URIs. so that they can discover more things.

While these four rules are the basis of Linked Data and related develop-
ments, their exact implementation can be done differently and evolves over
time. Specifically, the way URI is now serialized either in RDF/Extensible
Markup Language (XML) or via N3(also known as Turtle, or N-triples).

1.2.1 Web Ontology Language Overview

There is a long history of ontological development in philosophy and computer
science. Since the 1990s, several research efforts have explored how the idea
of knowledge representation (KR) from artificial intelligence (AI) could be
made useful on the World Wide Web. These included languages based on
HTML (called SHOE), based on XML (called XOL, later OIL), and various
frame-based languages and knowledge acquisition approaches.

The OWL is a family of knowledge representation languages for authoring
ontologies[3]. Ontologies are a formal way to describe taxonomies and classi-
fication networks, essentially defining the structure of knowledge for various
domains: the nouns representing classes of objects and the verbs represent-
ing relations between the objects. Ontologies resemble class hierarchies in
object-oriented programming, but there are several critical differences. Class
hierarchies represent structures used in source code that evolve fairly slowly
(typically monthly revisions), whereas ontologies are meant to represent in-
formation on the Internet and are expected to be evolving almost constantly.
Similarly, ontologies are typically far more flexible as they are meant to repre-
sent information on the Internet coming from all sorts of heterogeneous data
sources. On the other hand, class hierarchies are meant to be fairly static and

4



1.2. What is Linked Data?

Figure 1.1: The Structure of OWL 2

rely on far less diverse and more structured sources of data such as corporate
databases. The OWL family contains many species, serializations, syntaxes,
and specifications with similar names. OWL and OWL 2 are used to refer to
the 2004 and 2009 specifications, respectively. Full OWL 2 Ontology Struc-
ture is shown on 1.1. Most users of OWL 2 will need only one syntax and one
semantics; for them, this diagram would be much simpler, with only their one
syntax at the top, their one semantics at the bottom, and rarely a need to see
what’s inside the ellipse in the center.

The OWL languages are characterized by formal semantics. They are built
upon the W3C XML standard for objects called the RDF. OWL and RDF
have attracted significant academic, medical, and commercial interest.

1.2.2 RDF Description

The RDF is a family of W3C specifications initially designed as a metadata
data model. The RDF data model is similar to classical conceptual modeling
approaches, such as entity-relationship or class diagrams. It is based on the
idea of making statements about the resource in expressions of the form sub-
ject–predicate–object, also known as triples. The subject denotes the resource,
and the predicate denotes traits or aspects of the resource, and expresses a
relationship between the subject and the object.

5



1. Background and related works

Figure 1.2: Basic RDF Graph

In the statement1.1, the subject is <The Nightwatch>, the object is
<Rembrandt van Rijn>, and a predicate <was created by>defines a relation
between the subject and the object.

Listing 1.1: Example of an RDF statement
<The Nightwatch> <was created by> <Rembrandt van Rijn> .

The subject of an RDFstatement is either a uniform resource identifier
(URI) or a blank node, both of which denote resources. Resources indicated by
blank nodes are called anonymous resources. They are not directly identifiable
from the RDF statement. The predicate is a URI, which also shows a resource
representing a relationship. The object is a URI, blank node, or a Unicode
string literal.

In Semantic Web applications and relatively popular applications of RDF
like RDF Site Summary (RSS) and Friend Of A Friend (FOAF), resources
tend to be represented by URIs that intentionally denote, and can be used
to access, actual data on the World Wide Web. But RDF, in general, is not
limited to the description of Internet-based resources.

An RDF database, also called triplestore contains triples of interrelated
statements that can be visualized with a network graph. A traditional re-
lational database might split attributes about artworks and features about
artists into separate tables. In an RDF/graph database, all these data points
belong to the same interconnected graph, allowing users maximum flexibility
in deciding how they wish to query it.

RDF is an abstract model with several serialization formats (i.e., file for-
mats), so the particular encoding for resources or triples varies from format
to format. Complete list of RDF serialization formats includes:

• Turtle - a compact human-friendly format.

• N3 - format that is similar to Turtle, but allows for additional features
like inference, or transformation rules.

• N-Triples - a very simple, easy-to-parse, line-based format that is not
as compact as Turtle.

• N-Quads - a superset of N-Triples for serializing multiple RDF graphs.

6



1.2. What is Linked Data?

• RDF/XML - an XML-based syntax that was the first standard format
for serializing RDF.

• RDF/JSON - an alternative syntax for expressing RDF triples using
a simple JSON notation.

• JSON-LD - a JSON-based serialization, allows data to be serialized in
a way that is similar to traditional JSON.

For example, it is required to write an RDF file, say <http://example.org/smith>,
local identifiers, say #albert, #brian and #carol. This RDF file will look dif-
ferently in XML(1.2), Turtle format(1.3). It can be observed that Turtle
format is more concise than the XML one.

Listing 1.2: Example of RDF serialization in XML
<rdf:Description about="#albert"
<fam:child rdf:Resource="#brian">
<fam:child rdf:Resource="#carol">
</rdf:Description>

Listing 1.3: Example of RDF serialization in N3/Turtle
<#albert> fam:child <#brian>, <#carol>.

The World Wide Web (WWW) architecture now gives a global identi-
fier ”http://example.org/smith#albert” to Albert. Anyone can now use this
global identifier to refer to and provide more information about Albert.

In addition to the ways of describing a link, it is important to know when
to make a link. One important pattern is a set of data which you can explore
as you go link by link by fetching data. Whenever one looks up the URI for
a node in the RDF graph, the server returns information about the arcs out
of that node, and the arcs in. In other words, it returns any RDF statements
in which the term appears as either subject or object.

Formally, call a graph G browsable if, for the URI of any node in G, if
I look up that URI I will be returned information which describes the node,
where describing a node means:

1. Returning all statements where the node is a subject or object; and

2. Describing all blank nodes attached to the node by one arc.

There are also the next limitations on such browseable data, mainly regard-
ing data consistency across separate documents. By these definitions, state-
ments which relate things in two different documents must be repeated. This
clearly goes against the knowledge principle Don’t Repeat Yourself (DRY), or
in this case, not to store data in other places, as the problems with keeping
the data consistent will arise eventually. A set of completely browsable data

7



1. Background and related works

with links in both directions has to be completely consistent, and that takes
coordination, especially if different authors or programs are involved.

One of the solutions to this repetition problem is to have links of a certain
property in a separate document. A person’s homepage doesn’t list all their
publications but instead puts a link to it a separate document listing them.

In conclusion, linked data is essential for linking the Semantic Web. It is
quite easy to implement linked data in both new and already existing appli-
cations or websites. Various common-sense considerations determine when to
make a link and when not to.

1.2.3 SPARQL Query Language for RDF

As for querying the linked data, sometimes the data volume makes serving
it in lots of files hard for efficient remote queries over the dataset. In this
scenario, it seems reasonable to provide a query service. To make the data be
effectively linked, someone who only has the URI of something must find their
way. For that purpose, an RDF query language specification was developed.
An RDF query language is a computer language, specifically a query language
for databases, able to retrieve and manipulate data stored in RDF format.

Properties relevant to RDF query language design include support for the
RDF format principles[4]:

• Support for RDF data, which is a collection of triples that form the RDF
graph.

• Support for RDF semantics and inference that allows for entailment, the
reasoning about the meaning of RDF graphs.

• Support for schema data types, such as XML schema.

Also every RDF query language should have desirable language features:

• Expressiveness: the power of query expression that may be constructed

• Closure: data operations on an RDF graph should result in another
RDF graph

• Orthogonality: data operations are independent of the context in
which they are used

• Safety: every expression returns a finite set of results.

RDF query languages can be grouped into language families, each family
comprising a set of closely related languages.

The SPARQL family of languages includes several languages, including
SquishQL, RDQL, SPARQL, and TriQL. These languages treat RDF data

8



1.2. What is Linked Data?

Figure 1.3: A network visualization of the triplestore

stores as triplestores that do not necessarily have ontology or schema infor-
mation associated. Members of the SPARQL family are considered relational
query languages because they have relational(or pattern-based) operations.

Aside from SPARQL, there are also other variations of query languages.
The RQL family of languages includes RQL, SeRQL, and eRQL. These lan-
guages support the querying of both data and schema. RQL, an acronym
for RDF Query Language, is known for using types defined in RDF schemas
(RDFS) to query the schema class hierarchy and to support data querying
by type. RQL is considered more expressive than the SPARQL family of lan-
guages but has been criticized for too many features and unusual syntactic
constructs. There is a family of RDF query languages inspired by XML query
technology. XQuery for RDF uses the XML query language XQuery to query
RDF data by serializing RDF into an XML format and then using XQuery on
the result.

To best show the capabilities of RDF, it is easiest to study the example
of a SPARQL query. Continuing with the previous Rembrandt’s painting, we
should use the slightly extended triplestore, as shown in 1.4. A traditional
relational database might split attributes about artworks and features about
artists into separate tables. In an RDF/graph database, all these data points
belong to the same interconnected graph, visualized in 1.3.

Listing 1.4: Example triplestore for SPARQL query
<The Nightwatch> <was created by> <Rembrandt van Rijn> .
<The Nightwatch> <was created in> <1642> .
<The Nightwatch> <has medium> <oil on canvas> .
<Rembrandt van Rijn> <was born in> <1606> .
<Rembrandt van Rijn> <has nationality> <Dutch> .
<Johannes Vermeer> <has nationality> <Dutch> .
<The Nightwatch> <was created by> <Johannes Vermeer> .
<Woman with a Balance> <has medium> <oil on canvas> .

9



1. Background and related works

Listing 1.5: Example triplestore for SPARQL query

SELECT ?painting
WHERE {

?painting <has medium> <oil on canvas> .
}

?painting in this query stands in for the node (or nodes) that the database
will return. On receiving this query, the database will search for all values
of ?painting that properly complete the RDF statement <has medium>oil
on <canvas>. When the query runs against the full database, it looks for
the subjects, predicates, and objects that match this statement, and finds
paintings: The Nightwatch and Woman with a Balance.

1.3 NLP Interchange Format

It is important to first explain what Natural Language Processing (NLP)
is. NLP is a field of science that combines lingustics, computer science and
artificial intelligence concerned with the interactions between computers and
human language, in particular how to program computers to process and
analyze large amounts of natural language data.

The NLP Interchange Format (NIF) is an RDF/OWL-based format that
aims to achieve between NLP tools, language resources and annotations. NIF
consists of specifications, ontologies and software (overview), which are com-
bined under the common version identifier ”NIF 2.0”, but are also versioned
individually[5]. The initial specification of NIF was released in November
2011.

NIF is being developed as a result and to facilitate the needs of Linked Data
and related tools. NIF addresses the interoperability problem on three layers:
the structural, conceptual and access layer. NIF is based on a Linked Data en-
abled URI scheme for identifying elements in (hyper-)texts that are described
by the NIF Core Ontology (structural layer) and a selection of ontologies for
describing common NLP terms and concepts (conceptual layer). NIF-aware
applications will produce output adhering to the NIF Core Ontology as REST
services (access layer). NIF enables the creation of heterogeneous, distributed
and loosely coupled NLP applications, which use the Web as an integration
platform. Another benefit is that a NIF wrapper has to be only created once
for a particular tool, but enables the tool to interoperate with a potentially
large number of other tools without additional adaptations. Ultimately, we
envision an ecosystem of NLP tools and services to emerge using NIF for
exchanging and integrating rich annotations.

NIF consists of several core components that are described below.

10



1.3. NLP Interchange Format

URI Schemes The idea behind NIF is to allow NLP tools to exchange
annotations about text in RDF. Hence, the main prerequisite is that text
becomes referenceable by URIs, so that they can be used as resources in RDF
statements. In NIF, there is a distinction between the document d, the text t
contained in the document and possible substrings st of this text. We call an
algorithm to systematically create identifiers for t and st a URI Scheme. The
canonical URI scheme of NIF is based on RFC 5147[6], which standardizes
fragment ids for the text/plain media type. According to RFC 5147, the
following URI can address the first occurrence of the substring “Semantic
Web” in the text (26610 characters) of the document http://www.w3.org/
DesignIssues/LinkedData.html with the separator #: http://www.w3.org/
DesignIssues/LinkedData.html#char=717,729.

NIF Core Ontology The NIF Core Ontology[7] provides classes and prop-
erties to describe the relations between substrings, text, documents and their
URI schemes. The main class in the ontology is nif:String, which is the class
of all words over the alphabet of Unicode characters (sometimes called Σ∗).
We built NIF upon the Unicode Normalization Form C, as this follows the rec-
ommendation of the RDF standard for rdf:Literal. Indices are to be counted
in code units. Each URI scheme is a subclass of nif:String and puts fur-
ther restrictions over the syntax of the URIs. For example, instances of type
nif:RFC5147String have to adhere to the NIF URI scheme based on RFC 5147.
Users of NIF can create their own URI schemes by subclassing nif:String and
providing documentation on the Web in the rdfs:comment field.

Another important to the Framework for Extraction of Wikipedia Articles
Content subclass of nif:String is the nif:Context OWL class. This class is
assigned to the whole string of the text (i.e. all characters). The purpose of
an individual of this class is special, because the string of this individual is
used to calculate the indices for all substrings. Therefore, all substrings have
to have a relation nif:referenceContext pointing to an instance of nif:Context.

Workflows and Modularity of NIF Workflows: NIF web services are
loosely coupled and can receive either text or RDF. To allow seamless NLP
integration, clients should create work flows where the text is normalized (Uni-
code) at the beginning and tokenization is provided.

Modularity: The NIF ontology is split in three parts: The terminological
model is lightweight in terms of expressivity and contains the core classes
and properties. Overall, it has 125 axioms, 28 classes, 16 data properties
and 28 object properties. The inference model contains further axioms, which
are typically used to infer additional knowledge, such as transitive property
axioms. The validation model contains axioms, which are usually relevant for
consistency checking or constraint validation. Depending on the use case, the
inference and validation model can optionally be loaded.

11

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html#char=717,729
http://www.w3.org/DesignIssues/LinkedData.html#char=717,729


1. Background and related works

1.3.1 Existing Use Cases for NIF

Internationalization Tag Set The Internationalization Tag Set (ITS) Ver-
sion 2.0 is a W3C working draft, which is in the final phase of becoming a
W3C recommendation. Among other things, ITS standardizes HTML and
XML attributes which can be leveraged by the localization industry (espe-
cially language service providers) to annotate HTML and XML nodes with
processing information for their data value chain.

An example of three attributes in an HTML document is given here1.6:

Listing 1.6: Example of Internationalization Tag Set HTML Code
<html>

<body>
<h2 translate="yes">

Welcome to <span its-ta-ident-ref="http://dbpedia
.org/resource/Dublin" its-within- text="yes"
translate ="no"> Dublin </span> in <b
translate ="no" its-within-text="yes"> Ireland
</b>!

</h2>
</body>

</html>

NIF successfully creates a bridge between ITS and RDF and a round-
trip conversion was recently implemented as a proof-of-concept. Therefore,
NIF can be expected to receive a wide adoption by machine translation and
industrial language service providers. Additionally, the ITS Ontology provides
well modeled and accepted properties, which can in turn be used to provide
best practices for NLP annotations.

Ontologies of Linguistic Annotation The Ontologies of Linguistic An-
notation (OLiA) provide stable identifiers for morpho-syntactical annotation
tag sets, so that NLP applications can use these identifiers as an interface for
interoperability. OLiA provides Annotation Models (AMs) for fine-grained
identifiers of NLP tag sets. The individuals of these annotation models are
then linked via rdf:type to coarse-grained classes from a Reference Model
(RM), which provides the interface for applications. NIF provides two prop-
erties: nif:oliaLink links a nif:String to an OLiA Annotation Model. Although
a reasoner could automatically deduce the abstract type of each OLiA individ-
ual from the RM, it was a requirement that the coarse-grained types should
be linked redundantly to the strings as well in case reasoning services are not
available or would cause high overhead. Therefore, an OWL annotation prop-
erty nif:oliaCategory was created as illustrated in the following example[?].

Listing 1.7: Example of Internationalization Tag Set HTML Code

12



1.4. Linked Open Data and DBpedia

<char=342,345> a nif:String, nif:RFC5147String;
nif:oliaLink penn:NNP;
nif:oliaCategory olia:Noun, olia:ProperNoun .
# deducable by a reasoner :
penn:NNP a olia:Noun, olia:ProperNoun .

1.4 Linked Open Data and DBpedia

A typical example of a large Linked Dataset is DBpedia. DBpedia and re-
lated tools are supported by the Leipzig University research group. As stated
in the related article, is a community effort to extract structured information
from Wikipedia and to make this information available on the Web. DBpe-
dia allows internet users to ask sophisticated queries against datasets derived
from Wikipedia and to link other datasets on the Web to Wikipedia data.
This section will describe the extraction of the DBpedia datasets, and how
the resulting information is published on the Web for human and machine
consumption.

The most effective way of spurring synergistic research along these direc-
tions is to provide a rich corpus of diverse data. This would enable researchers
to develop, compare, and evaluate different extraction, reasoning, and uncer-
tainty management techniques, and to deploy operational systems on the Web.
The DBpedia project has derived such a data corpus from the Wikipedia en-
cyclopedia.

Wikipedia editions are available in over 250 languages, with the English
one accounting for more than 1.95 million articles. Like many other web appli-
cations, Wikipedia has the problem that its search capabilities are limited to
full-text search, which only allows very limited access to this valuable knowl-
edge base. As has been highly publicized, Wikipedia also exhibits many of
the challenging properties of collaboratively edited data: it has contradictory
data, inconsistent taxonomical conventions, errors, and even spam.

The DBpedia project focuses on the task of converting Wikipedia content
into structured knowledge, such that Semantic Web techniques can be em-
ployed against it — asking sophisticated queries against Wikipedia, linking it
to other datasets on the Web, or creating new applications or mashups.

The DBpedia project focuses on the task of converting Wikipedia content
into structured knowledge, such that Semantic Web techniques can be em-
ployed against it — asking sophisticated queries against Wikipedia, linking
it to other datasets on the Web, or creating new applications or mashups.
DBpedia project makes the following contributions:

• Develop an information extraction framework, which converts Wikipedia
content to RDF. The basic components form a foundation upon which

13



1. Background and related works

further research into information extraction, clustering, uncertainty man-
agement, and query processing may be conducted.

• Provide Wikipedia content as a large, multi-domain RDF dataset, which
can be used in a variety of Semantic Web applications. The DBpedia
dataset consists of 103 million RDF triples.

• Iinterlink the DBpedia dataset with other open datasets. This results in
a large Web of data containing altogether around 2 billion RDF triples.

• Develop a series of interfaces and access modules, such that the dataset
can be accessed via Web services and linked to other sites.

1.4.1 Extracting Structured Information from Wikipedia

Wikipedia articles contain different types of structured information, such as in-
fobox templates, categorisation information, images, geo-coordinates, links to
external Web pages and links across different language editions of Wikipedia.
To process this, Wikipedia uses Mediawik software. Due to the nature of this
Wiki system, basically all editing, linking, annotating with meta-data is done
inside article texts by adding special syntactic constructs. Hence, structured
information can be obtained by parsing article texts for these syntactic con-
structs. Example of Wikipedia XML and then cleaned text that will be shown
to the user can be seen in listings 1.8 and 1.9 respectively.

Listing 1.8: Raw Wikipedia XML
{{basic forms of government}}
’’’Anarchism’’’ is an [[Anti-authoritarianism|anti-authoritarian

]] [[Political philosophy|political]] and [[Social
philosophy|social philosophy]]{{sfnm|1a1=McLaughlin|1y
=2007|1p=59|2a1=Flint|2y=2009|2p=27}} that rejects [[
Hierarchy|hierarchies]] deemed unjust and advocates their
replacement with [[Workers’ self-management|self-managed]],
[[Self-governance|self-governed]] societies based on
voluntary, [[cooperative]] institutions. These institutions
are often described as [[Stateless society|stateless
societies]],{{sfnm|1a1=Sheehan|1y=2003|1p=85|2a1=Craig|2y
=2005|2p=14}} ...

Listing 1.9: Cleaned Wikipedia text
Anarchism is an anti-authoritarian political and social

philosophy that rejects hierarchies deemed unjust and
advocates their replacement with self-managed, self-governed
societies based on voluntary, cooperative institutions.

14



1.4. Linked Open Data and DBpedia

These institutions are often described as stateless
societies, ...

The XML extraction algorithm detects such Mediawiki templates and rec-
ognizes their structure using pattern matching techniques. It selects significant
templates, which are then parsed and transformed to RDF triples. The algo-
rithm uses post-processing techniques to increase the quality of the extraction.
MediaWiki links are recognized and transformed to suitable URIs, common
units are detected and transformed to data types. Furthermore, the algorithm
can detect lists of objects, which are transformed to RDF lists.

1.4.2 DBpedia Dataset

As stated on the DBpedia’s official website[8], the English version of the DB-
pedia dataset currently provides information about more than 4.58 million
things, out of which 4.22 million are classified in a consistent ontology, includ-
ing at least 1,445,000 persons, 735,000 places(including 478.000 populated
places), 411,000 creative works (including 123,000 music albums, 87,000 films
and 19,000 video games), 241,000 organizations (including 58,000 companies
and 49,000 educational institutions), 251,000 species and 6,000 diseases.

DBpedia concepts are described by short and long abstracts in 125 lan-
guages. All these versions together describe 38.3 million things, out of which
23.8 million are localized descriptions of things that also exist in the English
version of DBpedia. The full DBpedia data set features 38 million labels and
abstracts in 125 different languages, 25.2 million links to images and 29.8 mil-
lion links to external web pages; 80.9 million links to Wikipedia categories,
and 41.2 million links to YAGO categories. DBpedia is connected with other
Linked Datasets by around 50 million RDF links.

1.4.3 Triplestore

A triplestore is a software program capable of storing and indexing RDF data,
in order to enable querying this data efficiently. Most triplestores support the
SPARQL query language for querying RDF data. Virtuoso, Sesame, and
BigOWLIM are typical examples of triplestores. DBpedia is using Virtuoso
as the underlying triplestore.

1.4.4 DBpedia Dataset Web Endpoints

DBpedia website provides three access mechanisms to the DBpedia dataset:
Linked Data, the SPARQL protocol, and downloadable RDF dumps. Royalty-
free access to these interfaces is granted under the terms of the GNU Free
Documentation License.

Linked Data. DBpedia resource identifiers, are set up to return RDF
descriptions when accessed by Semantic Web agents, and a simple HTML

15



1. Background and related works

view of the same information to traditional web browsers. HTTP content
negotiation is used to deliver the appropriate format.

SPARQL Endpoint. Client applications can send queries over the SPARQL
protocol to this endpoint at http://dbpedia.org/sparql. This interface is ap-
propriate when the client application developer knows in advance exactly what
information is needed. In addition to standard SPARQL, the endpoint sup-
ports several extensions of the query language that have proved useful for
developing user interfaces: full text search over selected RDF predicates, and
aggregate functions, notably COUNT. To protect the service from overload,
limits on query cost and result size are in place. For example, a query that
asks for the store’s entire contents is rejected as too costly, and SELECT
results are truncated at 1000 rows.

RDF Dumps. N-Triple serializations of the datasets are available for down-
load at the DBpedia website and can be used by sites that are interested in
larger parts of the dataset.

1.5 Related works

1.5.1 DBpedia Information Extraction Framework

Prior to the current project, a few projects have already been made in or-
der to facilitate DBpedia’s need for extracting information from Wikipedia
and related resources, namely DBpedia Information Extraction Frame-
work[9].

DBpedia Information Extraction Framework focuses on the main disadvan-
tage of DBpedia: heavy-weight release process. Producing a DBpedia dataset
release through the traditional dump-based extraction requires manual effort
and – since dumps of the Wikipedia database are created on a monthly basis
– DBpedia has never reflected the current state of Wikipedia. Hence, this
prokect extended the DBpedia extraction framework to support a live extrac-
tion, which works on a continuous stream of updates from Wikipedia and
processes that stream on the fly. More importantly, the extraction framework
focuses on other parts of the Wikipeida articles. The framework has 19 extrac-
tors that process the following Wikipedia content, most important of which
are list below:

• Labels. All Wikipedia articles have a title, which is used as an rdfs:label
for the corresponding DBpedia resource.

• Abstracts. Those include a short abstract (first paragraph, represented
by using rdfs:comment) and a long abstract (text before a table of con-
tents, using the property dbpedia:abstract) from each article.

• Interlanguage links.

16



1.5. Related works

• Images.

• Redirects.

• Disambiguation.

• External links.

• Page links.

• Person data. It extracts personal information such as surname, and birth
date. This information is represented in predicates such as foaf:surname,
and dbpedia:birthDate.

• Infobox

• Category label Wikipedia articles are arranged in categories, and this
extractor extracts the labels for those categories.

17





Chapter 2
Analysis and Implementation

2.1 Requirements

Before starting to design the project, it is beneficial to specify the require-
ments. There several ways to layout the requirements, mainly writing down
formal requirements or use cases. Because the project is oriented on deliv-
ering results to a smaller group of developers, it will be better to use formal
requirements, as opposed to user-oriented use cases.

A Functional Requirement (FR) is a description of the service that the
software, specifically the Extraction Framework, must offer to the user. It
describes a software system or its component. Functional requirements should
include the following things:

1. Details of operations conducted in the system;

2. Description of system inputs and outputs or other reports;

3. Information about the workflows performed by the system.

Functional requirements have next advantages:

• Helps to check whether the application is providing all the functionalities
that were mentioned;

• A functional requirement document helps you to define the functionality
of a system or one of its subsystems;

• Functional requirements along with requirement analysis help identify
missing requirements. They help clearly define the expected system
service and behavior;

• Errors caught in the Functional requirement gathering stage are the
cheapest to fix;

19



2. Analysis and Implementation

• Support user goals, tasks, or activities.

The list of functional requirements for the Framework for Extraction of
Wikipedia Articles Content:

1. Accept input data: The framework should accept the official Wikipedia
dumps in the XML format, provided by the Wikipedia. The dumps can
contain an amount of information up to 20 GB of text data. The frame-
work should be able to parse dumps in English and at least 4 other
popular Wikipedia languages.

2. Provide outputs: The framework should print all the outputs in the
NIF triples, concatenating processed data from all articles in a single
XML input file and writing the data to .nt output file.

3. Extract context: The framework should extract clean text from the
Wikipedia page, removing or processing all the XML and Wikipedia-
specific markup, including the core text but excluding infoboxes, files,
images, and footers.

4. Extract page structure: The framework should extract a page tree,
where every page section is a node, preserving the relation to the page
context. The page tree should include The page tree should be printed
in an output file separately from the page context.

5. Extract links: In addition to context, the framework should supple-
ment the context by extracting internal Wikipedia links from the page.
These links should refer to their respective sections of the text, and in-
clude only other Wikipedia articles, excluding possible external links to
other web pages. The links should also be printed in another output file,
separately from the page structure and context.

6. Implement extensibility: The framework should be easily extensible
by other developers to include new languages.

7. Provide an interface: The framework is required to have an intuitive
interface for the user to easily leverage the framework in other works.

8. Evaluate the results: The framework should contain the metrics that
will provide user with a feedback about every execution.

While functional requirements are the most important part of the project,
there can be other, less specific requirements that go along with the functional
requirements, commonly known as non-functional requirements. For this
project, the non-functional requirements included the research of Wikipedia
XML Dump Structure, NIF data format and the ways to facilitate the goals
of the DBpedia project.

20



2.2. Design

Figure 2.1: General Extraction Framework data workflow

2.2 Design

2.3 General Workflow

The general data workflow of the Framework for Extraction of Wikipedia
Articles is depicted in Figure 2.1.

• Wikipedia: the main Wikipedia website is the primary sources of infor-
mation.

• Wikipedia XML dump: Wikipedia runs a daily database archivation
process and releases all the archived data in the form of XML dumps.
These dumps can then be downloaded, unpacked and fed to the frame-
work.

• Framework for Extraction of Wikipedia Articles: the framework pro-
cesses the XML dump to get the context, structure and links and provide
several options for the output.

• N-Triples Dumps: one of the outputs is to write the processed informa-
tion to text files as N-Triples

• REST API endpoints: the other option is to provide the REST API
endpoints for more convenient view of the output.

2.4 Usability considerations

One of the goals of the application is to make it easy to use, both by re-
searchers and machines. In order to achieve that, application provides several
interfaces. For the machines, it might be easier to connect to the application

21



2. Analysis and Implementation

via Representational state transfer (REST) Application Programming inter-
face (API). Humans prefer other interfaces, such as Graphic User Interface
(GUI), or Command Line Interface (CLI).

2.4.1 REST API

REST is a software architectural style that defines a set of constraints to be
used for creating Web services. Web services that conform to the REST archi-
tectural style, called RESTful Web services, provide interoperability between
computer systems on the internet. RESTful Web services allow the requesting
systems to access and manipulate textual representations of Web resources by
using a uniform and predefined set of stateless operations.

An API is a computing interface which defines interactions between mul-
tiple software intermediaries. It defines the kinds of calls or requests that
can be made, how to make them, the data formats that should be used, the
conventions to follow, etc.

In a RESTful Web service, requests made to a resource’s URI will elicit
a response with a payload formatted in HTML, XML, JSON, or some other
format. The response can confirm that some alteration has been made to the
resource state, and the response can provide hypertext links to other related
resources. When HTTP is used, as is most common, the operations (HTTP
methods) available are GET, HEAD, POST, PUT, PATCH, DELETE, CON-
NECT, OPTIONS and TRACE. Therefore, HTTP-based RESTful APIs are
defined with the following aspects:

• A base URI, such as http://api.example.com/collection/;

• Standard HTTP methods (e.g., GET, POST, PUT, PATCH and DELETE);

• A media type that defines state transition data elements (e.g., Atom,
microformats, application/vnd.collection+json, xml, etc.). The current
representation tells the client how to compose requests for transitions to
all the next available application states. This could be as simple as a
URI or as complex as a Java applet.

The framework gives an option to use REST API endpoints over the CLI
interface. To understand the reasoning of why to include an API in the appli-
cation, it is best to start with its pros and cons in the context of this project.

Using REST API Pros

• REST is a defined way of communication between machines

• REST API will allow users to retrieve information in chunks rather than
having a complete output at once

22



2.4. Usability considerations

• REST API can be easily tested by using applications tools Postman or
curl to produce automated and granulated integration tests

Cons

• REST API is not cut out to transfer large amounts of data, and is
usually limited by the machine’s RAM, making it unsuitable for serving
the amounts produced by this project.

• REST API is not a user-friendly out-of-the-box solution, as navigating
it will require either some special tools or an additional development of
the client interface.

Considering these points, it can be concluded that while REST API is
useful for some particular tasks, it is better to use it as a secondary interface.

2.4.1.1 REST API Endpoints

In API terminology, communication endpoint, or simply endpoint is a unique
URL address that users can access to exchange information with the server.
Or in other words, APIs work using requests and responses. When an API
requests information from a web application or web server, it will receive a
response. The place that APIs send requests and where the resource lives, is
called an endpoint.

Designing the endpoints is an intricate process on its own. While there is
no single standard on how to design and name the endpoints, there are several
recommendations followed by the programming community[10]:

• Use Nouns in URI. While this rule is not hard, the API is oriented to-
wards resources, and nouns that define resources are generally preferred
over verbs or adjectives.

• Plurals over Singulars. The ideology behind using plurals is that
usually we operate on one resource from a collection of resources.

• Let the HTTP Verb Define Action. Continuing on the first point,
HTTP already has verbs(such as GET, POST, PUT, DELETE) in place
to define the action of a request.

• Do not misuse idempotent methods. Safe, or idempotent, methods
in HTTP are the methods which will return the same response irrespec-
tive of how many times they are called by the client. GET, HEAD,
OPTIONS and TRACE methods are defined as safe. It is important to
use HTTP methods according to the action which needs to be performed.

23



2. Analysis and Implementation

• Depict Resource Hierarchy Through URI. If a resource contains
sub-resources, make sure to depict this in the API to make it more
explicit. For example, if a user has posts and we want to retrieve a
specific post by user, API can be defined as GET /users/123/posts/1
which will retrieve Post with id 1 by user with id 123.

• Version Your APIs Versioning APIs always helps to ensure backward
compatibility of a service while adding new features or updating existing
functionality for new clients.

The framework provides the next REST endpoints:

• POST /articles - Submission endpoint allows you to submit the XML
dump or its part to the server. After that is done, the server will asyn-
chronously parse the provided XML, adding the articles to the database
as it goes through the submitted articles.

• GET /articles/{title}/context Get the context N-Triples of an ar-
ticle with a given title.

• GET /articles/{title}/structure Similarly, get the page structure of
an article.

• GET /articles/{title}/links Get the links associated with an article
with a given title.

• GET /articles/count Get the total count of articles in a server’s
database.

2.4.2 Command Line Interface

Parsing of large xml files imposes limitations on the technologies that can
be used. Particularly, the size of English part of the Wikipedia xml dump
has a size of 16 GB. This means that the file cannot be normally loaded into
Random Access Memory (RAM), as a single modern computer will usually
have from 4 to 16 GB of RAM, with Java heap utilizing a quarter of that
capability by default.

Furthermore, modern internet communication is better built around fre-
quent exchange with small packets, and imposes a limit of maximum amount
of requests that can be sent in a second. For example, it will not be possible
to use Wikipedia’s API for this task, as the Wikipedia’s server might ban all
further requests. For that reason, all the processing should be done offline and
not rely on the internet connection at all.

Considering the limitations described above, it was decided to use CLI as
the main way to use the application.

24



2.4. Usability considerations

2.4.3 CLI Design Principles

Developers can get a lot more done by using a well-designed CLI. Usability
and discovery are paramount in a CLI application. There are next important
points to consider when designing a good CLI:

1. Provide a Help Screen Getting started with a CLI is unlike using
other software for the first time. There is not always a welcome screen,
no confirmation email with a link to documentation. Only through the
command itself can developers explore what’s possible. That experi-
ence begins in the help screen, accessible via a command in your CLI
application, usually via runing command with a help parameter.

2. Consider following already created CLI For example, there a few
general parameters that are included in every CLI:

-h or –help Display the help screen
-v or –verbose: Show less succinct output of the command, usually

for debugging purposes. This one may be contentious, as some CLIs use
-v for version.

-V or –version: It’s important to know which version of the CLI
you’re using, but not as often as you want verbose output.

3. Allow Developers to Customize Their CLI Experience. This
one usually achieved via providing profiles. In this project’s case, it was
simplified by using an existing CLI library.

To simplify further development process, it was decided to use an existing
picocli library for simple CLI implementation.

2.4.4 Command Line Input Options

The library used to create a CLI provides a good mechanisms to generate help
text, from which the list of possible arguments, both mandatory and optional,
can be extracted:

• <xmlFile> - The relative path to the XML Wiki dump.

• -c, –clean - The optional argument to clear output files of content before
writing a new information. Useful option for testing the framework.

• -h, –help - Show this help message and exit.

• -l, –language=<language> - Provide the language of the XML dump
that is being parsed. Default language is English.

• -o, –output=<outputPath> - The NIF files output folder.

• -V, –version - Print framework version information.

25



2. Analysis and Implementation

2.5 Project Architecture

Since the related works mentioned in 1.5.1 are based on Java and other Java
Virtual Machine (JVM) based technologies such as Scala, it is best to build the
project on those technologies in order to leverage the existing knowledge and
reuse already developed libraries where possible. It is, however, worth noting
that a large amount of dependencies used will introduce more complexity
into the system. When the dependency’ behavior that is not controlled by
the framework is changed, the whole application workflow may be affected
until the fix is implemented. Therefore, using only necessary dependencies is
important.

Following the Java application standards, the codebase was split into pack-
ages, with org.dbpedia as the main package prefix, common for all DBpedia-
related projects. A package in Java is used to group related classes, and is
similar to a folder or a directory. We use packages to avoid name conflicts,
and to write a better maintainable code.

• application - package for main Java classes. The application is devel-
oped in such a way that it has several main methods, and depending on
the configuration, only one of those will be used.

• cli - package responsible for generating CLI.

• configuration - package that contains necessary Spring configuration,
further described in 2.6.2.1.

• exception - package responsible for custom exception handling. While
Java has its own Exception handling system, for a better handling it is
recommended to extend the existing interfaces and catch custom excep-
tions instead.

• extractor - main package that contains all the code responsible for the
extraction, parsing and structuring the information.

• splitter - support package that helps to split the xml dump into separate
pages.

After designing the package structure, it is important to identify the gen-
eral class diagram outlay. This outlay is presented in Figure 2.2. The classes
and their purpose are broken down below:

• ExtractionApplicationCLI - main executable class that contains Java’s
main method.

• XmlInput - a class that processes the CLI input parameters, by using
the picocly library[11].

26



2.6. Implementation

• LanguageIdentifierBean - a singleton class that defines the language
of an XML dump that is processed, set to English by default. A single-
ton classes can only have one instance and usually contains project-wide
settings. Singleton mechanic is handled by the Spring framework, de-
scribed in section 2.6.2.1.

• XmlDumpService - a service class that is a wrapper for all XML-
processing operations.

• XmlDumpParser - a specific class that processes XML dump and
breaks it up into pages.

• WikipediaPageParser - a parser class that focuses on processing a
single page.

• OutputFolderWriter - a writer class that facilitates the output of a
current project.

2.6 Implementation

2.6.1 Tools and libraries

The chosen language for framework development is Java, as it is used in
DBpedia Extraction Framework, described in section 1.5.1. It is, however,
important to notice that plain Java is not sufficient to achieve the goal of
implementing modern Web Framework. For that reason, many other supple-
mentary tools, libraries and other technologies were developed. This current
ecosystem will be described below.

The project was developed using an IntelliJ IDEA[12], a modern Integrated
Development Environment (IDE) that is maintained by a Czech company
JetBrains. While initially inferior to its counterparts, such as Eclipse and
NetBeans, this IDE has over time grew into an industry standard, currently
becoming by far the most popular IDE used by developers[13], as can be seen
on Figure 2.3. The company is now also developing a JVM-based language
called Kotlin, that will be able to overcome some of Java’s own shortcomings,
such as a lack of support for functional programming paradigm. For the
current project, however, it was decided to eliminate unnecessary dependencies
and use Java as a main development language.

2.6.2 Spring Framework

Spring framework is an open source Java platform. It was initially written
by Rod Johnson and was first released under the Apache 2.0 license in June
2003.

27



2. Analysis and Implementation

Figure 2.2: Framework Main Class Diagram

Figure 2.3: Usage of IDEs for Java development

28



2.6. Implementation

The core features of the Spring Framework can be used in developing any
Java application, but there are extensions for building web applications on top
of the Java Enterprise Edition platform. Spring framework targets to make
Java 2 Platform Enterprise Edition (J2EE) development easier to use and
promotes good programming practices by enabling a Plain Old Java Object
(POJO)-based programming model.

The Spring Framework provides a comprehensive programming and con-
figuration model for modern Java-based enterprise applications - on any kind
of deployment platform.

A key element of Spring is infrastructural support at the application level:
Spring focuses on the ”plumbing” of enterprise applications so that teams can
focus on application-level business logic, without unnecessary ties to specific
deployment environments.

Following is the list of few of the great benefits of using Spring Framework:

• Spring enables developers to develop enterprise-class applications using
POJOs. The benefit of using only POJOs is that you do not need an
EJB container product such as an application server but you have the
option of using only a robust servlet container such as Tomcat or some
commercial product.

• Spring is organized in a modular fashion. Even though the number of
packages and classes are substantial, you have to worry only about the
ones you need and ignore the rest.

• Spring makes use of some of the existing technologies like several ORM
frameworks, logging frameworks, JEE, Quartz and JDK timers, and
other view technologies.

• Testing an application written with Spring is simple because environment-
dependent code is moved into this framework. Furthermore, by using
JavaBeanstyle POJOs, it becomes easier to use dependency injection for
injecting test data.

• Spring’s web framework is a well-designed web MVC framework, which
provides a great alternative to web frameworks such as Struts or other
over-engineered or less popular web frameworks.

• Spring provides a convenient API to translate technology-specific excep-
tions (thrown by JDBC, Hibernate, or JDO, for example) into consistent,
unchecked exceptions.

• Lightweight IoC containers tend to be lightweight, especially when com-
pared to EJB containers, for example. This is beneficial for developing
and deploying applications on computers with limited memory and CPU
resources.

29



2. Analysis and Implementation

• Spring provides a consistent transaction management interface that can
scale down to a local transaction (using a single database, for example)
and scale up to global transactions (using JTA, for example).

There is a several versions of Spring Framework, namely the original Spring
and a newer version called Spring Boot. The difference between those two is
that the original Spring leverages the use of XML configurations, while Spring
Boot instead uses Java Configuration classes.

An Inversion of Control(IoC) container is a common characteristic of frame-
works that implement IoC.

In the Spring framework, the IoC container is represented by the inter-
face ApplicationContext. The Spring container is responsible for instantiating,
configuring and assembling objects known as beans, as well as managing their
lifecycle.

One of the important aspects of the Spring Framework is a Bean. Beans
are the objects that form the backbone of your application and that are man-
aged by the Spring Inversion of Control container. A bean is an object that
is instantiated, assembled, and otherwise managed by a Spring IoC container.
These beans are created with the configuration metadata that supplied to the
container.

Beans have so-called Spring Bean Scopes, that allow developers to have
more granular control of the bean lifecycles. There are 5 maing Bean scopes
in Spring:

• singleton – only one instance of the spring bean will be created for the
spring container. This is the default spring bean scope. While using this
scope, make sure bean doesn’t have shared instance variables otherwise
it might lead to data inconsistency issues.

• prototype – A new instance will be created every time the bean is re-
quested from the spring container.

• request – This is same as prototype scope, however it’s meant to be used
for web applications. A new instance of the bean will be created for each
HTTP request.

• session – A new bean will be created for each HTTP session by the
container.

• global-session – This is used to create global session beans for Portlet
applications.

For this project, mostly prototype and singleton Bean scopes were used,
with singleton being a default one.

30



2.6. Implementation

2.6.2.1 Spring Dependency Injection

Inversion of Control Inversion of Control is a principle in software
engineering by which the control of objects or portions of a program is trans-
ferred to a container or framework. It’s most often used in the context of
object-oriented programming.

By contrast with traditional programming, in which our custom code
makes calls to a library, IoC enables a framework to take control of the flow
of a program and make calls to our custom code. To enable this, frameworks
use abstractions with additional behavior built in. If we want to add our own
behavior, we need to extend the classes of the framework or plugin our own
classes.

The advantages of this architecture are:

• Decoupling the execution of a task from its implementation.

• Making it easier to switch between different implementations.

• Greater modularity of a program.

• Greater ease in testing a program by isolating a component or mock-
ing its dependencies and allowing components to communicate through
contracts.

Inversion of Control can be achieved through various mechanisms such
as: Strategy design pattern, Service Locator pattern, Factory pattern, and
Dependency Injection (DI).

Dependency Injection Dependency injection is a pattern through which
to implement IoC, where the control being inverted is the setting of object’s
dependencies.

The act of connecting objects with other objects, or “injecting” objects into
other objects, is done by an assembler rather than by the objects themselves.

You can see an example on how to create an object dependency in tradi-
tional programming in Listing 2.1

Listing 2.1: Example class without a Dependency Injection
public class Store {

private Item item;

public Store() {
item = new ItemImpl1();

}
}

31



2. Analysis and Implementation

In the example above, we need to instantiate an implementation of the
Item interface within the Store class itself. By using Dependency Injection
pattern, this example can be rewritten without specifying the implementation
of Item that we want, as can be seen in Listing 2.2.

Listing 2.2: Example class with a Dependency Injection
public class Store {

private Item item;
public Store(Item item) {

this.item = item;
}

}

2.6.3 Java Jackson XML Library

The Jackson project is a collection of data processing tools for the Java lan-
guage and the JVM platform. It supports a wide range of data formats such
as Comma-separated values (CSV), Java Properties, XML, and Yet ANother
Markup Language (YAML) through extension components that support the
specific language.

The Jackson XML component is meant for reading and writing XML data
by emulating how Jakarta XML Binding (JAXB) works, although not conclu-
sively.

In this project, Jackson library will be used to serialize Java objects into
XML and deserialize them back into Java objects, in order to eventually pro-
duce text output.

XmlMapper Class XmlMapper is the main class from Jackson 2.x that
helps the developers in serialization. This mapper is available in jackson-
dataformat-xml jar, that can be easily added to the project using Apache
Maven - project’s dependency management[14].

An example of deserialization can be seen in Listing 2.3. Here, a Mediawiki
class is a POJO class, or in other words a simple mapping of an XML scheme
to a Java class hierarchy, where every subcomponent of a schema is mapped
to a Java subclass.

Listing 2.3: Example of an XML Deserialization

private XmlMapper xmlMapper = new XmlMapper();

private Mediawiki deserializeXml(String dump) throws
IOException {

return xmlMapper.readValue(dump, Mediawiki.class)
;

32



2.6. Implementation

}

2.6.4 Dynamic Language Support

The XML-structure of the Wikipedia article does not differ much from lan-
guage to language. There are only a few points to be aware of: Footer headings
and categories. In English, those would be ”See also”, ”References”, ”Further
reading”, ”External Links”, and ”Related pages”, and Categories simply have
a heading ”Category”. Those are the parts that have to be removed from the
articles.

One of the project’s requirements was to implement an easy extensibility
mechanism to add new languages, mention in the Requirements Section 2.1.
This was achieved by adding an abstract class LanguageFooterRemover. This
class has some general functions to parse parts of the text that might be
unique to different languages. Before the framework starts, it processes the
configuration file language list.xml that is stored in the configuration folder.
The examples of this file’s contents can be seen in Listing 2.4. Such template
can easily be reused to extend the number of supported languages if needed.

Listing 2.4: Example of an language configuration file
<languageContainer>

<language>
<langName>ENGLISH</langName>
<categoryName>Category</categoryName>
<footer>See also</footer>
<footer>References</footer>
<footer>Further reading</footer>
<footer>External Links</footer>
<footer>Related pages</footer>

</language>
<language>
<langName>POLISH</langName>

<categoryName>Kategoria</categoryName>
<footer>Przypisy</footer>
<footer>Uwagi</footer>

</language>
</languageContainer>

33





Chapter 3
Testing and Results

Before we dive into the testing, it might be interesting to describe a general
approach to testing that was taken while implementing this framework.

Software testing is a procedure of implementing software or the appli-
cation to identify the defects or bugs. For testing an application or software,
we need to follow some principles to make our product defects free, and that
also helps the test engineers to test the software with their effort and time. It
is important to also keep in mind the essential principles of software testing.

• Testing shows the presence of defects. The primary purpose of
doing testing is to identify the numbers of unknown bugs with the help
of various methods and testing techniques because the entire test should
be traceable to the customer requirement, which means that to find any
defects that might cause the failure to meet the requirements. By doing
testing on any application, we can decrease the number of bugs, which
does not mean that the application is defect-free because sometimes the
software seems to be bug-free while performing multiple types of testing
on it.

• Exhaustive Testing is not possible. Instead of performing the ex-
haustive testing as it takes boundless determinations and most of the
hard work is unsuccessful, it is better to focus on tests according to
the importance of the modules because the timelines will not permit to
perform a full testing scenario.

• Early Testing. This means that all the testing activities should start
in the early stages of the software development life cycle’s requirement
analysis stage to identify the defects because if we find the bugs at an
early stage, it will be fixed in the initial stage itself, which may cost us
very less as compared to those which are identified in the future phase
of the testing process.

35



3. Testing and Results

• Defect Clustering. The defect clustering defined that throughout the
testing process, we can detect the numbers of bugs which are correlated
to a small number of modules. We have various reasons for this, such as
the modules could be complicated; the coding part may be complex, and
so on. These types of software or the application will follow the Pareto
Principle, which states that we can identify that approx. Eighty percent
of the complication is present in 20 percent of the modules. With the
help of this, we can find the uncertain modules, but this method has
its difficulties if the same tests are performing regularly, hence the same
test will not able to identify the new defects.

• Pesticide Paradox. This principle defined that if we are executing the
same set of test cases again and again over a particular time, then these
kinds of the test will not be able to find the new bugs in the software
or the application. To get over these pesticide paradoxes, it is very
significant to review all the test cases frequently.

• Testing is context-dependent. Testing is a context-dependent prin-
ciple states that we have multiple fields such as e-commerce websites,
commercial websites, and so on are available in the market. There is a
definite way to test the commercial site as well as the e-commerce web-
sites because every application has its own needs, features, and function-
ality. To check this type of application, we will take the help of various
kinds of testing, different technique, approaches, and multiple methods.
Therefore, the testing depends on the context of the application.

• Absence of errors fallacy. Once the application is completely tested
and there are no bugs identified before the release, so we can say that
the application is 99 percent bug-free. But there is the chance when
the application is tested beside the incorrect requirements, identified
the flaws, and fixed them on a given period would not help as testing
is done on the wrong specification, which does not apply to the client’s
requirements. The absence of error fallacy means identifying and fixing
the bugs would not help if the application is impractical and not able to
accomplish the client’s requirements and needs.

The main machine that was used for testing, unless specified otherwise,
had next specifications:

• Processor: 2,7 Hz Dual-Core Intel Core i5;

• Memory: 8 GB 1867 MHz DDR3;

• Graphics Card: Intel Iris Graphics 6100 1536 MB;

• Operating System: macOS Catalina, Version 10.15.6.

36



Project benchmarks Benchmark Testing measures a repeatable set of
quantifiable results that serves as a point of reference against which prod-
ucts/services can be compared. The purpose of benchmark testing results
is to compare the present and future software releases with their respective
benchmarks.

A benchmark must be repeatable. For instance, with every iteration of
load a test, if the response times varies too much, system performance be
benchmarked. Response time needs to be stable amongst different load con-
ditions.

A benchmark must be quantifiable. For example, the user experience
cannot be quantified in numbers, but time a user spends on a webpage due to
good UI can be quantified.

While testing this project, the results were constantly compared to an ideal
output, that has been provided by the DBpedia project[15].

Three different output components were compared separately. On the
listings below, the ideal result can be seen, for the context output in Listing
3.1, for links

Listing 3.1: Exemplary result for NIF Context
<http://dbpedia.org/resource/Anarchism?dbpv=2020-02&nif=context>

<http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-
core#isString> "Anarchism is a radical political ... \n*
Textbooks from Wikibooks \n* Data from Wikidata \n* Anarchy
Archives. Anarchy Archives is an online research center on
the history and theory of anarchism" .

Listing 3.2: Exemplary result for NIF Links
<http://dbpedia.org/resource/Austroasiatic_languages?dbpv

=2016-04&nif=phrase_94_109> <http://www.w3.org/1999/02/22-
rdf-syntax-ns#type> <http://persistence.uni-leipzig.org/
nlp2rdf/ontologies/nif-core#Phrase> .

<http://dbpedia.org/resource/Austroasiatic_languages?dbpv
=2016-04&nif=phrase_94_109> <http://persistence.uni-leipzig.
org/nlp2rdf/ontologies/nif-core#referenceContext> <http://
dbpedia.org/resource/Austroasiatic_languages?dbpv=2016-04&
nif=context> .

<http://dbpedia.org/resource/Austroasiatic_languages?dbpv
=2016-04&nif=phrase_94_109> <http://persistence.uni-leipzig.
org/nlp2rdf/ontologies/nif-core#beginIndex> "94"ˆˆ<http://
www.w3.org/2001/XMLSchema#nonNegativeInteger> .

<http://dbpedia.org/resource/Austroasiatic_languages?dbpv
=2016-04&nif=phrase_94_109> <http://persistence.uni-leipzig.
org/nlp2rdf/ontologies/nif-core#endIndex> "109"ˆˆ<http://www
.w3.org/2001/XMLSchema#nonNegativeInteger> .

37



3. Testing and Results

<http://dbpedia.org/resource/Austroasiatic_languages?dbpv
=2016-04&nif=phrase_94_109> <http://persistence.uni-leipzig.
org/nlp2rdf/ontologies/nif-core#superString>

Listing 3.3: Exemplary result for NIF Page Structure
<http://dbpedia.org/resource/Ada?dbpv=2016-04&nif=section_0_17>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://
persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#
Section> .

<http://dbpedia.org/resource/Ada?dbpv=2016-04&nif=section_0_17>
<http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-
core#beginIndex> "0"ˆˆ<http://www.w3.org/2001/XMLSchema#
nonNegativeInteger> .

<http://dbpedia.org/resource/Ada?dbpv=2016-04&nif=section_0_17>
<http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-
core#endIndex> "17"ˆˆ<http://www.w3.org/2001/XMLSchema#
nonNegativeInteger> .

<http://dbpedia.org/resource/Ada?dbpv=2016-04&nif=section_0_17>
<http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-
core#referenceContext> <http://dbpedia.org/resource/Ada?dbpv
=2016-04&nif=context> .

...

The output format should be in N-triples[16], better described in Section
1.2.2.

3.1 Smoke Testing

Smoke test is a test or a test suite that covers the main functionality of a
component or system to determine whether it works properly before planned
testing begins. Smoke testing, also known as “Build Verification Testing”, is
a type of software testing that comprises of a non-exhaustive set of tests that
aim at ensuring that the most important functions work. The result of this
testing is used to decide if a build is stable enough to proceed with further
testing. It can also be used to decide whether to announce a production
release or to revert. The term ‘smoke testing’, it is said, came to software
testing from a similar type of hardware testing, in which the device passed
the test if it did not catch fire (or smoked) the first time it was turned on.
Smoke testing covers most of the major functions of the software but none of
them in depth. The result of this test is used to decide whether to proceed
with further testing. If the smoke test passes, go ahead with further testing.
If it fails, halt further tests and ask for a new build with the required fixes. If
an application is badly broken, detailed testing might be a waste of time and

38



3.2. Unit Test coverage

effort. Smoke test helps in exposing integration and major problems early in
the cycle. It can be conducted on both newly created software and enhanced
software. Smoke test is performed manually or with the help of automation
tools/scripts. If builds are prepared frequently, it is best to automate smoke
testing.

To list the information, those are the advantages of an early and continuous
smoke testing:

• It exposes integration issues.

• It uncovers problems early.

• It provides some level of confidence that changes to the software have
not adversely affected major areas (the areas covered by smoke testing)

This kind of testing was performed during every stage of the implementa-
tion after each new part of functionality has been added to the framework. It
includes CLI testing, API testing, functionality testing, and output verifica-
tion. During development and testing the framework was running locally on
a Mac-based machine.

A big amount of bugs and errors was revealed and subsequently fixed
during these tests. For example, there were many errors related to the parsing
of Wikipedia articles, and lots of inconsistencies happening during the page
structure translation into the page.

Furthermore, scaling the framework has caused a lot of problems. The
size of an English Wikipedia dump is about 16 GB of data, and parsing it
takes a lot of time. During those tests, it was discovered that such amount
of data can not be handled by the server, and therefore an adequate API for
production purposes can not be easily provided.

For the smoke testing, the next tests were conducted:

• Single-article XML dump in English language.

• Two-page XML dump in English language.

• Other languages support testing, conducted for a single page from a
German segment of Wikipedia.

3.2 Unit Test coverage

Unit testing is a software testing method by which individual units of source
code - sets of one or more computer program modules together with associ-
ated control data, usage procedures, and operating procedures - are tested to
determine whether they are fit for use. The goal of unit testing is to isolate
each part of the program and show that the individual parts are correct. A

39



3. Testing and Results

unit test provides a strict, written contract that the piece of code must satisfy.
As a result, it affords several benefits.

Unit testing finds problems early in the development cycle. This includes
both bugs in the programmer’s implementation and flaws or missing parts of
the specification for the unit. The process of writing a thorough set of tests
forces the author to think through inputs, outputs, and error conditions, and
thus more crisply define the unit’s desired behavior. The cost of finding a bug
before coding begins or when the code is first written is considerably lower
than the cost of detecting, identifying, and correcting the bug later. Bugs in
released code may also cause costly problems for the end-users of the software.
Code can be impossible or difficult to unit test if poorly written, thus unit
testing can force developers to structure functions and objects in better ways.

Unit testing allows the programmer to refactor code or upgrade system
libraries at a later date, and make sure the module still works correctly (e.g.,
in regression testing). The procedure is to write test cases for all functions and
methods so that whenever a change causes a fault, it can be quickly identified.
Unit tests detect changes which may break a design contract.

Unit testing may reduce uncertainty in the units themselves and can be
used in a bottom-up testing style approach. By testing the parts of a program
first and then testing the sum of its parts, integration testing becomes much
easier.

3.2.1 JUnit Framework

For the framework implementation, a JUnit library was used. JUnit is a
Regression Testing Framework used by developers to implement unit testing
in Java, and accelerate programming speed and increase the quality of code.
JUnit Framework can be easily integrated with Maven.

JUnit test framework provides the following important features:

• Fixtures - is a fixed state of a set of objects used as a baseline for
running tests. The purpose of a test fixture is to ensure that there is a
well-known and fixed environment in which tests are run so that results
are repeatable. It includes setUp() method, which runs before every test
invocation, and tearDown() method, which runs after every test method.

• Test suites.A test suite bundles a few unit test cases and runs them
together. In JUnit, both @RunWith and @Suite annotation are used to
run the suite test.

• Test runners. Test runner is used for executing the test cases.

• JUnit classes JUnit classes are important classes, used in writing and
testing JUnits. Examples of those classes are:

Assert - contains a set of assert methods.

40



3.2. Unit Test coverage

TestCase - contains a test case that defines the fixture to run mul-
tiple tests.

TestResult - contains methods to collect the results of executing a
test case.

For a given project, unit tests were used to test the execution of a WIkipedi-
aPageParser class, that is used to parse separate pages, as well as its supple-
mentary classes, such as a DumpSplitService. You can see the examples of a
unit test used in the project in the Listing 3.4:

Listing 3.4: JUnit Paragraph Parsing Unit Test Class
@Log4j
public class WikipediaPageParserTest {

private static WikipediaPageParser pageParser;
private static WikiPage wikiPage;
private static XmlTransformer contextLanguageTransformer

;

@BeforeAll
public static void beforeAll() throws IOException {

pageParser = new WikipediaPageParser(new
ContextLanguageTransformer());

URL textUrl = Resources.getResource("page_test.
txt");

wikiPage = new WikiPage("Anarchism",
Resources.toString(textUrl, StandardCharsets.

UTF_8));
}

@Test
public void parseParagraphsTest() throws IOException,

ParsingException {
Subdivision root = pageParser.buildPageStructure(

wikiPage);
// check that the paragraphs are parsed
assertTrue(root.getParagraphs().size() > 1);
// check that the page has a meaningful structure
assertTrue(root.getChildren().size() > 1);

}
...

}

41



3. Testing and Results

3.3 End-to-End Testing

End-to-end testing is a Software testing methodology to test an application
flow from start to end. The purpose of End-to-end testing is to simulate the
real user scenario and validate the system under test and its components for
integration and data integrity. What it means for this project is that we
will need to do a test from downloading an XML dump from Wikipedia to
receiving the processed results. Here is the general outlay of a testing process:

1. Download the latest Wikipedia dump[17]. They are released at least
monthly and usually twice a month. Different languages are listed after
the metawiki dumps.

2. Unzip the file, in Unix-like operating systems usually done in bzip2 -d
wikidatawiki-*-pages-meta-history1.xml-p1p224.bz2

Optional Because parsing of the whole XML dump is time-consuming, I have used
a way to reduce the amount of articles that is processed. To do it, it is
possible to execute this command head -n 100000 enwiki-20191101-
pages-articles-multistream1.xml > short_test_100k.xml, and then
properly close off the XML by removing the last article and close the
XML brackets.

3. Build the framework and pass the input parameters to a file. I have
created a script parse_xml_dump.sh that will build the framework if
necessary and run the executable with the XML dump path as the pa-
rameter.

3.3.1 English language parsing

Initially the testing was done on a single English-language article. This testing
uncovered many problems with the parsing model, such as the need to update
the recursive function to build the page structure. Most importantly, the first
testing helped to understand the vast number of Wikipedia XML components.
Of those, I had to drop the parts that were already covered by the previous
frameworks mentioned in Section 1.5.1, such as infoboxes, images, files, cat-
egories and others, and instead focus only on the text. I also dropped the
citations mentioned in the article’s footer, and instead focused on the text
itself.

3.3.2 Testing other languages

Additionally to English language, I have added other popular Wikipedia lan-
guages. According to the latest Wikipedia statistics, those are the main lan-
guages of Wikipedia[18]:

42



3.3. End-to-End Testing

1. English: 2,567,509 articles, 22.5% of the total number of articles;

2. German: 808,044 articles, 7.1%;

3. French: 709,312 articles, 6.2%;

4. Polish: 539,688 articles, 4.7%;

5. Japanese: 523,629 articles, 4.6%.

3.3.3 Output validation

There are several utilities that can be used to validate the output, most notable
Apache Jena and rapper[19]. For the output validation, I have picked rapper,
as it is more lightweight and has the ability to count or parse the provided
N-triples. For example, the command rapper --input ntriples --output
rdfxml --show-graphs nif\_links.nt will parse the links and transform it
into RDF/XML format. If this transformation will not throw any exceptions,
this will mean that the output is a valid set of N-triples.

3.3.4 Scale Testing

For the scale testing, I have implemented logging and a simple parsing success
metric, as some of the articles have a syntax that may deviate from the stan-
dard or the framework’s programmed expectations. For example, some might
contain links that are broken with line separators, or differently encoded XML
components.

To further measure the time that the application will take to parse the
code, I have added the execution time metric.

I have run several tests over the English Wiki dump with the next results:

• Total pages parsed: 258. Success rate: 84.88%. Seconds passed: 31.

• Total pages parsed: 2087. Success rate: 88.55%. Seconds passed: 109.

• Total pages parsed: 6738. Success rate: 87.90%. Seconds passed: 237.

43





Chapter 4
Conclusions

The result of this thesis is a Java Framework that allows users to parse and
retrieve the Wikipedia XML dump and achieves most of the original objectives,
in some places with a room for improvement:

1. Accept and process input data in the form of Wikipedia XML
dumps. The Wikipedia XML Dump parsing was achieved, and the
process to do so best described in Section 3.3. The statistics show that
the parsing success rate averages on 88% over the large amounts of
articles, meaning that around 12% of articles will contain some kind
of component that will not be parsable by the framework and will be
skipped. These systemic errors can be avoided by further investigation
of Wikipedia’s XML Format.

2. Extract context. Context is extracted and stored in the form of N-
Triples. Some of the contexts might still contain traces of the original
XML code. This can be later fixed by improving the XML removal code.

3. Extract page structure. Page structure is extracted and recursively
built in the form of N-Triples.

4. Extract links. Links are extracted, URLs that link them to the page
structure are created.

5. Provide outputs for context, links and page structure in the
form of N-Triples. Output is printed.

6. Implement language extensibility. Language extensibility mecha-
nism is implemented, new languages can be added in the form of an
XML that is parsed into POJO when the application is starting, better
described in Section 2.6.4.

7. Provide a user interface. User interface is provided in two different
forms and is described in Section 2.4.

45





Chapter 5
Acronyms

API Application Programming interface.

CLI Command Line Interface.

CSV Comma-separated values.

DRY Don’t Repeat Yourself.

FOAF Friend Of A Friend.

FR Functional Requirement.

GUI Graphic User Interface.

HTML HyperText Markup Language.

HTTP Hypertext Transfer Protocol.

IDE Integrated Development Environment.

J2EE Java 2 Platform Enterprise Edition.

JAXB Jakarta XML Binding.

JVM Java Virtual Machine.

NIF NLP Interchange Format.

NLP Natural Language Processing.

OWL Web Ontology Language.

47



Acronyms

POJO Plain Old Java Object.

RAM Random Access Memory.

RDF Resource Description Framework.

REST Representational state transfer.

RSS RDF Site Summary.

SKOS Simple Knowledge Organization System.

SPARQL SPARQL Protocol and RDF Query Language).

URI Uniform Resource Identifier.

W3C World Wide Web Consortium.

WWW World Wide Web.

XML Extensible Markup Language.

YAML Yet ANother Markup Language.

48



Bibliography

[1] Berners-Lee, T. Q&A with Tim Berners-Lee [online]. April 2007. Avail-
able from: https://www.bloomberg.com/news/articles/2007-04-
09/q-and-a-with-tim-berners-leebusinessweek-business-news-
stock-market-and-financial-advice

[2] Berners-Lee, T. Linked Data [online]. July 2006. Available from: https:
//www.w3.org/DesignIssues/LinkedData.html

[3] Sean Bechofer, F. v. H. OWL Web Ontology Language Reference. In W3C
Recommendation, February 2004.

[4] Peter Haase, A. E., Jeen Broekstra. A Comparison of RDF Query Lan-
guages. In AWSC: Asian Semantic Web Conference, October 2004, pp.
502–517.

[5] Sebastian Hellmann, S. A., Jens Lehmann; Brümmer, M. Integrating
NLP using Linked Data. In 12th International Semantic Web Conference,
Sydney, Australia, October 2013.

[6] E. Wilde, M. D. URI Fragment Identifiers for the text/plain Media Type.

[7] NIF 2.0 Core Ontology [online]. 2020. Available from: https:
//persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/
nif-core.html

[8] DBpedia Facts & Figures [online]. September 2020. Available from:
https://dbpediawww.informatik.uni-leipzig.de/about/facts-
figures

[9] Mohamed Morsey, J. L. DBpedia and the Live Extraction of Structured
Data from Wikipedia.

49

https://www.bloomberg.com/news/articles/2007-04-09/q-and-a-with-tim-berners-leebusinessweek-business-news-stock-market-and-financial-advice
https://www.bloomberg.com/news/articles/2007-04-09/q-and-a-with-tim-berners-leebusinessweek-business-news-stock-market-and-financial-advice
https://www.bloomberg.com/news/articles/2007-04-09/q-and-a-with-tim-berners-leebusinessweek-business-news-stock-market-and-financial-advice
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html
https://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html
https://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html
https://dbpediawww.informatik.uni-leipzig.de/about/facts-figures
https://dbpediawww.informatik.uni-leipzig.de/about/facts-figures


Bibliography

[10] Kapadnis, J. REST: Good Practices for API Design[online]. March
2018. Available from: https://medium.com/hashmapinc/rest-good-
practices-for-api-design-881439796dc9

[11] Picocli - command line interface library [online]. 2020. Available from:
https://picocli.info/

[12] IntelliJ IDEA - Capable and Ergonomic IDE [online]. 2020. Available
from: https://www.jetbrains.com/idea/

[13] JetBrains Java development ecosystem research [online]. 2020. Available
from: https://www.jetbrains.com/lp/devecosystem-2020

[14] Apache Maven Project [online]. 2020. Available from: https://
maven.apache.org/pom.html

[15] DBpedia Project Link [online]. 2020. Available from: https://
wiki.dbpedia.org/

[16] N-Triples - a line-based syntax for an RDF graph [online]. 2020. Available
from: https://www.w3.org/TR/n-triples/

[17] Wikimedia Downloads [online]. 2020. Available from: https://
www.w3.org/TR/n-triples/

[18] Top Ten Wikipedias [online]. 2020. Available from: https://
meta.wikimedia.org/wiki/Top_Ten_Wikipedias

[19] Raptor RDF Syntax Library - Raptor RDF parser utility [online]. 2014.
Available from: http://librdf.org/raptor/rapper.html

50

https://medium.com/hashmapinc/rest-good-practices-for-api-design-881439796dc9
https://medium.com/hashmapinc/rest-good-practices-for-api-design-881439796dc9
https://picocli.info/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/lp/devecosystem-2020
https://maven.apache.org/pom.html
https://maven.apache.org/pom.html
https://wiki.dbpedia.org/
https://wiki.dbpedia.org/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/n-triples/
https://meta.wikimedia.org/wiki/Top_Ten_Wikipedias
https://meta.wikimedia.org/wiki/Top_Ten_Wikipedias
http://librdf.org/raptor/rapper.html

	Introduction
	Motivation
	Objectives
	Challenges

	Background and related works
	The Concept of Semantic Web
	What is Linked Data?
	Web Ontology Language Overview
	RDF Description
	SPARQL Query Language for RDF

	NLP Interchange Format
	Existing Use Cases for NIF

	Linked Open Data and DBpedia
	Extracting Structured Information from Wikipedia
	DBpedia Dataset
	Triplestore
	DBpedia Dataset Web Endpoints

	Related works
	DBpedia Information Extraction Framework


	Analysis and Implementation
	Requirements
	Design
	General Workflow
	Usability considerations
	REST API
	REST API Endpoints

	Command Line Interface
	CLI Design Principles
	Command Line Input Options

	Project Architecture
	Implementation
	Tools and libraries
	Spring Framework
	Spring Dependency Injection

	Java Jackson XML Library
	Dynamic Language Support


	Testing and Results
	Smoke Testing
	Unit Test coverage
	JUnit Framework

	End-to-End Testing
	English language parsing
	Testing other languages
	Output validation
	Scale Testing


	Conclusions
	Acronyms
	Bibliography

